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1 Introduction

The non-homogeneous Poisson process (NHPP) has been applied successfully to model nonstationary counting

phenomena for a large class ofproblems. In software reliability engineering, the NHPP-based software reliability

models (SRMs) [4, 5, 8, 9, 12, 13, 14, 19, 20] are of a very important class. A unique parameter to govem the

probabilistic properties of an NHPP is the rate function. Therefore, it is necessary to develop a method that can

estimate the rate function ofNHPP-based SRM with a high degree ofaccuracy, and this naturally results in trusted

quantitative software reliability. According to this way ofthinking, the problem ofassessing the software reliability

quantitatively can be reduced to the statistical estimation and prediction ofthe NHPP rate function.

In recent years, the wavelet-based statistical methods have been well established especially in several areas such

as non-parametric regression, probability density estimation, time series analysis, etc (see [1, 3, 11 Among a

lot of techniques which have been proposed to account for the Poisson rate function estimation problem, Xiao

and Dohi [16] proposed a non-parametric estimation framework for the NHPP-based SRMs, where the Haar-

wavelet-based techmiques were applied to estimate the software rate function. They treated with the software fault

count (group) data, where the number of software failures is recorded. This kind of data is the observation of

an NHPP when the NHPP is viewed as a counting process, and is known as an incomplete failure data since the

exact detection time of each software fault is not recorded. Another type of software failure data is the so-called

software failure time data, where the software failure time is observed and recorded. In this case, the NHPP is

viewed as an arrival process. Kuhl and Bhairegond [6] proposed a Daubechies wavelet estimator for the NHPP

rate function by considering NHPP as an arrival process. They presented simulation-based performance evaluation

for their wavelet procedure, and succeeded in estimating three different types of NHPP rate functions. However,

there are several mathematical difficulties when applying their procedure to the real software failure time data

analysis. Their Daubechies wavelet estimator (i) is defined on compact support with length 7, but the software

failure time data is observed in an arbitra1y time interval, and (ii) consists of infinite summation of Daubechies

scaling function, which is particularly difficult to implement in actual numerical computation. Therefore, a finite

and reasonable range of the parameters included in their estimator should be determined depending on the nature

of the data under consideration.

Xiao and Dohi [17] applied the Daubechies wavelet estimator to the estimation of the rate function from real

software failure time data. They discussed the limitations of Kuhl and Bhairegond $[6]$ ’s work, and gave practical

solutions to the technical difficulties in applying the procedure to the real software failure data. They presented a

real data analysis to evaluate the goodness-of-fit performance ofthe Daubechies wavelet estimator, and concluded

that the Daubechies wavelet estimation outperformed the existing estimation methods in most cases.

lThis paper is an extended version ofreference [18].
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This paper extends Xiao and Dohi [17]’s work and aims to develop a Daubechies wavelet-based prediction

method for software reliability assessment. The amazing merit ofthis method is that, it can provide mid-long term

prediction ofthe software reliability measures such as the rate $fi\iota$nction and the mean value function, although it is

a nonparametric estimation method which does not require prior knowledge or assumptions about the behavior of

the process.

2 NHPP-based Software Reliability Modeling

Let $N(t)$ denote the number of software faults detected by testing time $t$, and be a stochastic point process in

continuous time. We make the following assumptions:

Assumption $A$ : Software faults occur at independent and identically distributed $(i.i.d.)$ random times having a

cumulative distribution function $(c.d.f.)F(t)$ with a probability density function $(p.d.f.)f(t)=dF(t)/dt.$

Assumption $B$ : The initial number of software faults, $N$, is nonnegative and finite.

