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1 Introduction

The non-homogeneous Poisson process (NHPP) has been applied successfully to model nonstationary counting
phenomena for a large class of problems. In software reliability engineering, the NHPP-based software reliability
models (SRMs) [4, §, 8, 9, 12, 13, 14, 19, 20] are of a very important class. A unique parameter to govern the
probabilistic properties of an NHPP is the rate function. Therefore, it is necessary to develop a method that can
estimate the rate function of NHPP-based SRM with a high degree of accuracy, and this naturally results in trusted
quantitative software reliability. According to this way of thinking, the problem of assessing the software reliability
quantitatively can be reduced to the statistical estimation and prediction of the NHPP rate function.

In recent years, the wavelet-based statistical methods have been well established especially in several areas such
as non-parametric regression, probability density estimation, time series analysis, efc (see [1, 3, 11]). Among a
lot of techniques which have been proposed to account for the Poisson rate function estimation problem, Xiao
and Dohi [16] proposed a non-parametric estimation framework for the NHPP-based SRMs, where the Haar-
wavelet-based techniques were applied to estimate the software rate function. They treated with the software fault
count (group) data, where the number of software failures is recorded. This kind of data is the observation of
an NHPP when the NHPP is viewed as a counting process, and is known as an incomplete failure data since the
exact detection time of each software fault is not recorded. Another type of software failure data is the so-called
software failure time data, where the software failure time is observed and recorded. In this case, the NHPP is
viewed as an arrival process. Kuhl and Bhairegond [6] proposed a Daubechies wavelet estimator for the NHPP
rate function by considering NHPP as an arrival process. They presented simulation-based performance evaluation
for their wavelet procedure, and succeeded in estimating three different types of NHPP rate functions. However,
there are several mathematical difficulties when applying their procedure to the real software failure time data
analysis. Their Daubechies wavelet estimator (i) is defined on compact support with length 7, but the software
failure time data is observed in an arbitrary time interval, and (ii) consists of infinite summation of Daubechies
scaling function, which is particularly difficult to implement in actual numerical computation. Therefore, a finite
and reasonable range of the parameters included in their estimator should be determined depending on the nature
of the data under consideration.

Xiao and Dohi [17] applied the Daubechies wavelet estimator to the estimation of the rate function from real
software failure time data. They discussed the limitations of Kuhl and Bhairegond [6]’s work, and gave practical
solutions to the technical difficulties in applying the procedure to the real software failure data. They presented a
real data analysis to evaluate the goodness-of-fit performance of the Daubechies wavelet estimator, and concluded
that the Daubechies wavelet estimation outperformed the existing estimation methods in most cases.

I'This paper is an extended version of reference [18].



This paper extends Xiao and Dohi [17]’s work and aims to develop a Daubechies wavelet-based prediction
method for software reliability assessment. The amazing merit of this method is that, it can provide mid-long term
prediction of the software reliability measures such as the rate function and the mean value function, although it is
a nonparametric estimation method which does not require prior knowledge or assumptions about the behavior of

the process.

2 NHPP-based Software Reliability Modeling

Let N(#) denote the number of software faults detected by testing time ¢, and be a stochastic point process in
continuous time. We make the following assumptions:

Assumption A: Software faults occur at independent and identically distributed (i.i.d.) random times having a
cumulative distribution function (c.d.f.) F(¢) with a probability density function (p.d.f.) f(¥) = dF()/dt.

Assumption B: The initial number of software faults, N, is nonnegative and finite.

