
Verifying Correctness of Formal Specifications
with an SMT Solver

Keishi Okamoto

Sendai National College of Technology,
okanoto@senda-nct. ac. jp

Abstract. Issues in software development is often due to requirements
specifications. In this paper, we introduce a verification method for for-
mal specifications with an SMT solver to assure quality of software in
design process. In particular we introduce a simple case study in which
we translate a specification to a verification condition formula in the
language of an SMT solver Z3 and then we verify the formula with Z3.

1 Introduction

As software is becoming complicated, complex and omnipresent, there are many
software failure cases. Therefore improving reliability of software must be re-
quired. Moreover, problems in software development is often due to require-
ments specifications. Indeed, Union of Japanese Scientists and Engineers, Soft-
ware Quality Profession $re\beta$orts that problems due to requirements specifications
accounts for 40% in the life cycle of development.

Formal methods are promising approaches to tackle the issues[l], in partic-
ular, SMT solvers have draws many researchers’ attention[2]. SMT solvers are
used for verifying correctness conditions for source codes. These conditions are
called verification conditions. Our future goal is to develop a verification condi-
tion generator for specifications.

In this paper, we introduce a verification method for formal specifications
with an SMT solver to assure quality of software in design process. In particular
we introduce a simple case study in which we translate a formal specification
with (an invariant,) a pre-condition and a post-condition to a verification con-
dition $f_{orm\iota 1}1a$ in the language of an SMT solver $Z3[3$} and then we solve the
satisfiability problem of the formula with Z3.

2 Formal Specifications

In this section, we introduce formal specifications and give definitions of correct-
ness of formal specifications.

Formal methods are software development methods based on mathematical
logic and computer science. Formal methods are applied to many systems, in-
cluding software, to improve their reliability. Formal specification and formal

数理解析研究所講究録

第 1938巻 2015年 46-53 46

verification are two major parts of formal methods. In formal specification, we
describe specifications with a formal language based on mathematics and com-
puter science[4, 5]. Then the resulting formal specifications are less ambiguous
than traditional specifications and then we can verify many properties of for-
mal specifications. In formal verification, we verify a model of a system, which
we want to verify, with mathematical methods, for instance model checking[6,
7] and theorem proving[8, 9]. With model checking, we can automatically check
a model, which is often a state transition system, of a system. With theorem
proving, we can automatically or interactively prove a model of a system with
mathematical formal proof.

In formal methods, we use mathematical objects (natural numbers, sets, tu-
ples, functions, λ-terms etc.) to understand properties of source codes and $speciarrow$

fications[l]. A mathematical object to understand a source code (a specification)
is called a model of the source code (respectively the specification).

From the view point of $State-ba\mathcal{S}ed$ Specifications, we define a state in a tran-
sition system as a tuple of values of variables in a given specification, and we con-
sider a specification as a state transition system which is the pair \langleState, Trans)
of a set State of states and a transition relation Trans between states. In a state
transition system, a state of a program is modeled as a tuple of values of global
variables in the program and then an execution of a program is modeled as a
relation between states. Therefore, an element in Trans represents an execution
of an operation in a specification. For an element $(\mathcal{S}_{1}, \mathcal{S}_{2})$ of Trans, we call a
pre-state for the first element s_{1} and a post-state for the second element $s_{2}.$

We also introduce some teminologies. Pre-Condition is a condition that must
always be true just prior to the execution of some section of a code or a speci-
fication. In other words, pre-condition is a condition at which a pre-state must
satisfies. Post-Condition is a condition that must always be true just after the
execution of some section of a code or a specification. In other words, post-
condition is a condition at which a post-state must satisfies.

We show examples of a state-based specification, a corresponding formal
specification and a source code:

-Statebased Specification: set the value of the variable x to be incremented
by 1 (Action) when the value of x is less than 0 (Condition),

-Formal Specification: $x<0arrow x’=x+1$ where $x’$ is a variable repr\’esenting
the value of x after an execution of an operation,

-Source Code: if $x<0$ then $x:=x+1$ fi.

Correctness of Formal Specifications There are some (generic) correctness
conditions of formal specifications[4, 5]. Consistency is a correctness condition
that specifications do not contradict each other. This correctness condition is a
condition for a set of requirements. For instance, the set of two requirements “if
SW $=$ on then SW $:=$ off” and “if SW $=$ on then SW $:=$ on”’ are contradict each
other. Completeness is a correctness condition that there are no $underspecffica_{n}$

tion which means that certain required features are omitted.