Under the above assumptions, the probability mass ftmction (p.m.f) of the number of software faults detected by

time $t$ is given by the binomial p.m. $f.$ :

$Pr\{N(t)=n|N\} = (\begin{array}{l}Nn\end{array})F(t)^{n}\overline{F}(t)^{N-n}$ , (1)

where $F$ $=1-F$ If the initial number of faults $N$ is unknown, it is appropriate to assume that $N$ is a discrete
(integer-valued) random variable. Langberg and Singpurwalla [7] proved that when the initial number of software

faults $N$ was a Poisson random variable with mean $\omega(>0)$ , the number of software faults detected before time $t$

was given by the following non-homogeneous Poisson process (NHPP):

$Pr\{N(t)=n\} = \sum_{x=n}^{\infty}Pr\{N(t)=n|x\}\frac{\omega^{x}e^{-\omega}}{x!}=\frac{\{\omega F(t)\}^{n}}{n!}e^{-\omega F(t)}$ . (2)

Equation (2) is equivalent to the p.m. $f$. ofthe NHPP having a mean value fUnction $\Lambda(t)=\omega F(t)=E[N(t)]$ , which

means the expected cumulative number of software faults experienced by time $l$ . In addition, we have

$\Lambda(t) = \int_{0}^{t}\lambda(x)dx$ , (3)

where $\lambda(t)$ is the rate function ofNHPP, and implies the software failure rate at time $t.$

3 Daubechies Wavelet Estimator

Daubechies [2] defined a set of compactly supported wavelets, which gained much popularity in wavelet analy-

sis. Generally, wavelets consist oftwo basis functions, the scalingfunction $\phi(t)$ and the waveletfunction $\psi(t)$ , that

work together to provide wavelet approximations. These functions are orthonormal bases ofHilbert space, so that

any signals or data in this vector space can be represented by linear combinations of scaling function and wavelet

function. Since the rate function ofNHPP is non-negative, we need positive orthonormal bases ofa Hilbert space to

approximate the rate function $\lambda(t)$ of an NHPP-based SRM. Walter and Shen [15] developed a positive wavelet es-
timator for estimating density functions. Let $\phi(t)$ and $\psi(t)$ be the Daubechies scaling function and wavelet function

having compact support, respectively.

$\phi(t) = \sum_{i=0}^{n}h_{i}\phi(2t-i)$ , (4)

$\psi(t) = \sum_{i=0}^{n}(-1)^{i}h_{n-i}\phi(2t-i)$ , (5)
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where $n$ is the support of $\phi(t)$ and $\psi(t)$ , and coefficients $h_{j}(i=0,1, \ldots, n)$ for different supports are given in [2].

For $0<r<1$ , a positive basis function is given by

$P_{r}(t) = \sum_{j\in Z}r^{|j|}\phi(t-j)$
, (6)

where the constant value $r$ is selected such that this positive basis developed is always greater than or equal to zero

[15]. Figure 1 shows the positive basis function $P_{\gamma}(t)$ . It can be seen that $P_{r}(t)$ is non-negative and decays to $0$

quickly. Using $P_{r}(t)$ , a positive reproducing kemel, $k_{r,0}(t, t_{i})$ in Hilbert space $y_{0}$ is constructed as follows:

$k_{r.0}(t, t_{i})=( \frac{1-r}{1+r})^{2}\sum_{n=-\infty}^{\infty}P_{r}(t-n)P_{r}(t_{i}-n)$ . (7)

Here, a kemel $k(t, t_{i})$ is called a reproducing kemel if

$\int_{-\infty}^{\infty}k(t, t_{j})\cross\lambda(t_{i})dt_{i}=\lambda(t)$ (8)

holds, where $\lambda(t)$ is an arbitrary function. From this reproductive property, we have the approximation of rate

function $\lambda(t)$ in Hilbert space $V_{0}$ , which is of the form:

$\lambda_{r,0}(t)=\int_{\infty}^{\infty}k_{r.0}(t, t_{j})\cross\lambda(t_{i})dt_{i}$ . (9)

Similarly, a positive reproducing kemel, $k_{r,m}(t, t_{i})$ in Hilbert space $y_{m}$ can be constructed and written as

$k_{r.m}(t, t_{i})=2^{m}( \frac{1-r}{1+r})^{2}\sum_{n=-\infty}^{\infty}P_{r}(2^{m}t-n)P_{r}(2^{m}t_{i}-n)$ . (10)

Therefore, we have the approximation ofrate function $\lambda(t)$ in Hilbert space $V_{m}$ in the form of