Under the above assumptions, the probability mass function (p.m.f.) of the number of software faults detected by
time ¢ is given by the binomial p.m.f.:

PriN() =n|N} = (]: )F(t)"F(t)N-", 1)

where F(-) = 1 — F(-). If the initial number of faults N is unknown, it is appropriate to assume that N is a discrete
(integer-valued) random variable. Langberg and Singpurwalla [7] proved that when the initial number of software
faults N was a Poisson random variable with mean w (> 0) , the number of software faults detected before time ¢
was given by the following non-homogeneous Poisson process (NHPP):
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Equation (2) is equivalent to the p.m.f. of the NHPP having a mean value function A(f) = wF(f) = E[N(#)], which
means the expected cumulative number of software faults experienced by time z. In addition, we have

14
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where A(#) is the rate function of NHPP, and implies the software failure rate at time 7.

3 Daubechies Wavelet Estimator

Daubechies [2] defined a set of compactly supported wavelets, which gained much popularity in wavelet analy-
sis. Generally, wavelets consist of two basis functions, the scaling function ¢(£) and the wavelet function y(t), that
work together to provide wavelet approximations. These functions are orthonormal bases of Hilbert space, so that
any signals or data in this vector space can be represented by linear combinations of scaling function and wavelet
function. Since the rate function of NHPP is non-negative, we need positive orthonormal bases of a Hilbert space to
approximate the rate function A(7) of an NHPP-based SRM. Walter and Shen [15] developed a positive wavelet es-
timator for estimating density functions. Let ¢(f) and y(¢) be the Daubechies scaling function and wavelet function
having compact support, respectively.
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where n is the support of ¢(r) and y(¢), and coefficients ; (i = 0, 1,..., n) for different supports are given in [2].
For 0 < r < 1, a positive basis function is given by

P = ) M-, ©)
jeZ

where the constant value 7 is selected such that this positive basis developed is always greater than or equal to zero
[15]. Figure 1 shows the positive basis function P.(f). It can be seen that P,(¢) is non-negative and decays to 0
quickly. Using P,(¢), a positive reproducing kemel, k,.o(2, ¢;) in Hilbert space ¥} is constructed as follows:

1
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Here, a kernel k(¢, ¢;) is called a reproducing kernel if
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holds, where A(?) is an arbitrary function. From this reproductive property, we have the approximation of rate
function A(¢) in Hilbert space ¥y, which is of the form:

/lr.O(t) = Jm k.o(t, ;) X A@t)dt;. 9
Similarly, a positive reproducing kernel, k,.,(¢, #;) in Hilbert space V,, can be constructed and written as
km(t, 1) = 2’”(%)2 > P2"t=n)P,Q2 1 - ). (10)
n=-00

Therefore, we have the approximation of rate function A(f) in Hilbert space V,, in the form of

k N
m® = 27( i ; :)2 Z {Z P.(2"t; = n)} X P,(2"t — ), (11)
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where #; are the arrival times of an NHPP whose rate function is to be approximated, and N is the number of arrivals
in the interval under consideration. The resolution m is selected based on the level of detail of the approximation
desired. This is the Daubechies wavelet estimator proposed by Kuhl and Bhairgond [6]. This wavelet estimator is
used to approximate the rate function of an NHPP-based SRM.

The range for support n# should be selected in such a way that the positive basis function P.(f) can translate
through the entire range of arrival times. Note that the positive function P,.(f) quickly decays to zero in both the
positive and negative directions (see Figure 1), so we take the truncation for it from -7 to 8. The boundary is
determined as -7 and 8 because the value of P,(¢) outside the limit becomes negative. Walter and Shen [15] proved
that there exists 0 < r < 1 such that P,(¢) satisfies P,(¢) < 0 (¢ € R, where R is the set of all real numbers), but this
holds only when parameter j in Equation (6) takes all values in Z. This is difficult in computation so that we have
to select an appropriate range for parameter j. We use the determination method of reference [17], i.e., parameter
k in Equation (11) should be selected as [Integer Part of 2™y + 7], which ensures 2™¢; — n is in the interval {-7, 8].

