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Abstract

We introduce the notion of $PAC_{n}$-learning and show that the $PAC_{n^{-}}$

learnability of a class $C$ implies $VC_{n}(C)<\infty.$

1 Introduction

The PAC-learning on a class having finite VC-dimension has been studied
since Vapnic and Chervonenkis published their pioneer work on VC-classes
in $1970’ s[3]$ . It is well known that the PAC-learnability coincides with the

finiteness of VC-dimension appears in combinatorics, and with the depen-

dent property discussed in model theory. One of the authors introduced
$VC_{n}$-dimension which is a generalization of VC-dimension to investigate
$n$-dependent property in a joint work with Chernikov and Palacin in [2],

and it is shown that $VC_{n}$-dimension characterizes $n$-dependency of for-
mulas, and vice versa, in the article.

In this article we intloduce a suitable generalization of PAC-
learnability and discuss about relations to $VC_{n}$-dimension. This is a
partial result of a joint work with M. Kobayashi. Note that readers are
assumed to know basic concepts of PAC-learning and VC-dimension.

2 $PAC_{n}$-learnability and $VC_{n}$-dimension

In this section we introduce a notion of $PAC_{n}$-learning on a class $C$ of
subsets of $X=\Pi_{i<n}X_{i}$ and prove that if $C$ is $PAC_{n}$-learnable then $C$ has
finite $VC_{n}$-dimension.

Let $X$ be a set and let $\mathcal{B}$ be a a-algebra on X.
$\cdot$

Definition 1. A probability measure $\mu$ on a a-algebra $(X, \mathcal{B})$ is a $\sigma-$

additive function $\mu_{\dot{a}}$ : $\mathcal{B}_{i}arrow[0$ , 1$]$ such that $\mu(\emptyset)=0$ and $\mu(X)=1.$

In this article, we fix sets $X_{0},$ $X_{n-1}$ and $X=\Pi_{i<n}X_{i}$ with $\sigma-$

algebras $\mathcal{B}_{l}$ on $X_{i}$ and the product a-algebra $\mathcal{B}=\otimes_{i<n}B_{i}$ on $X$ such that
for every point $x,$ $y\in X_{i}$ there are disjoint sets $A,$ $B\in \mathcal{B}_{l}$ satisfying $x\in A$

and $y\in B.$

Example 2. The following are typical examples of our setting.

1. $X$ is a Euclidean space and $\mathcal{B}$ is the class of Borel sets of $X.$

2. $X$ is a countable set and $\mathcal{B}$ is the power set $2^{X}.$
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For a given point $a$ $=$ $(b_{0}, b_{n-1})$ $\in$ $X$ , we denote the set
$\bigcup_{i<n}\{(x_{0}, x_{i-1}, b_{i}, x_{i+1}, x_{n-1})\in X:x_{j}\in X_{j}\}$ by $D_{n}(a)$ . Also,
for a given sequence $\overline{a}\in X^{\tau n}$ , we denote $\bigcup_{a\in\overline{a}}D_{n}(a)$ by $D_{n}(\overline{a})$ . We’ll
often omit the subscript of $D_{n}$ when it is clear from the context.
Definition 3. Let $C$ be a subclass of $\mathcal{B}.$

1. $\mathcal{C}^{n}f\ln=\{f|_{D_{n}(\overline{a})}:f\in \mathcal{C}, \overline{a}\in X^{m}, m\in\omega\}.$

2. A function $H$ : $C^{n}finarrow \mathcal{B}$ is said to be a learning function for $C$ if
for every $\epsilon,$

$\delta>0$ there is $N_{\epsilon,\delta}$ satisfying the following: For every
$m\geq N_{\epsilon,\delta},$ $f\in C$ , and a probability measure $\mu_{i}$ on $(X_{i}, \mathcal{B}_{i})$ for $i<n$

$\mu^{rn}(\{\overline{a}\in X^{m}:\mu(H(f|_{D(\overline{a})})\Delta f)>\epsilon\})\leq\delta.$

where $\mu$ is the product measure $\mu 0\cross$ $\cross\mu_{n-1}.$

3. Them minimum $N_{\epsilon,\delta}$ witnessing that $H$ is a learning function is
called the sample complexity of $H.$

4. $C$ is said to be $PAC_{n}$-learnable if $C$ has a learning function $H$ for $C.$

2.1 $PAC_{n}$-learnability implies the finiteness of
$VC_{n}$-dimension
We first recall the definition of $VC_{n}$-dimension introduced in [2].