$\hat{\lambda}_{r.m}(t) = 2^{m}(\frac{1-r}{1+r})^{2}\sum_{n=-k}^{k}\{\sum_{i=1}^{N}P_{r}(2^{m}t_{i}-n)\}\cross P_{r}(2^{m}t-n)$ , (11)

where $t_{i}$ are the arrival times of an NHPP whose rate function is to be approximated, and $N$ is the number ofarrivals

in the interval under consideration. The resolution $m$ is selected based on the level of detail of the approximation

desired. This is the Daubechies wavelet estimator proposed by Kuhl and Bhairgond [6]. This wavelet estimator is

used to approximate the rate $fi\iota$nction of an NHPP-based SRM.

The range for support $n$ should be selected in such a way that the positive basis function $P_{r}(t)$ can translate

through the entire range of arrival times. Note that the positive $fi\iota$nction P $(t)$ quickly decays to zero in both the

positive and negative directions (see Figure 1), so we take the truncation for it from $-7$ to 8. The boundary is

determined as-7 and 8 because the value $ofP_{r}(t)$ outside the limit becomes negative. Walter and Shen [15] proved

that there exists $0<r<1$ such that $P_{r}(t)$ satisfies $P_{r}(t)\leq 0(t\in R,$ where $R is the set of all$ real numbers), but this

holds only when parameter $j$ in Equation (6) takes all values in $Z$. This is difficult in computation so that we have

to select an appropriate range for parameter $j$ . We use the determination method of reference [17], i.e., parameter

$k$ in Equation (11) should be selected as [Integer Part of $2^{m}t_{N}+7$], which ensures $2^{m}t_{i}-n$ is in the interval [-7, 8].

From Equations (4) and (5) we know, Daubechies scaling function and wavelet function are not defined in

closed analytic forms. In fact, the scaling function is calculated by solving a simultaneous equation with the

defined coefficients $h_{i}$ and initial value $\phi(0)=\phi(n)=$ O. For example, the coefficients of Daubechies wavelet

(support $n=7$) are defined as
$h_{0}=0.3258034,$ $h_{1}=1.0109457,$ $h_{2}=0.8922014,$ $h_{3}=0.0395750,$

$h_{4}=0.2645072,$ $h_{5}=0.0436163,$ $h_{6}=0.0465036,$ $h_{7}=0.0149870.$
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Positive Basis Function

Figure 1: Positive basis function associated with Figure 2: Daubechies scaling function with support

Daubechies scaling function. $[0$ , 7$].$

First, the starting values ofDaubechies scaling function, $\phi(1)$ , $\phi(2)$ , . .., $\phi(6)$ , can be calculated by solving

$\{\begin{array}{l}\Sigma_{t=0}^{7}\phi(t)=1,\phi(1)=\Sigma_{i=0}^{7}h_{i}\phi(2-i) ,\phi(2)=\Sigma_{i=0}^{7}h_{j}\phi(4-i) ,\phi(3)=\sum_{i=0}^{7}h_{i}\phi(6-i) ,\phi(4)=\Sigma_{i=0}^{7}h_{i}\phi(8-i) ,\phi(5)=\Sigma_{i=0}^{7}h_{i}\phi(10-i) ,\phi(6)=\Sigma_{i=0}^{7}h_{i}\phi(12-i) ,\end{array}$ (12)

where $\phi(0)=\phi(7)=0$ . Second, the values of the Daubechies scaling function at other points in time interval $[0,$

7] can be calculated by Equation (4) using the starting values and the coefficients $h_{i}$ . For example, we have

$\phi(0.5) = \sum_{i=0}^{7}h_{j}\phi(1-i)=h_{0}\phi(1)+h_{1}\phi(0)$ . (13)

A feature ofDaubechies scaling function is that it only takes the value at such a time point $t$ when $t=a\cdot 2^{b}(a,$ $b\in Z,$

where $Z$ is the set ofall integers). This kind ofnumber is called a dyadic number if and only if, it is integral multiple

of an integral power of 2 (see [10]). In other words, the Daubechies wavelet is defined in a set of discrete values.

