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1 Introduction

Finite Ramsey theorem states that for all numbers $m,$ $n,$ $n_{c}\in\omega$ there is a number $N\in\omega$

such that

$\bullet$ for every finite coloring $f$ : $[N]^{m}arrow n_{c}$ , we can find $X\in[N]^{n}$ such that $f$ is constant
on $[X]^{m}.$

The statement above is usually written in symbols as $Narrow(n\}_{n_{c}}^{m}$ . This version of Ramsey’s
theorem follows from the following infinite versions of the theorem:

$\bullet$ (Infinite Ramsey Theorem) $\omegaarrow(\omega)_{n_{c}}^{m}$ ;

$\bullet$ (Weak Infinite Ramsey Theorem) $\forall n\in\omega[\omegaarrow(n)_{n_{c}}^{m}].$

In the case of $m=2$ , (finite) Ramsey theorem can be viewed as a statement on the class
of finite complete graphs and coloring on the edges. In [1], Jaroslav Ne\v{s}et\v{r}il and Vojt\v{e}ch
R\"odl showed that (finite) Ramsey theorem can be expanded to the class of linearly ordered
graphs and colorings on the subgraphs isomorphic to a given graph.

$\bullet$ Let $A\subset B$ be finite linearly ordered graphs. Then there is a finite linearly ordered
graph $C$ such that for every finite coloring $f$ on $(\begin{array}{l}CA\end{array})=\{A’\subset C:A’\cong A\}$ we can find
$X\in(\begin{array}{l}CB\end{array})$ for which $f$ is constant on $(\begin{array}{l}XA\end{array}).$

Like the case of original Ramsey’s theorem, this statement has an infinite version from which
the finite version easily follows.

In this article, we present an infinite version and prove it by using an infinitary method.

2 Preliminaries

Let $L$ be a finite relational language. For each $R\in L$ , the arity of $R$ will be denoted by $n_{R}.$

We assume every $R$ is irreflexive and symmetric. (I don’t know this is essential or not.)

A structure $(M, \leq)$ is called a preordered set if $\leq is$ symmetric and transitive. It is clear
that the relation $x\approx y(rightarrow x\leq y\leq x)$ defines an equivalence relation on $M$ . The induced
structure $(M \int\approx, \leq)$ clearly becomes an ordered set. A preordered set $(M, \leq)$ will be called
a linearly preordered set of width $n$ , if the induced order is linear and $|M/\approx|=n$ . For
$i=0,$ $n-1$ , let $M(i)$ be the i-th smallest $\approx$-class. A subset $A\subset M$ is called a section if
$\}A\cap M(i)|=1(\forall i<n)$ . If $|A\cap M(i)|\leq 1(\forall i<n)$ , $A$ is called a partial section. The set

of all partial sections $A$ with $|A|=k$ will be denoted by $[M]^{k}.$

Let $M$ be an $(L\cup\{\leq\})$ -structure. $M$ will be called a preordered $L$-structure if (i) $M|\leq$

is a preordered set, and (ii) $R^{M}$ is a subset of $[M]^{nk}$ . Notice that if $M$ is of width $n$ , then
$R^{M}=\emptyset$ for all $R$ with $n<n_{R}.$
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Definition 1. Let $n\in\omega$ and let $M$ be an $(L\cup\{\leq\})$-structure. We say that $M$ is a preordered
random L–structure of width $n$ if the following conditions are satisfied:

1. $M|\leq is$ a linearly preordered set of width $n.$

2. For any $i<n$ , any finite set $I\subset M_{i}$ and any finite set $\{R_{j} : j<m\}\subset L$ , if
$S_{j},$ $T_{j}\subset[M\backslash M(i)]^{n-1}R_{j}(j<n)$ are sets of partial sections with

$S_{j}\cap T_{j}=\emptyset(j<n)$ ,

then there is $d\in M(i)\backslash I$ such that

$M \models\bigwedge_{j<m}\bigwedge_{A\in S_{j}}R_{j}(d, A)\wedge\bigwedge_{j<m}\bigwedge_{B\in T_{j}}\neg R_{j}(d, B)$
.

If $L=\{R\}$ with a binary $R$ , then a preordered random $L\sim$-structure will be simply called a
preordered random graph.

Remark 2. The conditions 1 and 2 are expressed by a first order $(LU\{\leq\})$-axioms, call it
$T_{L,\mathfrak{n}}.$ $T_{L,n}$ is an $\omega$-categorical theory admitting elimination of quantifiers. This can be shown

by a usual back-and-forth argument.