From Equations (4) and (5) we know, Daubechies scaling function and wavelet function are not defined in
closed analytic forms. In fact, the scaling function is calculated by solving a simultaneous equation with the
defined coefficients 4; and initial value #(0) = ¢(n) = 0. For example, the coefficients of Daubechies wavelet

(support n = 7) are defined as
hy = 0.3258034, h; =1.0109457, h, = 0.8922014, h; = 0.0395750,
hy = 0.2645072, hs = 0.0436163, he = 0.0465036, hy = 0.0149870.
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Figure 1: Positive basis function associated with Figure 2: Daubechies scaling function with support
Daubechies scaling function. [0, 7].

First, the starting values of Daubechies scaling function, ¢(1), #(2),..., #(6), can be calculated by solving

Tt =1,

o(1) = 2L mig(2 - i),

$(2) = TLo hit(4 - i),

$(3) = i hid(6 — i), (12)
$(4) = T, hip(8 - i),

¢(5) = T Lo (10 - i),

#(6) = T (12 - i),

where ¢(0) = ¢(7) = 0. Second, the values of the Daubechies scaling function at other points in time interval [0,
7] can be calculated by Equation (4) using the starting values and the coefficients ;. For example, we have

7
9(05) = ) hid(1=i) = hog(1) + mg(0). (13)
i=0

A feature of Daubechies scaling function is that it only takes the value at such a time point # when ¢ = a-2% (a, b € Z,
where Z is the set of all integers). This kind of number is called a dyadic number if and only if, it is integral multiple
of an integral power of 2 (see [10]). In other words, the Daubechies wavelet is defined in a set of discrete values.
Therefore, it is classified as discrete wavelet with the same as Haar wavelet. However, if sufficient values of the
Daubechies wavelet are calculated, a smooth scaling function can be obtained. This is the reason of why the
Daubechies wavelet is effective in representing continuous function. An example of Daubechies scaling function

with support n = 7, calculated in step size 0.0625, is given in Figure 2.

4 Mid-long Term Prediction using Daubechies Wavelet Estimator

The Daubechies scaling function and wavelet function have compact support. Daubechies [2] defines the coef-
ficients 4; (i = 0, 1,..., n) for wavelets with different supports n = 3, 5, 7, 9, 11, 13, 15, 17 and 19. Therefore,
the Daubechies wavelet estimator of the rate function A(¥) is defined on a limited time interval. However, the real
software failure time are observed in an arbatroy time interval. That is to say, the compact support is a weakness
of Daubechies wavelet estimator in analyzing real world data. Therefore, a preprocessing of the data is absolutely
necessary before using the Daubechies wavelet estimator to estimate the rate function of an NHPP-based SRM.
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Table 1: Relation between Parameter b and Rescaled Data.

d f I
b= 3 33 88682
b=14 1.831E-04 2.014E-03 5.413E+00
=15 9.155E-05 1.007E-03 2.706E+00
=16 4.578E-05 5.035E-04 1.353E+00
b=17 2.289E-05 2.518E-04 6.766E-01
l—» predictable time interval
real-time axis L R | I Lo ccccaeacao )
(b=0) 0 88682 114688 229276 458752 917A504
rescaled time axis Joommmen i’ E E E
(b=14) 0 5.4 7 e ! :
rescaled time axis ¢ d o cceceiaacnn———- [P - E E
b=15) 0 27 7 .—_-___. :
rescaledtimeaxis L 1. oo iieeiecececccceacceneanna- yooeee E
(b=16) 0 14 T e
rescaled time axiS el o e eeccccccccecmcmcnmmem - R
(b=17) 0 0.7 7

Figure 3: Rescale.