Therefore, it is classified as discrete wavelet with the same as Haar wavelet. However, if sufficient values of the

Daubechies wavelet are calculated, a smooth scaling function can be obtained. This is the reason of why the

Daubechies wavelet is effective in representing continuous function. An example of Daubechies scaling function

with support $n=7$, calculated in step size 0.0625, is given in Figure 2.

4 Mid-long Term Prediction using Daubechies Wavelet Estimator

The Daubechies scaling function and wavelet function have compact support. Daubechies [2] defines the coef-

ficients $h_{i}$ $(i=0,1, \ldots , n)$ for wavelets with different supports $n=3$ , 5, 7, 9, 11, 13, 15, 17 and 19. Therefore,

the Daubechies wavelet estimator of the rate function $\lambda(t)$ is defined on alimited time interval. However, the real

software failure time are observed in an arbatroy time interval. That is to say, the compact support is a weakness

ofDaubechies wavelet estimator in analyzing real world data. Therefore, a preprocessing ofthe data is absolutely

necessary before using the Daubechies wavelet estimator to estimate the rate function of an NHPP-based SRM.
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Table 1: Relation between Parameter $b$ and Rescaled Data.
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Figure 3: Rescale.

This paper makes use of this weakness in an artful way to achieve the mid-long term prediction of the software

reliability measures. Suppose that a set of software failure time data $t_{i}$ $(i=1,2, \ldots , t_{N})$ is available, where $t_{i}$

denotes the time of the i-th software failure, and $N$ means the total number of failures in this data set. In other

words, it is necessary to rescale the software failure time data $\{t_{1}, t_{2}, . . ., t_{N}\}$ into interval $[0, n]$ . Commonly,

conceived idea will be that, firstly dividing the data $\{t_{1}, t_{2}, . . . , t_{N}\}$ by $t_{N}$ to normalize the data to $[0$ , 1 $]$ , and

secondly multiply $n$ to get $[0, n]$ . However, this method does not work in this case. It is clear from Equation (11)

that $t_{j}$ in $\hat{\lambda}_{m,k}(t)$ must be a dyadic number, otherwise, $P_{r}(2^{m}t_{i}-n)$ can not be defined. Therefore, it is necessary to

find a way, that not only ensures the rescaled data is between $[0, n]$ , but also ensures that the rescaled failure time

is a dyadic number. We suggest the following steps for the preprocessing:

i) If the values of the failure time data are recorded in integer, then go to the next step, else change the unit of

the data set to a smaller one to obtain a set of data with interger value.

ii) Find a set of integer $b$ that satisfies $t_{N}\cross 2^{-b}\leq n$ . Since an integer is a dyadic number and an integer divided

by $2^{b}(b\in Z)$ is still a dyadic number, we obtain the rescaled time data as $\{t_{1}’, t_{2}’, \ldots , t_{N}’\}=\{t_{1}, t_{2}, \cdots, t_{N}\}\cross 2^{-b}$

In this way, software failure time data with arbitrary ending time can be analyzed with the Daubechies wavelet

estimator. Here, note that there exits multiple integer $b$ . For example, consider the case with $t_{1}=3,$ $t_{N}=$

88682, $N=136$, and the Daubechies wavelet with support $n=7$ . The integer $b$ that satisfies $t_{N}\cross 2^{-b}\leq n$

are 14, 15, 16, 17, . . .. If we set $b=14$, then $\{t_{1}, t_{2}, . .., t_{N}\}=\{3$ , 33, . . ., 88682$\}$ is rescaled to $\{1.831E-$

$04$ , 2.$014E-03$ , . . ., $5.413E+00\}$ . Table 1 shows $\{t_{1}, l_{2}, . . ., t_{N}’\}$ when $b=14$, 15, 16 and 17. For better

understanding, we illustrate the corresponding relationship between the real-time axix and the rescaled time axis

in Figure 3. It is clear from this figure that time point 7 of each rescaled time axis corresponds to different time

points in the real-time axis. It corresponds to the time point 114688 when $b=14$, while time point 917504 when

$b=17$ . In other words, a larger $b$ provides a longer predictable interval.
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Table 2: Predictive Performance (PLSE).