3 Infinitary Method

Definition 3. Let $M$ be a preordered random $L$-structure of width $n$ . Let $N \subset\bigcup_{i<l}M(i)$

and $\overline{d}=d_{0},$ $d_{m-1} \in\bigcup_{l\leq i<n}M(i)$ . We say that $N$ is generic over $\overline{d}$ if there is a set $\hat{N}$ with

$\overline{d}\in\hat{N}\subset\bigcup_{l\leq<n}M(i)$ such that $N\hat{N}$ is a preordered random L–structure.

Let $M$ be a preordered $L-$-structure of width $n$ and let $c:[M]^{n}arrow 2$ be a coloring. For a
subsection $\overline{a}=\{a_{i}:i\geq k\}$ of $M(a_{i}\in M(i))$ , we can define a function $d(X)=c(X,\overline{a})$ for a
section X of $M(0)\cup\cdots\cup M(k-1)$ . Such a function will be referred as an induced coloring.

Lemma 4. Let $M$ be a pre-orderei random $L$-structure of width $n\in\omega$ . Let $B$ be a linearly
pre-ordered finite $L$ -structure of width $n$ . Then, for any coloring $c:[M]^{n}arrow n_{c}\in\omega$ , we can

find $B’\in(\begin{array}{l}MB\end{array})$ with the following property:

$(^{*})$ For each section $A$ of $B’,$ $(\begin{array}{l}B’A\end{array})$ is $c$ -monochromatic, i. e., $c$ is constant on $(\begin{array}{l}B’A\end{array}).$

Proof. The notation $A\cong A’$ will be used to express that $A$ and $A’$ are isomorphic as $I_{\mathcal{F}}$

structures. By induction on $l$ , we prove the following statement holds for any $M$ and $c$ :

$(\uparrow)_{l}$ Let $\overline{d}\in\bigcup_{l\leq i<n}M(i)$ . Then for any $W \subset\bigcup_{i<l}M(i)$ of width $l$ , we can find $W’\subset$

$\bigcup_{i<l}M(i)$ having the following properties:

$-W’\cong_{\overline{d}}W$ ;

-Every induced coloring $d(A)=c(A,\overline{d}_{0})(\overline{d}_{0}\subset\overline{d})$ is $\overline{d}$-locally constant (in $W’$ ) in

the sense that $A\underline{\simeq}_{\overline{d}}A’\Rightarrow c’(A)=d(A’)$ for all sections $A,$ $A’$ of $W’.$
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Notice that $(\dagger)_{n}$ proves the lemma. For $l=1,$ $M(O)$ is considered as an infinite set with
finitely many random unary predicates. So $(\dagger)_{1}$ follows from a pigeonhole principle. We
assume $(\dagger)_{l}$ holds for any $M$ and $c$ , and we discuss the case for $l+1$ . We are given $(M, c)$ ,
$\overline{d}$ and $W$ of width $l+1.$

$M^{*}(l)$

We choose an $\omega_{1}$-saturated elementary extension $(M^{*}, c)\succ(M, c)$ . From now on we work
in $M^{*}$ . For simplifying the presentation, we introduce the notion of a good sequence. Let
$N \subset\bigcup_{i<l}M^{*}(i)$ . We say that a sequence $\overline{b}\overline{e}=b_{0},$ $b_{k_{0}-1},$ $e_{0},$ $e_{k_{1}-1}\in M^{*}(l)$ is a good
sequence for $N$ if the following are satisfied:

$\bullet$ $N$ is generic over $\overline{b}\cup\overline{e}\cup\overline{d}$;

$\bullet$ Induced colorings $c(A, b_{i},\overline{d}_{0})(i<k_{0},\overline{d}_{0}\subset\overline{d})$ are $\{b_{j}\}_{j\leq i}\cup\overline{d}$-locally constant (in $N$) in
the following sense: if $A\cong A’\{b_{j}\}_{j\leq i},\overline{d}$ then $c(A, b_{i},\overline{d}_{0})=c(A’, b_{i},\overline{d}_{0})(\forall A, A’\in[N]^{l})$ ;

$\bullet$ Induced colorings $c(A, e_{i},\overline{d}_{0})(i<k_{1},\overline{d}_{0}\subset\overline{d})$ are $e_{i},$

$\overline{d}$-locally constant (in $N$).