47

We introduce correctness conditions invariant and Enstence of Post-state.
Then we wiH show examples of verification of these correctness conditions for
formal specifications in Section 3 and 4.

Invariant is a correctness condition that must always be true. Invariants
must be defined by software engineers depending on specifications. We define
the meaning of must always”’ inductively as follows:

– an initial state of a state transition system satisfies an invariant,
-reachable states from the initial state satisfy the invariant.

We show two examples of invariants, 1) the value of a variable WaterTemp
must always satisfies the condition $0\leq$ WaterTemp ≤ 100 , 2) the value of a
variable x is must always greater then the value of a variable $y.$

Emstence of Post-state is a correctness condition that at a state satisfying a
pre-condition, just after the execution of an operation which we want to imple-
ment, we can reach at a state satisfying a post-condition. Since a state is a tuple
of values of variables, Existence of Post-state is also a correctness condition that
for any input satisfying a pre-condition, just after the execution of an operation
which we want to implement, we can get a output satisfying a post-condition.

For a given invariant Inv, pre-condition preCon and a post-condition postCon,
we show a formal descriptions of Existence of Post-states:

$-\forall s.\exists s’.preCon(s)\wedge Inv(\mathcal{S})arrow postCon(s’)\wedge Inv(s’)$

where s is a pre-state and $\mathcal{S}’$ is a post-state[4]. We notice that a post-condition
is often a relation among $s,$

$s’$. For instance, a post-condition must be a relation
$x’-arrow x+1$ between x and $x’$, for a requirement that if the value of a variable x

is less than 0 then inclement the value of x by 1. We also notice that there are
specifications which do not require invariants.

3 Verifying Correctness of Programs with SMT Solvers

In this section we explain how to verify a correctness condition of a program
by solving a satisfiability problem with an SMT solver. First, we introduce def-
initions of satisfiability, equisatisfiability and a uninterpreted function of Satis-
fiability Modulo Theories[2, 10]. Then we introduce two translation techniques,
namely Tsetin Transformation and Skolemization, from a correctness condition
of a program to a satisfiability problem.

Definition 1. A formula φ is satisfiable if there is an assignment under which φ

evaluates to true. A formula φ is valid if φ evaluates to true for any assignments.
We say that a formula φ is unsatisfiable if it is not satisfiable.

A model-theoretic approach to solve satisfiabihty problems is to find an as-
signment satisfying a given formula, i.e., for a given formula, if we find an assign-
ment and then return “sat and the assignment, otherwise we return “unsat”
There is an assignment $\langle p=true,$ $q=false\rangle$ for a propositional formula $p\vee q,$

therefore $p\vee q$ is satisfiable. And there is an assignment $\langle x=1,$ $y=2\rangle$ for a
first-order formula $2x=y$, therefore $2x=y$ is satisfiable.

48

Definition 2. Formulas φ and ψ are equisatisfiable if they are both satisfiable
or they are both $unsati_{\mathcal{S}}$fiable.

For instance, a formula $parrow q$ and $\neg p\vee q$ are equisatisfiable, (moreover they
are logically equivalent) where p and q are Boolean variables. In general, logical
equivalence implies equisatisfiability.

Let $CNF(\varphi)$ be a formula which is conjunctive normal form and logically
equivalent to a given formula φ . The satisfiability problem of $CNF(\varphi)$ is often
easy to solve than that of φ . But the complexity of a naive translation of φ to
$CNF(\varphi)$ is exponential. For instance, a formula

$(x_{1}\wedge x_{2})\vee(x_{3}\wedge x_{4})\vee\cdots\vee(x_{2n-1}\wedge x_{2n})$

is translated to a formula

$(x_{1}\vee x_{3}\vee\cdots\vee x_{2n-1})\wedge(x_{1}\vee x_{3}\vee\cdots\vee x_{2n})\wedge\cdots\wedge(x_{2}\vee x_{4}\vee\cdots\vee x_{2n})$

which is logically equivalent to the first and the number of its clauses is $2^{n}.$

There is an efficient translation method called Tsetin Transformation[ll]. The
complexity of the method is linear but the resulting formula is equisatisfiable to
a given formula.