Definition 4. Let $C\subset 2^{X}$ where $X=\Pi_{i<n}X_{i}.$

1. $A\subset X$ is said to be a box of size $m\in\omega$ if $A=\Pi_{i<n}A_{i}$ for some
$m$-point sets $A_{i}\subset X_{i}.$

2. $VC_{n}(C)\vec{-}$ sup{size(A) : $A\subset X$ is a box, $C|_{A}=2^{A}$ } where $C|A=$
$\{f|A:f\in C\}.$

$VC_{n}(C)$ is called the $VC_{n}$-dimension of $C.$

Theorem 5. Every $PAC$ -learnable class has finite $VC_{n}$-dimension.

Proof. Suppose that $C\subset 2^{X}$ is $PAC_{n}$-learnable with $VC_{n}-$dimension $>d.$

We show that the sample complexity $N_{\epsilon,\delta}$ must be $\geq d(1-\sqrt[n]{2(\epsilon+\delta)})$ .
Then, as an immediate conclusion, we have that if the class has infinite
$VC_{n}$-dimension then it is not $PAC_{n}$-learnable. First notice that, since
$V_{n}(C)\geq d$ , there is a box $A=\Pi_{i}A_{i}$ of size $d$ which is shattered by $C$

$($hence $|A|=d^{n})$ . By our assumption on $\mathcal{B}_{i}$ we $ca\iota 1$ find $B_{b}\in \mathcal{B}_{i}$ for each
$b\in A_{i}$ such that $B_{b}\cap B_{b’}=\emptyset$ for every $b\neq b’$ . Consider a measure $\mu_{i}$

on $X_{i}$ such that $\mu_{i}(A_{i})=1$ and $\mu_{i}$ is uniform on $A_{i}$ . (Hence for any
subset $B_{i}\subset X_{i},$ $\mu_{i}(B_{i})$ is determined as $|A_{i}\cap B_{i}|/d.$ ) This construction
gives a measure $\mu$ on $(X, \mathcal{B})$ such that $\mu(B)=|A\cap B|/d^{n}$ for every
$B\in \mathcal{B}$ . So, in what follows, we assume $X=A,$ $C=2^{A}$ , and consider the
uniform measure $\mu$ on $A$ . If $N_{\epsilon,\delta}\geq d$ then there is nothing to prove, so
let $m=N_{\epsilon,\delta}\leq d.$

Claim A. For any $f\in 2^{A}$ , the expected value of the error occurring is
bounded as follows:

$\frac{1}{d^{nm}}\sum_{\overline{a}\in A^{m}}\mu(H(f|_{D(\delta)})\Delta f)\leq\epsilon+\delta.$
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proof of Claim $A$ . Let $B=\{\overline{a}\in A^{m}$ : $\mu(H(f|_{D(\delta)}\Delta f)\geq\epsilon$} and $B^{c}=$

$A^{\pi\iota}\backslash B$ . Then

$\sum\mu(H(f|_{D(\overline{a})})\Delta f)\leq\sum 1+\sum\epsilon\leq d^{nm}(\delta+\epsilon)$ .
$a$ $\overline{a}\in B$ $\overline{a}\in B^{c}$

$\square$

Claim B. For some $f\in 2^{A}$ , the expected value of the error occurring
has a lower bound as follows:

$\frac{1}{d^{\mathfrak{n},n}}\sum_{\overline{a}\in A^{n}}\mu(H(f|_{D(\overline{a})})\Delta f)\geq\frac{(d-m)^{\mathfrak{n}}}{2d^{n}}.$

proof of Claim $B$. Let $E(f)= \frac{1}{d^{n\iota n}}\sum_{\overline{a}\in A^{m}}\mu(H(f|_{D(\overline{a})})\Delta f)$ . Then

$\max_{A}\{E(f)\}f\in 2 \geq \frac{1}{|2^{A}|}\sum_{f\in 24}E(f)$

$\geq \min_{a\in A^{n}}\{\frac{1}{|2^{A}|}\sum_{f\in 2^{A}}\mu(H(f|_{D(\overline{a})})\Delta f)\}.$

Therefore it is enough to show that

$\sum_{f\in 2^{A}}\mu(H(f|_{D(\overline{a})})\Delta f)\geq\frac{(d-m)^{n}2^{d^{n}}}{2d^{n}}$

for every $\overline{a}\in A^{rn}$ . However the left-hand side of the inequation is calcu-
lated as follows: by letting $D=D(\overline{a})$ , $D^{c}=A\backslash D,$ $|D^{c}|=k$

$(L.H.S) = \frac{1}{d^{n}}\sum_{f\in 2^{A}}|H(f|D)\Delta f|$

$= \frac{1}{d^{n}}\sum_{f_{0}\in 2^{D}}\sum_{f\supset f_{0}}|H(f|_{D})\Delta f|$

$= \frac{1}{d^{n}}\sum_{f_{0}\in 2^{D}}\sum_{i=0}^{k}i(\begin{array}{l}ki\end{array})$

$= \frac{1}{d^{n}}\sum_{f_{0}\in 2^{D}}\sum_{i=1}^{k}k(\begin{array}{l}k-1i-1\end{array})$

$= \frac{1}{d^{n}}\sum_{f_{0}\in 2^{D}}k2^{k-1}$

$\geq \frac{1}{d^{n}}2^{|D|}\{(d-m)^{n}2^{k-1}\}$

$= \frac{(d-m)^{n}2^{d^{\mathfrak{n}}}}{2d^{n}}.$

Note that the third line in the above inequations is followed from the fact
that $f$ varies over $2^{A}$ extending $f_{0}.$

$\square$

By Claim A and $B$ , we have $(d-m)^{n}/2d^{n}\leq\epsilon+\delta$ . The remains are
straightforward calculation. $\square$
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3 $\epsilon$-nets
The proof of Theorem 5 we gave in the last section is almost the same for
the classical case $n=1$ . Hence we expect that the copverse is also shown
by the same Method used in the case $n=1$ . However it does not work for
general case $n>1$ because an $\epsilon$-net doesn’t exist in general, though the
existence of it is the most important part of the proof of the converse. (We
would like to note that Sauer-Shelah lemma, which is the main lemma to
prove the existence of $\epsilon$-nets, has a suitable generalization to $VC_{n}$-classes
(see [2] for the generalization, and [1] for the case $n=1$ In this section
we see an example of $C$ such that no domain $D_{n}(a)$ of samples in $C^{n}fin$ is
an $\epsilon$-net for $C.$

First we recall so-called VC-theorem in the case $n=1$ . The read-
ers can find the details in [1]. For the simplicity, we assume $(X, \mathcal{B})\in$

$\{(\mathbb{R}^{k}, \mathcal{B}_{0}), ([0,1]^{k}, \mathcal{B}_{1}), (\omega, 2^{\omega})\}$ where $\mathcal{B}_{0}$ is the set of Borel sets and
$\mathcal{B}_{1}=\mathcal{B}_{0}|_{[O,1]^{k}}.$

Definition 6. A class $CC\mathcal{B}$ is said to be countably separable if there is
a countable subset $C_{0}\subset C$ such that for every $f\in \mathcal{C}$ there is a sequence
$f_{0},$ $f_{1},$ $\in C_{0}$ such that the sequence convergence pointwise to $f$ , i.e. for
any $x\in X$ there is $N$ such that if $n>N$ then $f_{n}(x)=f(x)$ .