Rom the definition, for every initial segment $\overline{b}’\subset\overline{b}$ of a good sequence $\overline{b}\overline{e},$
$\overline{b}’\overline{e}$ is a good

sequence (for the same $N$).

Claim A. For $k\in\omega$ and $qf$-types $p_{0}(x)$ , . . . , $p_{karrow 1}(x)$ over $\overline{d}$, realized in $M^{*}(l)$ , we can find
$N \subset\bigcup_{i<l}M^{*}(i)$ and a $\mathcal{S}$equence $\overline{b}=b_{0},$ $b_{k}$ (pairwise distinct) such that

$\bullet$

$\overline{b}$ (with $\overline{e}$ empty) is a good sequence for $N$

$\bullet b_{i}\models p_{i}(x)$ for $i<k.$

Proof of Claim. Let $b_{0}\models p_{0}$ . Let $N_{0} \subset\bigcup_{i<l}M^{*}(i)$ be a structure generic over $b_{0}\overline{d}$. By
preparing a set $Z=\{z_{a} : a\in N_{0}\}$ of variables, we define a set $\Gamma(Z)$ of formulas expressing
the following:

1. $Z\cong_{b_{0},\overline{d}}N_{0}$ (hence $Z$ is generic over $b_{0},$ $d$

2. For all sections $X$ and $X’$ in $Z$ , and for all $\overline{d}_{0}\subset\overline{d},$

$X\cong_{b_{tJ}\overline{d}}X’\Rightarrow c(X, b_{0},\overline{d}_{0})=c(X’, b_{0},\overline{d}_{0})$ .

By the induction hypothesis $(\uparrow)_{l}$ applied to $N_{0}$ , we see that every finite $V\subset N_{0}$ has a copy
$V’\cong_{b_{0}\overline{d}}V$ in $N_{0}$ such that $c(X, b_{0},\overline{d}_{0})$ depends only on the qf-type of $X$ over $b_{0}\overline{d}$. This shows
that $\Gamma(Z)$ is finitely satisfiable in $N_{0}$ . So, by replacing $N_{0}$ by a realization of $\Gamma(Z)$ , we can
assume that every induced coloring $c(X, b_{0},\overline{d}_{0})$ is $b_{0}\overline{d}$-locally constant in $N_{0}.$
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Then choose $b_{1}\models p_{1},$ $b_{1}\neq b_{0}$ such that $N_{0}$ is generic over $b_{0}b_{1}\overline{d}$. Again, by the induction
hypothesis, every $V$ has a copy $V’\cong b_{0}b_{1}\overline{d}V$ in $N_{0}$ such that every induced coloring $c’(A)=$
$c(A, b_{1},\overline{d}_{0})(\overline{d}_{0}\subset\overline{d})$ is $b_{0}b_{1}\overline{d}$-locally constant on $W’$ . So, by the saturation, we can find $N_{1}$

(generic over $b_{0}b_{1}\overline{d}$) with the properties:

3. $X,$ $X’\in[N_{1}]^{l},$ $X\cong_{b_{0}\overline{d}}X’\Rightarrow c(X, b_{0},\overline{d}_{0})=c(X’, b_{0},\overline{d}_{0})$ ;

4. $X,$ $X’\in[N_{1}]^{l},$ $X\cong_{b_{0},b_{1}\overline{d}}X’\Rightarrow c(X, b_{1},\overline{d}_{0})=c(X’, b_{1},\overline{d}_{0})$ .

The property 3 can be assumed, since each copy $V’$ is chosen in $N_{0}$ , and since $N_{0}$ has the
property 2. Continuing this construction, we have an arbitrarily long good sequence (for
some $N$). (End of Proof of Claim)

Claim B. For $k\in\omega$ , there is a number $k^{*}=kn^{*}$ with the following property:

$(^{**})$ if $\overline{b}\overline{e}=b_{0}\ldots b_{k}\cdot\overline{e}$ is a good sequence for $N$ with $b_{ki}b_{ki+1}\ldots b_{ki+(k-1)}\cong_{\overline{d}}b_{kj}b_{kj+1}\ldots b_{kj+(k-1)}$

for every $i,j<n^{*}$ , then there is a structure $N_{0}$ and $i^{*}<n^{*}$ such that, by letting
$\overline{b}’=b_{k(i}\cdots\cdot b_{ki+(k-1)},$ $e^{\prec}=b_{k}\cdot\overline{e}$, the sequence $\overline{b}’\overline{e}’$ is good for $N_{0}.$

