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1 Introduction

In Tamaki (2013), we generalized the classical fixed horizon full-information
duration problem by allowing the horizon to be random. Let $N$ denote the
length of horizon bounded by $n$ (given positive integer). The random horizon
duration problem can be distinguished into two models, MODEL 1 and MODEL
2, according to whether the final stage of the planning horizon is $N$ or $n$ . That
is, if the chosen object is the last relative maximum, we can hold it until stage
$N$ in MODEL 1, whereas until stage $n$ in MODEL 2. The optimal rule heavily
depends on the prior $p=(p_{1},p_{2}, \ldots,p_{n})$ assumed on $N$ . Define, for a given
prior $p,$

$\pi_{k}=p_{k}+p_{k+1}+\cdots+p_{n}$

and

$\sigma_{k}=\pi_{k}+(n-k)p_{k}$

for $k\leq n$ . Then a sufficient condition for the optimal rule to be monotone is
that $\pi_{k+j}/\pi_{k}(\sigma_{k+j}/\sigma_{k})$ is non-increasing in $k$ for each possible value of $j$ for
MODEL 1 (MODEL 2). See Tamaki (2013) for this sufficient condition and the
monotone rule.

We confine our attention to the class of priors given by, for $1\leq k\leq n,$

$p_{k}=( \frac{n-k+1}{n})^{m}-(\frac{n-k}{n})^{m}$ (1)

or

$p_{k}= \frac{(^{n+m-k})-(^{n+m-1-k})}{(^{n+m-1}m)}=\frac{(^{n+m-1-k}m-1)}{(\begin{array}{l}n+m-1m\end{array})}$ , (2)

where $m=1$ , 2, 3, . . . is a given parameter. By straightforward calculation, the
optimal rule for these priors is shown to satisfy the above sufficient condition

数理解析研究所講究録

第 1939巻 2015年 179-188 179



for both MODELs (see the Appendix A).

Remark 1. It is noted that the prior distributions given in (1) and (2) are
related to the following urn sampling models with replacement and without
replacement. Suppose that there exists an urn containing $n$ balls numbered
1, 2, . . . , $n$ . We draw $m$ balls (and observe their numbers) one at a time randomly

from the urn with replacement in such a way that, at each stage, drawing a
specific ball is equally likely for all $n$ balls. Then $p_{k}$ in (1) is the probability

that the smallest of the $m$ numbers drawn is $k$ . For (2), suppose that there
exists an urn containing $n+m-1$ balls numbered 1, 2, . . . , $n+m-1$ . We draw
$m$ balls randomly from the urn without replacement. Then $p_{k}$ is the probability

that the smallest of the $m$ numbers drawn is $k.$

2 MODEL 1

Of interest is to derive the limiting optimal payoff $v_{m}^{(1)}$ , as $narrow\infty$ , for MODEL
1 when the priors are given by (1) and (2) for a given parameter $m$ . To do
so, we use a planar Poisson process (PPP) model which is known to facilitate
the derivation of the asymptotic values for some full-information problems (see,

e.g., Gnedin (1996), (2004), and Samuels (2004)). A link to the finite problems
can be established by embedding suitably the finite independent and identically
distributed sequences in the PPP in a similar manner as given to the Gilbert
and Mosteller full-information best-choice problem by Gnedin (1996, Section 3).

As a preliminary, in addition to

$I(c)= \int_{c}^{\infty}\frac{e^{-x}}{x}dx, J(c)=\int_{0}^{c}\frac{e^{x}-1}{x}dx,$

we introduce the following notations

$I_{m}(c) = \int_{c}^{\infty}\frac{m!e^{-x}}{x^{m+1}}dx,$

$K_{m}(c) = \int_{0}^{c}\frac{x^{m}e^{x}}{m!}dx,$

$L_{7n}(c) = \int_{0}^{c}\frac{m!e^{-x}}{x^{rn+1}}K_{7Yl}(x)dx,$

$M_{m}(c) = \int_{0}^{c}\frac{x^{m}e^{x}}{m!}L_{m}(x)dx,$

for $m=0$ , 1, 2, . . .. We can list some properties of these functions.

Corollary 1.
(i) $I_{m}(c)$ have the following expressions with $I_{0}(c)=I(c)$ : For $m\geq 1,$

$I_{m}(c)=(-1)^{m}[I(c)- \frac{e^{-c}}{c}\sum_{k=0}^{m-1}\frac{k!}{(-c)^{k}}]$
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(ii) $K_{m}(c)$ have the following expressions with $K_{0}(c)=e^{c}-1$ : For $m\geq 1,$

$K_{m}(c)=(-1)^{m}[e^{c} \sum_{k=0}^{m}\frac{(-c)^{k}}{k!}-1]$ (3)

(iii) $L_{m}(c)$ have the following expressions with $L_{0}(c)=-J(-c)$ : For $m\geq 1,$

$L_{m}(c)= \frac{e^{-c}}{c}\sum_{k=0}^{m-1}\frac{k!}{c^{k}}K_{k}(c)-J(-c)-h_{m}.$

(iv) $M_{m}(c)$ have the following expressions with $M_{0}(c)=e^{c}L_{0}(c)-J(c)$ : For
$m\geq 1,$

$M_{m}(c)=(-1)^{m}[e^{c} \sum_{k=0}^{m}\frac{(-c)^{k}}{k!}L_{k}(c)-J(c)]$ (4)

Now we have the following results.