This paper makes use of this weakness in an artful way to achieve the mid-long term prediction of the software
reliability measures. Suppose that a set of software failure time data t; (i = 1, 2,..., ty) is available, where ¢;
denotes the time of the i-th software failure, and N means the total number of failures in this data set. In other
words, it is necessary to rescale the software failure time data {#,, #,,..., #y)} into interval [0, n]. Commonly,
, ty} by ty to normalize the data to [0, 1], and
secondly multiply » to get [0, n]. However, this method does not work in this case. It is clear from Equation (11)

conceived idea will be that, firstly dividing the data {7, 1,,...

that #; in 2,,4(r) must be a dyadic number, otherwise, P,(2™t; — n) can not be defined. Therefore, it is necessary to
find a way, that not only ensures the rescaled data is between [0, n], but also ensures that the rescaled failure time
is a dyadic number. We suggest the following steps for the preprocessing:

i) If the values of the failure time data are recorded in integer, then go to the next step, else change the unit of
the data set to a smaller one to obtain a set of data with interger value.

i) Find a set of integer b that satisfies £y X 2~ < n. Since an integer is a dyadic number and an integer divided
by 2° (b € Z) is still a dyadic number, we obtain the rescaled time data as {#], #;,..., £} = {#, #,..., ty} X 270,

In this way, software failure time data with arbitrary ending time can be analyzed with the Daubechies wavelet
estimator. Here, note that there exits multiple integer b. For example, consider the case with #; = 3, ty =
88682, N = 136, and the Daubechies wavelet with support » = 7. The integer b that satisfies ty x 27 < n
are 14, 15, 16, 17,.... If we set b = 14, then {#;, 5,..., ty} = {3, 33,..., 88682} is rescaled to {1.831F —
04, 2.014E - 03,..., 5413E + 00}. Table 1 shows {#], #,..., 7)) when b = 14, 15, 16 and 17. For better
understanding, we illustrate the corresponding relationship between the real-time axix and the rescaled time axis
in Figure 3. It is clear from this figure that time point 7 of each rescaled time axis corresponds to different time
points in the real-time axis. It corresponds to the time point 114688 when b = 14, while time point 917504 when
b = 17. In other words, a larger b provides a longer predictable interval.



Table 2: Predictive Performance (PLSE).

r | 8] m=2 ] m=3 ] m=4] m=s [ m=6 | m=17 | m=8 m=9 m=10
03 | 14 2.840 2.153 1.548 0.545 3242 | 11542 | 29522 | 66960 | 139.830
15 5.492 3.991 3.027 2181 0.785 4509 | 16.145 | 41219 93.560
16 | 10810 7.581 5.529 4208 3.072 1.103 6107 | 21733 55275
17 - | 14883 | 104s3 7.643 5.819 4.891 1710 7.657 27.699
04 | 14 3.291 2.454 1.866 1.040 1395 6927 | 19458 | 46.120 | 100.353
15 6.452 4.624 3.450 2.625 1471 1.965 9.696 | 27.179 64.428
16 | 12927 8.890 6.396 4787 3.666 2.066 2618 | 13.032 36476
17 ~ | 17788 | 12248 8.828 6.614 5436 3.005 3.199 16473
05 | 14 3.870 2.873 2.230 1.604 0.549 3664 | 12353 | 31.160 70.850
15 7.613 5.435 4.036 3.135 2.258 0.791 5135 | 17.268 43522
16 | 15322 | 10474 7.503 5.590 4.359 3.146 1.114 6.869 23.198
17 - | 21074 | 14419 | 10345 7717 6.252 4341 1.744 8.475
0.6 | 14 4752 3.615 2.895 2352 1.520 1.114 6.883 | 19.805 47.888
15 9.195 6.670 5.076 4.065 3.306 2.139 1573 9.634 27.660
16 | 18071 | 12632 9.191 7012 5.632 4.585 2.982 2.074 12.933
17 C | 24844 | 17376 | 12654 9.670 7912 6.253 4.204 2.440
07 | 14 6.282 5.100 4.344 3832 3317 1.905 1962 | 10372 28.956
15 | 11.529 8.815 7.156 6.094 5.381 4657 2.676 2.754 14.482
16 | 21228 | 15.825 | 12.125 9.858 8414 7432 6.436 3727 3.626
17 - | 20076 | 21751 | 16667 | 13577 | 11661 | 10.153 8.811 5.511
08 | 14 8.987 7.981 7.329 6.895 6.584 5.825 3.799 1.207 11.823
15 | 15009 | 12608 | 11.196 | 10278 9.676 9.241 8.171 5332 1.804
16 | 24856 | 20599 | 17.321 | 15394 | 14.153 | 13323 | 12727 | 11235 7428
17 - | 34155 | 28200 | 23789 | 21176 | 19491 | 18265 | 17.428 15.547
09 | 14 | 113 | 12617 | 12202 | 12072 | 11928 | 11663 | 10914 0.026 5.130
15 | 19620 | 18396 | 17701 | 17243 | 16939 | 16737 | 16364 | 15314 12.670
16 | 28831 | 26944 | 25269 | 24320 | 23705 | 23287 | 23010 | 22483 21.081
17 - | 39618 | 37017 | 34707 | 33430 | 32585 | 31985 | 31.601 30.892