Proof of Claim. $n^{*}$ is a sufficiently large number so that the following argument is true.
Suppose that we are given $N$ and $\overline{b}\overline{e}$ . We write $B_{i}$ for the $k$-sequence $b_{kn}$ , . . ., $b_{ki+(k-1)}$ . Let
us consider induced colorings $c(A, b_{k}\cdot,\overline{d}_{0})(\overline{d}_{0}\subset d$ For a section $A=\{a_{0}, . .., a_{l-1}\}$ of $N$

$(a_{0}\in N(0), \ldots, a_{l-1}\in N(l-1))$ and $i<n^{*}$ , let

$qftp^{*}(A, B_{i}/\overline{d})=$

$\bigcup_{R\in L,t\in\{0,1\}}\{R(\overline{x}_{I}, y_{j}, d^{\overline{\prime}})^{t}:I\subset l,j<k, d^{\overline{\prime}}\subset\overline{d}, N\models R(A_{I}, b_{ki+j}, d^{\overline{\prime}})^{t}\},$

where $\overline{x}_{I}=(x_{j})_{j\in I}$ and $A_{I}=(a_{j})_{j\in I}$ . By the definition of a good sequence, the value
$c(A, b_{k}\cdot,\overline{d}_{0})$ depends only on qftp $(A/\overline{b}\overline{d})$ , and the choice of $\overline{d}_{0}\subset\overline{d}$. Moreover, by the
property of $M$ , qftp $(A/\overline{b}\overline{d})$ is determined by qftp$(A/b_{k}\cdot\overline{d})$ and $\bigcup_{i<n}.$ $qftp^{*}(A, B_{i}/\overline{d})$ .

Let $Q_{i}$ be the set of all qf-types of the form $qftp^{*}(A, B_{i}/\overline{d})$ . Notice that $Q_{i}$ does not
depend on $i$ , because of the assumption of $B_{i}$ . So hereafter we simply write $Q$ for $Q_{i}$ . Let $F$

be the set of all functions from the pairs of the form $(\overline{d}_{0}, qftp(A/b_{k}\cdot\overline{d}))$ to $n_{c}$ . Then we can
naturally define a function $f$ : $Q^{n}arrow F$ by

$f((q_{i})_{i<n}\cdot)(\overline{d}_{0}, q(\overline{x}))=c(A, b_{k}*,\overline{d}_{0})$ ,

where $A$ is a section satisfying $q( \overline{x})\cup\bigcup_{i<\mathfrak{n}}.$ $q_{i}(\overline{x}, B_{i})$ . By applying H-J theorem, we can find
a line $\alpha=\alpha(v)\in(Q\cup\{v\})^{n}\backslash Q^{n}$ such that $\alpha(Q)$ is $f$-monochromatic. Let $i^{*}$ be the
minimum $i$ such that the i-th element $\alpha_{2}$ of $\alpha$ is $v$ . For a set $Z=\{z_{a} : a\in N\}$ of variables,
we define a set $\triangle(Z)$ of formulas expressing the following:

1. $Z\cong_{B..\overline{e}’\overline{d}}N$ (hence $Z$ is generic over $B_{i}.e\prec\overline{d}$);

2. For all sections $X$ and $X’$ in $Z$ , and for all $\overline{d}_{0}\subset\overline{d},$

(a) if $e\in e$ $b_{k}\cdot\overline{e})$ and $X\cong_{e\overline{d}}X’$ then $c(X, e, \overline{d}_{0})=c(X’, e, \overline{d}_{0})$ ,

(b) if $b_{j}\in B_{i}$ $b_{ki^{*}}$ , $\cdots$ , $b_{ki+(k-1)})$ and $X\cong_{b_{ki^{*})}\ldots,b_{j}\overline{d}}X’$ then $c(Xb_{j}\overline{d}_{0})=c(X’b_{j}\overline{d}_{0})$ .