Theorem 1.: Let $c_{m}$ be the unique root $c$ of the equation

$\sum_{k=0}^{m}\frac{(-c)^{k}}{k!}(1-L_{k}(c))=e^{-c}(1-J(c))$ . (5)

Then the optimal limiting payoff $v^{(1)}$ is given by

$v_{m}^{(1)}= \frac{L_{m}(c)}{m+c+1}+(\frac{m!K_{m}(c)}{c^{m}}-\frac{ce^{c}L_{m}(c)}{m+c+1})$

$\cross(\frac{c^{m}I_{m}(c)}{m!}-\frac{c^{m+1}I_{m+1}(c)}{(m+1)!})$ , (6)

where, for easier reading, $c_{m}$ is abbreviated to $c.$

Proof. As mentioned before, we use a PPP model to derive (5) and (6). Ac-
cording to Samuels (2004, Sections 9 and 10), we use a Poisson process with
unit rate on the semi-infinite strip $[0, 1]\cross[0, \infty$ ). This turns the problem upside
down, making the ‘best‘ become the ‘smallest’. The process is scanned from left
to right by shifting a vertical detector and the scanning can be stopped each
time a point in the PPP, referred to as an atom henceforth, is detected. The
random number $N$ of objects whose prior is given by (1) or (2) is now repre-
sented in a PPP by a vertical cut $V_{m}$ on $(0,1)$ whose distribution function is
given by $F_{V_{m}}(v)=1-(1-v)^{m},$ $0\leq v\leq 1$ (see Remark 1). We have to stop
before $V_{m}.$

Suppose that an atom is identified as a point $(t, y)$ if the atom appears at
time $t$ as a candidate (relatively best atom as in the finite problem) of value $y$ in
the PPP. Let $R=R(t, y)$ denote the duration until the first point after $t$ which
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lies below $y$ , if any, and denote $1-t$ if there is no such point. That is, $R$ is the
duration when no vertical cut takes place. Then $P\{R>r\}=e^{-yr},$ $0\leq r\leq$

$1-t$ with mass $P\{R=1-t\}=e^{-y(1-t)}$ , because $R>r$ occurs if and only if
there is no point in the box domain $[t, t+r]\cross[O, y]$ whose area is $yr$ . Let $V_{m}(t)$

denote the additional time to $V_{m}$ from time $t$ onward, provided that $V_{m}>t.$

Hence, we have

$P \{V_{m}(t)>r\}=\frac{1-F_{V_{m}}(t+r)}{1-F_{V_{m}}(t)}=(\frac{1-t-r}{1-t})^{m}$ $0<r\leq 1-t.$

Then $D_{m}(t, y)= \min\{R, V_{m}(t)\}$ represents the duration related to the point
$(t, y)$ when the vertical cut is taken into consideration. Since $R$ and $V_{m}(t)$ are
independent, the expected duration $p_{m}(t, y)=E[D_{m}(t,$ $y$ when we stop at
point $(t, y)$ , is calculated as

$p_{m}(t, y) = \int_{0}^{1-t}P\{D_{7n}(t, y)>r\}dr$

$= \int_{0}^{1-t}P\{R>r\}P\{V_{m}(t)>r\}dr$

$= \int_{0}^{1-t}e^{-yr}(\frac{1-t-r}{1-t})^{m}dr$ (7)

$= \frac{m!e^{-(1-t)y}}{y\{(1-t)y\}^{m}}K_{m}((1-t)y)$ . (8)

If we do not choose the point $(t, y)$ , but instead choose the atom related
to the next candidate, if any, then, since its value is uniformly distributed on
$(0, y)$ , the duration we can expect to receive is

$q_{m}(t, y) = \int_{0}^{1-t}\{\int_{0}^{y}p_{m}(t+r, z)\frac{1}{y}dz\}f_{R}(r)P\{V_{m}(t)>r\}dr$ , (9)

where $f_{R}(r)$ is the density of $R$ , i.e. $f_{R}(r)=ye^{-yr},$ $0\leq r\leq 1-t.$

Let $c=(1-t)y$ , box area of point $(t, y)$ . Then, from (8) and (9),

$p_{m}(t, y) = \frac{m!e^{-c}}{yc^{7n}}K_{m}(c)$ ,

$q_{m}(t, y) = \frac{m!e^{-c}}{yc^{m}}M_{m}(c)$ . (10)