Definition 3. An uninterpreted function symbol $i_{\mathcal{S}}$ a function symbol which is
not interpreted in models.

We assume that well-known function symbols, addition $+,$ multiplication $\cross etc.,$

are interpreted as usual. We use function symbols $F,$ $G,$ \cdots for uninterpreted
function symbols.

We assume that every uninterpreted function F satisfies Congruence Axiom:

$\forall t_{1\}}\cdots,$ $t_{n},$ $u_{1},$ $\cdots,$ $u_{n}.$ $(\bigwedge_{i=1}^{n}t_{i}=u_{i}arrow F(t_{1}, \cdots, t_{n})=F(u_{1}, \cdots, u_{n}))$

There are no other axiom assumed to uninterpreted functions.
Let φ be a formula and $UF(\varphi)$ be a formula which is replacing some inter-

preted functions in φ with uninterpreted functions. Then it is clear that φ is
valid whenever $UF(\varphi)$ is valid. Moreover, validity checking of $UF(\varphi)$ is often
easier than that of $\varphi.$

We introduce a translation method called Skolemization. It is difficult to
solve satisfiability problems of certain formulas, for instance $\forall\exists$-formulas. It is
useful to translate such a formula to an equisatisfiable formula which is easy to
solve its satisfiability problem with an SMT solver. Skolemization is one of such
translation methods for $\forall\exists$-formulas.

The following formulas are equisatisfiable. We call the second formula Skolem-
ization of the first formula.

1. $\forall x\in D\exists y\in D.P(x, y)$

49

2. $\forall x\in D.P(x, F(x))$ where $F:Darrow D$

As we have already mentioned, the first formula is of the form of a correct-
ness condition Existence of Post-state. In other words, the formula represents
a condition that for any input x , there is an output y satisfying a condition
$P(x, y)$.

The first formula does not require that the relation P is a function, namely
there is one and only one y for any x . If the second formula is satisfiable then we
have an implementation, which is a function, of the requirement expressed by
the first formula, i.e., an assignment of F . SMT solvers can check satisfiability
problems with uninterpreted functions. We will show that the first formula can
be verified by solving a satisfiability problem of a formula having uninterpreted
functions.

4 A Case Study: Verification with an SMT Solver Z3

In this section we introduce a simple case study in which we translate a for-
mal specification with (an invariant,) a precondition and a post-condition to
a verification condition formula in the language of Z3[3] and then we solve the
satisfiability problem of the formula with Z3. An input of Z3 is a formula and a
output is “sat with an assignment if the input is satisfiable, or “unsat if the
input is unsatisfiable.

There is a client of $Z3$, called “Boogie” that is a program verification too1[12].
An input of the client is a source code with assertions and an output of the client
is a verification condition formula which can be solved with SMT solvers. Thus
we can verify source codes with Boogie and Z3. Our future goal is to develop a
verification condition generator for specifications.

Let SW be a variable whose value is on and off. Consider a requirement that
turn the value of SW to another if the value of SW is on. This requirement can be
described as a pair of a pre-condition SW $=on$ and a post-condition SW $\neq SW’$. In
other words, an implementation of the requirement must change the value of SW
when an input value of SW is on. Thus a requirement is considered as a relation,
in particular a function, between inputs and outputs.

One of correctnesses conditions of a specification is Existence of Post-state
that, for any input satisfying a pre-condition, there is an output satisfying a
post-condition after an execution of the program. Thus the correctness of the
above requirement is described as a satisfiability problem of the formula

$\forall SW\exists SW’(SW=onarrow SW’\neq SW)$.

A main feature of Z3 is a quantifier, i.e., Z3 model finder is more effective if
the input formula does not contain nested quantifiers. Therefore quantifier elim-
ination technique is important. In this case, we translate the above verification
condition formula to the following Skolemized verification condition formula:

$\forall SW(SW=onarrow F(SW)\neq SW)$

50

where $F:\{on, off\}arrow$ { on , off}.
If an SMT solver returns $\mathcal{S}at$ then we can implement the requirement. We

show the requirement encoded to Z3 format in Figure 1 and the result of the
satisfiability problem in Figure 2.