S Real Data Analysis

We apply the Daubechies wavelet estimator to the real project data set to estimate the rate function of the NHPP-
based SRM. The used data set is from reference [8], where it is named as SYS1 and consists of 136 software fault
data. Parameters » and m in Equation (11) can be considered as very important parameters that effect the accuracy
of the estimator. If 7 is too small, P,(f) decays to negative value very fast. For example when » = 0.1 and 0.2,
P,(2) provides negative values when ¢ is greater than 2. On the other hand, m is the resolution of approximate so
that the computation time becomes longer as m increases. We execute the Daubechies wavelet-based procedure by
settingr = 0.3, 04,---, 09andm =1, 2,---, 10, to study the influence of these two parameters to the estimator.
Moreover, the rescaled parameter b is set to be b = 14, 15, 16 and 17 in this paper.

We examine the prediction performance, where two prediction measures are used: predictive least square error
(PLSE), and predictive log likelihood (PLL). The PLSE is defined as the least square error between the estimated
intensity function and the future data from an observation point, and the PLL is the logarithm of the likelihood
function with future data at an observation point. We set the observation point at N =90% x N, and the PMSE and

PLL are of the forms
N
N2y (M) = yi)?

PLSE = ~ , (14)
N-N+1
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Table 3: Predictive Performance (PLL).

r 8] m=2] m=3] m=4| m=s] m=6] m=7] m=3 m=9 | m=10

0.3 14 -787.818 -948.800 -539.718 -350.051 -251.931 -280.918 -392.775 -675.110 -1239.126

15 -386.005 -453.220 -538.366 -337.502 -247.585 -210.804 -245.214 -371.713 -672.815
16 -226.647 -253.150 -293.912 -334.449 -235.617 -182.650 -177.224 -226.424 -366.313
17 - -161.968 -181.228 -206.681 -231.824 -169.219 -148.646 -158.503 -218.944

0.4 14 -726.404 -844.466 -484.028 -313.835 -223.813 -235.848 -308.500 -507.338 -925.790
15 -367.409 -420.385 -483.932 -306.197 -225.312 -188.263 -205.650 -291.315 -505.675