We show the finite satisfiability of $\Delta(Z)$ in $N$ . Let $V\subset N$ be any finite subset of width
$l$ . By the genericity, there is $V’\subset N$ with $V’\cong_{B_{i^{*}},\overline{e}’,\overline{d}}V$ satisfYing the following: For each
$i<n^{*},$
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$\bullet$ qftp* $(V\prime, B_{i}/\overline{d})=qftp^{*}(V, B_{i^{*}}/\overline{d})$ , if $\alpha_{i}=v$ ;

$\bullet$ every section $X\subset V’$ satisfies $\alpha_{i}(X, B_{i})$ , if $\alpha_{i}\in Q.$

By our choice of $f$ and $\alpha$ , the color $c(X, b_{k^{*}},\overline{d}_{0})$ depends only on qf-type of $X$ over $b_{k^{*}}\overline{d}$ and
the choice of $d_{0}$ . Therefore $V’$ satisfies (a finite part of) condition (2a) of $\triangle$ . Since every

section $X\subset V’$ satisfies $\alpha_{i}(X, B_{i})$ for $i<i^{*}$ , the condition (2b) follows from the fact that
$\overline{b}ees$ a good sequence for $N$ and $V’\subset N$ . So, by the saturation of $M^{*}$ , there is $N_{0}$ realizing
$\Delta$ . Then $B_{i^{*}}\overline{b}’$ is a good sequence for $N_{0}$ . (End of Proof of Claim)

Claim C. Let $p_{0}(x)$ , $p_{k-1}(x)$ and $q_{0}(x)$ , $q_{m-1}(x)$ be two sequences of quantifier free 1-
types over $\overline{d}$, where $x$ is a variable for an element in $M^{*}(l)$ . Then we can find $N$ and a
sequence $b_{0}$ , . . . , $b_{k-1\}}e_{0}$ , . . . , $e_{m-1}\in M^{*}(l)$ being good for $N$ such that $b_{i}\models p_{i}(i<k)$ and
$e_{i}\models q_{i}(i<m)$ .

Proof of Claim. We prove by induction on $m$ . Since the case of $m=0$ is trivial by Claim
$A$ , we assume the Claim has been proven for $\leq m$ . We are given $p_{i}(i<k)$ and $q_{i}(i\leq m)$ .
Choose $k^{*}=kn^{*}$ sufficiently large. For $i<k^{*}$ , let $p_{i}’=p_{\langle imod k)}$ and apply the induction
hypothesis to $p_{0}’$ , . . . , $p_{k^{s}-\underline{1}}’,$ $q_{0}$ and $q_{1}$ , . . . , $q_{m}$ . With the notation in Claim $B$ , we can find
$N’$ and a good sequence $b\overline{e}=b_{0},$ $b_{k}*\overline{e}$ for $N’$ such that $B_{i}\models p_{0}(x_{0})\cup$ $\cup p_{m-1}(x_{m-1})$

$(i<n^{*})$ , $b_{k^{*}}\models q_{0}$ , and that $\overline{e}\models q_{1}(x_{1})\cup$ $\cup q_{s}(x_{m})$ . Then, by Claim $B$ , we can find $N$ and
$B_{i^{*}}\subset\{b_{i}\}_{i<k^{*}}$ such that $B_{i}.\overline{e}’$ is good for $N$ , where $\overline{e}’=b_{k}.\overline{e}$ . This sequence is a required

one. (End of Proof of Claim)

With choosing $k=0$ and $m$ large enough in Claim $C$ , (for appropriate $q_{i}’ s$ ) we can find
a copy $W’\subset N_{0}\cup\overline{e}$ of $W$ satisfying the conditions in $(\dagger)_{l+1}$ . By $(M, c)\prec(M^{*}, c)$ , $W’$ can
be chosen in $M.$

$\square$

Remark 5. The partite lemma follows from our infinite version. Let $X$ be a linearly or-
dered structure of width $n$ and $Y$ a linearly pre-ordered of the same width. Suppose for a
contradiction that there is no finite $Z$ satisfying the required condition. Let $M\models T_{L,n}$ be a
countable model and let $\{a_{i}\}_{i\in\omega}$ be an enumeration of $M$ . We put $Z_{n}=\{a_{i}\}_{i\leq n}$ . Since $Z_{n}$

does not satisfy the required condition, we can find a section $X_{n}$ and a coloring $c_{n}$ : $(\begin{array}{l}z_{n}X_{n}\end{array})arrow 2$

such that no $(\begin{array}{l}Y^{/}X_{n}\end{array})$ with $Y\cong Y’\subset Z_{n}$ is $c_{n}$ -monochromatic. By K\"onig’s lemma, there is an
infinite sequence $n_{0}<n_{1}<n_{2}\cdots$ such that $c_{n_{0}}\subset c_{n1}\subset\cdots$ . We can also assume that all
the $X_{n_{i}}$ are the same, say $X$ . Let $c^{*}= \bigcup_{i\in(\sqrt{}}c_{n_{i}}$ . Then, no $(\begin{array}{l}Y’X\end{array})$ with $Y\cong Y’\subset Z$ would be
$c^{*}$-monochromatic. This contradicts our infinite version of partite lemma.