5 Real Data Analysis

We apply the Daubechies wavelet estimator to the real project data set to estimate the rate function ofthe NHPP-

based SRM. The used data set is from reference [8], where it is named as SYSI and consists of 136 software fault

data. Parameters $r$ and $m$ in Equation (11) can be considered as very important parameters that effect the accuracy
of the estimator. If $r$ is too small, $P_{r}(t)$ decays to negative value very fast. For example when $r=0.1$ and 0.2,

$P_{r}(t)$ provides negative values when $t$ is greater than 2. On the other hand, $m$ is the resolution of approximate so
that the computation time becomes longer as $m$ increases. We execute the Daubechies wavelet-based procedure by

setting $r=0.3$ , 0.4, $\cdots$ , 0.9 and $m=1$ , 2, $\cdots$ , 10, to study the influence ofthese two parameters to the estimator.
Moreover, the rescaled parameter $b$ is set to be $b=14$ , 15, 16 and 17 in this paper.

We examine the prediction performance, where two prediction measures are used: predictive least square error
(PLSE), and predictive $\log$ likelihood (PLL). The PLSE is defined as the least square error between the estimated

intensity fimctiori and the future data from an observation point, and the PLL is the logarithm of the likelihood

function with future data at an observation point. We set the observation point at $\hat{N}=90\%*N$, and the PMSE and

PLL are of the forms

PLSE $=$

$\frac{\sqrt{\sum_{i=\hat{N}}^{N}(\Lambda(t_{i})-y_{i})^{2}}}{N-\hat{N}+1}$

, (14)
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Table 3: Predictive Performance (PLL).

PLL $=$ $\sum_{i=\dot{N}+1}^{N}y_{i}\ln[\lambda(t_{i})]-\Lambda(t_{N})$ , (15)

respectively, where $\lambda(t_{i})$ are the Daubechies estimates, and $y_{j}$ are the number faults detected by time $t_{i}.$

Table 2 and Table 3 present the prediction results at observation point $\hat{N}$ of a whole data set, and show the PLSE

and PLL for $m=2$ , 3, $\cdots$ , 10 and $b=14$, 15, 16, 17. Here, the influence ofthe rescale parameter $b$ is focused.

It can be seen that, when approximation resolution $m$ is fixed, larger value ofparameter $b$ provides smaller PLSE,

while smaller $b$ provides larger PLL. Note that, PLSE measures the physical distance between the estimate and the

observation, PLL measures the preciseness of the estimate in a statistical sense. The result of PLL indicates that

it is possible to find an appropriate rescale parameter $b$ by tuning its magnitude to a larger one. Therefore, it is

necessary to investigate the predictive performance with larger values of $b$ in the future.

Figure 4 shows the Daubechies wavelet estimates of rate function and the mean value function with different

settings ofrescale parameter $b$ . From (i) and (iii) ofthis figure we can see that, it tends to underestimate the failure

rate function, when changing rescale parameter $b$ from 14 to 17. This trend can also be found in (ii) and (iv).

Furthermore, we show the end of the testing time in Figure 4. Taking look at (iii) and (iv), it is clearly to see that

the predictable interval of $b=17$ is longer than $b=14$. This also motivates us to keep on studying the effect of

rescale parameter $b$ in future work.
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rate function
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(i) rate function $(m=4)$ . (ii) mean value function $(m=4)$ .

$0$ 200000 400000 600000 800000
tlme

(iii) rate function $(m=5)$ . (iv) mean value function $(m=5)$ .

Figure 4: Behavior ofPredicted Reliability Measures $(r=0.3)$ .

6 Conclusion

This paper has applied the Daubechies wavelet estimator to predict the rate function ofNHPP-based SRM. Real

data analysis has been presented to evaluate the predictive performance of the Daubechies wavelet estimator. We

have given practical solutions to the technical difficulties in applying the procedure to the real software failure data.

Throughout the numerical evaluation, we have established the credibility and the usefulness of the Daubechies

wavelet estimation procedure in software failure data analysis. The prediction ability of this estimator can be

improved by investigating the influence ofrescale parameter $b$ . Such studies will be made in subsequent work.
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