Definition 7. Let $C\subset \mathcal{B}$ be any class and $\mu$ a probability measure on
$(X, \mathcal{B})$ . A subset $A\subset X$ is said to be an $\epsilon$-net for $C$ if for every $f\in C,$

$f\cap A\neq\emptyset$ where $\mu(f)>\epsilon.$

Proposition 8. Let $C\subset \mathcal{B}$ have finite VC-dimension $d$ . Suppose that
$C$ is countably separable. Then for any probability measure $\mu$ on $(X, \mathcal{B})$

and $\epsilon>0,$ $\mu^{m}$ ( $\{\overline{a}\in X^{rn}$ : a is not an $\epsilon$-net for $C\}$ ) $\leq 2((2m)^{d}+1)2^{-\epsilon rn/2}$

where $\mu^{rn}$ is the product measure on $X^{\pi\iota}.$

By taking $m$ large enough, we have the following:

Corollary 9. Let $C\subset \mathcal{B}$ have finite VC-dimension $d$. Suppose that $C$ is
countably separable. Then there is a finite set $A\subset X$ such that $A$ is an
$\epsilon$-net for $\mathcal{C}.$

In [, Blumer and the coauthors showed the above proposition under an
weaker assumption, well-behavedness, which is implied from the countably
separability. The following example, which appears in the article, shows
that if we omit the assumption from the proposition then it does not hold.

Example 10. Here we assume Continuum Hypothesis. Suppose $\mathbb{R}$ has
cardinality $\omega_{1}$ and let $\{r_{\alpha} : \alpha<\omega_{1}\}$ be an well-ordered enumeration of
$\mathbb{R}$ . Let $C=\{R_{\alpha} : \alpha<\omega_{1}\}$ where $R_{\alpha}=\{r_{\beta} : \alpha<\beta<\omega_{1}\}$ . Let $\mu$ be the
standard Borel measure on $\mathbb{R}$ . (So the completion of $\mu$ is the Lebesgue
measure on $\mathbb{R}.$ ) Clearly, $R_{\alpha}$ has $\mu$-measure 1, since it is co-countable
set. So, the class $C$ has no finite $\epsilon$-net for every $0<\epsilon<1$ . Also one can
easily see that $C$ is not countably separable (and not well-behaved with an
$\arg\backslash$lment using Fubini’s theorem). This example means that even though
we work in ZFC we cannot omit the assumption.

Finally, for $X=[O, 1]^{2}$ and the Borel sets $\mathcal{B}$ of $X$ , we give a class $\mathcal{C}\subset \mathcal{B}$

such that $VC_{2}(C)=1$ and $C$ is countably separable but it has no $\epsilon$-net $A$

of the form $A=D_{2}(\overline{a})$ where $\overline{a}\in X^{\tau n}$ and $m\in\omega.$
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Example 11 (Non-existence of $\epsilon$-nets). Let $I$ be the closed interval $[0$ , 1$]$

with the Borel measure $(\mu 0, \mathfrak{B})$ on $I$ . Let $X=I^{2}$ be the product set with
product measure $\mu=\mu_{0}^{2}$ . Put $C=\{A_{0}\cross A_{1}$ : $A_{i}$ is a finite union of open
intervaJs in $I$}. One can see that $C$ is countably separated by considering
open intervaJs $(q, q’)$ with $q,$

$q’\in \mathbb{Q}$ . However, for any $1>\epsilon>0,$ $m\in\omega$

$md\overline{a}\in X^{m}$ , there is $f\in C$ such that $D_{2}(\overline{a})\cap f=\emptyset$ with $\mu(f)>\epsilon.$

Therefore, random samples $D_{2}(\overline{a})$ cannot be an $\epsilon-$net of $C.$

This example suggests us that the VC-theorem does not hold in our
general setting without changing the assumption. Seemingly the sample
data $D_{n}(a)$ is too small to be an $\epsilon$-net or the assumption of the countably
separability does not match in our setting.
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