16 -215.045 -240.814 -274.188 -303.902 -217.720 -169.460 -159.709 -190.197 -287.944
17 - -152.339 -172.510 -194.397 -214.392 -161.054 -141.230 -144.257 -185.184
0.5 14 -682.086 -768.302 -443.282 -288.329 -203.787 -203.967 -249.098 -386.972 -691.616
15 -351.649 -395.794 -443.476 -283.413 -209.429 -172.096 -177.598 -234.626 -385.806
16 -203.769 -229.659 -258.700 -281.121 -204.180 -159.854 -147.041 -164.411 -232.652
17 - -142.229 -163.993 -184.187 -200.700 -154.113 -135.453 -134.151 -160.912
0.6 14 -648.619 -709.669 -410.581 -267.406 -186.945 -178.656 -203.499 -295.686 -509.355
15 -336.505 -375.570 -410.723 -263.810 -195.397 -158.013 -155.096 -191.008 -294.924
16 -192.244 -217.808 -244.576 -261.286 -191.210 -150.351 -135.452 -143.579 -189.954
17 - -131.019 -154.025 -173.664 -187.407 -145.906 -128.543 -124.520 -141.264
0.7 14 -622.520 -662.616 -380.635 -245.578 -168.033 -153.439 -162.591 -220.003 -359.075
15 -320.734 -356.489 -380.964 -242.653 -178.183 -140.915 -131.876 -151.491 -219.576
16 -180.394 -203.477 -228.675 -240.192 -174.499 -136.245 -120.017 -121.576 -150.958
17 - -118.386 -140.564 -159.747 -170.698 -132.515 -116.114 -110.368 -120.378
0.8 14 -603.739 -624.763 -348.912 -216.724 -140.257 -120.423 -117.115 -146.812 -223.023
15 -304.867 -336.247 -350.350 -214.666 -151.372 -113.852 -99.988 -106.827 -146.643
16 -169.232 -185.460 -207.562 -213.218 -148.439 -110.982 -93.763 -90.364 -106.552
17 - -104.611 -121.495 -138.398 -145.607 -108.171 -91.630 -84.625 -90.051
0.9 14 -610.029 -610.501 -320.695 -181.111 -100.775 -75.220 -61.095 -66.330 -88.792
15 -299.529 -322.658 -324.674 -180.822 -113.121 -73.070 -54.467 -50.808 -66.305
16 -164.991 -169.058 -184.173 -181.817 -111.867 -71.529 -52.375 -44.640 -50.704
17 - -93.311 -99.291 -109.908 -111.444 -70.489 -51.520 -42.806 -44.674
N
PLL = ) (1)) - Altw), (15)
i=N+1

respectively, where A(z;) are the Daubechies estimates, and y; are the number faults detected by time ¢;.

Table 2 and Table 3 present the prediction results at observation point ¥ of a whole data set, and show the PLSE
and PLL form =2, 3,---, 10and b = 14, 15, 16, 17. Here, the influence of the rescale parameter b is focused.
It can be seen that, when approximation resolution m is fixed, larger value of parameter b provides smaller PLSE,
while smaller b provides larger PLL. Note that, PLSE measures the physical distance between the estimate and the
observation, PLL measures the preciseness of the estimate in a statistical sense. The result of PLL indicates that
it is possible to find an appropriate rescale parameter 5 by tuning its magnitude to a larger one. Therefore, it is
necessary to investigate the predictive performance with larger values of b in the future.

Figure 4 shows the Daubechies wavelet estimates of rate function and the mean value function with different
settings of rescale parameter b. From (i) and (iii) of this figure we can see that, it tends to underestimate the failure
rate function, when changing rescale parameter b from 14 to 17. This trend can also be found in (ii) and (iv).
Furthermore, we show the end of the testing time in Figure 4. Taking look at (iii) and (iv), it is clearly to see that
the predictable interval of » = 17 is longer than b = 14. This also motivates us to keep on studying the effect of

rescale parameter b in future work.
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Figure 4: Behavior of Predicted Reliability Measures (» = 0.3).

6 Conclusion

This paper has applied the Daubechies wavelet estimator to predict the rate function of NHPP-based SRM. Real
data analysis has been presented to evaluate the predictive performance of the Daubechies wavelet estimator. We
have given practical solutions to the technical difficulties in applying the procedure to the real software failure data.
Throughout the numerical evaluation, we have established the credibility and the usefulness of the Daubechies
wavelet estimation procedure in software failure data analysis. The prediction ability of this estimator can be
improved by investigating the influence of rescale parameter . Such studies will be made in subsequent work.
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