4 Ordered Random Structures

Theorem 6. Let $A\subset B$ be two linearly ordered $L$ -structures offinite width. Then there is a
number $m^{*}$ such that if $G$ is a linearly pre-ordered random $L$ -structure of width $m^{*}$ then, for
every coloring $c$ on $(\begin{array}{l}GA\end{array})$ we can find a copy $B’\subset G$ of $B$ such that $(\begin{array}{l}B’A\end{array})$ is $c$-monochromatic.

Proof. Let $n=|A|$ and $m=|B|$ . Let $m^{*}$ be a sufficientIy large number compared with $n$

and $m$ . We assume $c$ is defined on the subsections of size $n$ . Let $(G^{*}, c)$ be an $\omega_{1}$-saturated
elementary extension of $(G, c)$ . It is sufficient to find a desired copy $B’$ in $G^{*}$ . Let $\{I_{i}:i<k\}$

be an enumeration of all $n$-element subsets of $m^{*}$ . Starting from $G_{0}=G^{*}$ , we inductively
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choose linearly pre-ordered random $L$-structures $G_{i}\subset G^{*}(i<k)$ of width $m^{*}$ such that, for
every $j<i,$ $G_{i}|I_{j}= \bigcup_{l\in I_{j}}G_{i}(l)$ is locally monochromatic. Suppose we have already defined
$G_{i}$ . We define $c^{*}$ on $[G_{i}]^{m}$ by

$c^{*}(Y)=c(Y|I_{i})$ .
Then, by the partite lemma, each finite substructure of $G_{i}$ (of width $m^{*}$ ) has a copy $Z\subset G_{i}$

such that $c^{*}$ is locally constant on $Z$ . Let $X,$ $X’$ be sections of $Z|I_{i}$ with $x\underline{\simeq}X’$ . Then
there are isomorphic sections $Y\supset X$ and $Y’\supset X’$ of $G_{i}$ . By the definition of $c^{*}$ , we have
$c(X)=c(Y|I_{i})=c^{*}(Y)=c^{*}(Y’)=c(X’)$ . (For $j<i$ , we already have that $c$ is locally
constant on $Z|I_{j}.$ ) By compactness, we have $G_{i+1}$ satisfying the required condition. Finally
let $H=G_{k}.$ $c$ is locally constant on $[H|I_{i}]^{n}$ , for each $i$ . Let $n_{i}$ be the constant value of
$c(A’)$ , where $A’\cong A$ is a section of $H|I_{i}$ . Since $m^{*}$ is very large, by Ramsey’s theorem, we
can choose a set $J\subset n^{*}$ with $|J|=m$ such that if $I_{i},$ $I_{i’}\subset J$ then $n_{i}=n_{i’}$ . It is clear that
$H|I$ is a random $L\sim$-structure. So, we can find a copy $B’\subset H|J$ of B. $B’$ has the desired
property. $\square$

Example 7. Let $G$ be a countable random graph and $c:Garrow 2$ be a coloring for vertexes.
Then there is a random subgraph $H\subset G$ such that $c$ is constant on $H$ : First notice that
every $R$-definable infinite subset of $G$ is a random graph. We may assume that no R-
definable infinite subset is $c$-monochromatic. Let $\{g_{i} : i\in\omega\}$ be an enumeration of $G$ and
let $G_{n}=\{g_{i} : i<n\}$ . We will define $h_{i}$ ’s such that, for each $n,$ $G_{n}\cong\{h_{i} : i<n\}\subset G$ and
that $c(h_{n})=0$ . Suppose that we have defined $\{h_{i} : i<n\}$ . Let $X=\{a\in G$ : $G_{n},$ $g_{n}\cong\{h_{i}$ :
$i<n\},$ $a\}.$ $X$ is an infinite definable subset, so by our assumption, there is $a\in X$ such that
$c(a)=0$ . Let $g_{n}=a$ then we are done.
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