(declare-datatype6 $()$ ($(S$ on off
(declare-fun F (S) S)

(assert (forall $((SWS))$ ($=>$ ($=$ SW on) (not $(=$ (F SW) SW

(check sat)

(get model)

Fig. 1. A verification condition formula in Z3 language

sat
(model

(define-fun $F((x!1S))S$
off)

$)$

Fig. 2. The result of the satisfiability problem

Suppose that we add an additional requirement that the value of SW must
be on after an operation. Then the new verification condition formula can be
formalized as follows:

$\forall SW\exists SW’ (SW=onarrow SW’\neq SW\wedge SW’=on)$.

Then a corresponding verification condition formula in Z3 language is the fol-
lowing.

(declare-datatypes $()$ ($(S$ on off
(declare-fun $F(S)$ S)

(assert (forall $((SWS))$

($=>$ ($=$ SW on) (and (not $(=(F$ SW) SW)) $(\approx$ (F SW) on

(check-sat)

Fig. 3. A verification condition formula in Z3 language

51

The satisfiability problem for the verification condition formula in Figure 3 is
unsatisfiable. This result teliS us that these two requirements contradict to each
other. Thus we cannot implement the requirements.

In some cases, Skolemization is not enough for solving a satisfiability problem
of a formula with Z3. We show an example of this insufficiency. Consider a
formula $\forall x::Int\exists y::Intx<y$. We have the resulting formula $\forall x::Intx<F(x)$,
where $F::Intarrow Int$, by Skolemization. Then the Skolemized formula described
as an input to Z3:

(declare-fun F (Int) Int)

(assert (forall ($(x$ Int)) $(<x$ (Fx)

But this cannot be solved with Z3. Of course, the following trivial satisfiability
problem can be solved.

(declare-fun F (Int) Int)

(assert (forall $((x$ Int)) $(=(+x1)$ $(Fx)))$)

Thus more efficient translation is required to solve satisfiability problems with
Z3.

5 Summary

In this paper, we introduced a verification method for formal specifications with
an SMT solver to assure quality of software in design process. In particular,
we introduced some definitions of Satisfiabihty Modulo Theories and translation
techniques. Then we show a case study in which we formalize a requirement to
a logical formula and translate it to a Skolemized formula. Then we solved its
correctness Existence of Post-state with an SMT solver Z3. But the satisfiability
problem of complex formula cannot be solved with Z3, therefore more effcient
equisatisfiable translation is required.

References

1. $\iota F\Leftrightarrow \mathcal{B},$ $\ovalbox{\tt\small REJECT} R\neq \mathfrak{F}\lambda R5,$ A^{--}ム $\dagger\pm$, (2012)
2. Handbook of Satisfiability (Frontiers in Artificial Intelligence and Applications),

Armin Biere, Marijn Heule, Hans Van Maaren, Toby WaJsh (E&.), Ioe Press Inc,
(2009)

3. Z3, http: $//z3.$codeplex.$com/$

4. John Fitzgerald, Peter Gorm Larsen, Modelling Systems, Practical Tools and Tbch-
niques in Software Development, Second Edition, Cambridge University Press (2009)

5. Jean-Raymond Abrial, Modeling in Event-B, System and Software Engineering,
Cambridge University Press (2010)

6. Gerard J. Holzmann, The SPIN Model Checker: Primer and Reference Manual,
Addison-Wesley Professional; 1 edition, (2003)

7. Model Checking, Edmund M. Clarke Jr., Orna Grumberg, Doron Peled, The MIT
Press, (1999)

52

8. The Coq Proof Assistant, https:$//coq.$ inria. $h/$
9. Agda, $http://$wiki.portal. $cl\backslash$almers.$se/agda/$pmwiki.php
10. Daniel Kroening, Ofer Strichman, Decision Procedures: An Algorithmic Point of

View (Texts in Theoretical Computer Science. An EATCS Series, Springer Berlin
Heidelberg, (2008)

11. G.S. Tseitin, On the complexity of derivation in propositional calculus, Slisenko,
A.O. (ed.) Structures in Constructive Mathematics and Mathematical Logic, Part
II, Seminars in Mathematics (translated from Russian), pp.115-125. Steklov Math-
ematical Institute (1968)

12. Boogie: An Intermediate Verification Language, http://research.microsoft.$com/en-$

us/projects/boogie/

53