See the Appendix $B$ for (10). Solving for the locus of point $(t, y)$ at which
$p_{m}(t, y)=q_{m}(t, y)$ , or, equivalently,

$K_{m}(c)=M_{m}(c)$ , (11)

we obtain (5) from (3) and (4). The uniqueness of the solution $c$ of the equation
(11) can be ascertained by showing that the function $M_{m}(c)/K_{m}(c)$ is increasing
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in $c$ (see the Appendix C), implying that $p_{m}(t, y)\geq q_{m}(t, y)$ means $p_{m}(t’, y’)\geq$

$q_{m}(t’, y^{l})$ for $t’>t$ and $y<y$ . So we are in the monotone case of optimal
stopping in the infinite problem and can conclude that the optimal rule stops
with the first candidate, if any, that lies below the threshold curve $y=c_{m}/(1-t)$ .

In the rest of this proof and in the Appendic $D$ , we write $c$ instead of $c_{m}$

for easier reading. Let $T$ be the arrival time of the first (leftmost) atom that
lies below the optimal threshold curve $y=c/(1-t)$ and $S$ the time when the
value of the best (lowest) atom above threshold is equal to the threshold. Then
$T$ and $S$ are independent and their densities are given by

$f_{T}(t) = c(1-t)^{c-1}, 0<t<1$ , (12)

$f_{S}(s) = \frac{cs}{(1-s)^{c+2}}e^{-\frac{cs}{1-s}}, 0<s<1$ , (13)

respectively (see Sec.10.2 of Samuels (2004)). Let $\overline{F}_{V_{m}}(v)=1-F_{V_{m}}(v)=(1-$

$v)^{m}$ . Then, from the similar argument in Sec.10.2 of Samuels (2004), combined
with his Sec.13.2 given to the best-choice problem with uniform vertical cut,
referred to as POR, the optimal payoff can be calculated as

$v_{m}^{(1)}$ $=$ $E[p_{m}(S, \frac{c}{1-S})1_{\{S<T\}}1_{\{V_{m}>S\}}]$

$+E[$average of $p_{m}(T, y:0<y< \frac{c}{1-T})1_{\{T<S\}}1_{\{V_{m}>T\}}]$

$= E[ \overline{F}_{V_{m}}(S)p_{m}(S, \frac{c}{1-S})1_{\{S<T\}}]$

$+E[$average of $\overline{F}_{V_{m}}(T)p_{m}(T, y : 0<y<\frac{c}{1-T})1_{\{T<S\}}]$

$= \int_{0}^{1}\int_{0}^{t}(1-s)^{m}p_{m}(s, \frac{c}{1-\mathcal{S}})f_{S}(s)f_{T}(t)dsdt$

$+ \int_{0}^{1}\int_{0}^{s}(1-t)^{m}[\int_{0}^{c/(1-t)}p_{m}(t, y)\frac{1-t}{c}dy]f_{T}(t)f_{S}(s)dtds.(14)$

(14) can be simplified to (6) in the Appendix D.

Note that, if the vacuous sum is assumed to be $0$ , Theorem 1 is still valid
for $m=0$ corresponding to the fixed horizon duration problem.

3 MODEL 2

For the prior given in (1) or (2), there is a simple relation between MODEL 1

and MODEL 2 as shown below in Theorem 2, where we write $v_{m}^{(i)}$ for the optimal
limiting payoff to clarify that the model considered is MODEL $i(=1,2)$ .
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Theorem 2.: The optimal limiting payoff for MODEL 2 is $(m+1)$ times as
large as that for MODEL 1, that is,

$v_{m}^{(2)}=(m+1)v_{m}^{(1)}$ . (15)

Proof. We here use the same PPP model and the same notations as defined
in the proof of Theorem 1 for MODEL 1. However, to distinguish between two
MODELs, we denote $p_{m}(t, y)$ and $q_{m}(t, y)$ by $p_{m}^{(i)}(t, y)$ and $q_{m}^{(i)}(t, y)$ to stand for
MODEL $i(i=1,2)$ .

To show (15), it suffices to show that, when we stop at point $(t, y)$ , the payoff
for MODEL 2 is $(m+1)$ times as large as that for MODEL 1, that is,

$p_{m}^{(2)}(t, y)=(m+1)p_{m}^{(1)}(t, y)$ , (16)

because, as a bit of consideration shows, the relations (9) and (14) also hold for
MODEL 2 if $p_{m}(t, y p_{m}^{(1)}(t, y))$ is replaced by $p_{m}^{(2)}(t, y)$ , thus implying that
$q_{m}^{(2)}(t, y)=(m+1)q_{m}^{(1)}(t, y)$ and $v_{m}^{(2)}=(m+1)v^{(1)}$ through these relations.

Note that, when we stop at point $(t, y)$ in MODEL 2, the additional payoff,
compared to MODEL 1, is $1-(t+V_{m}(t))$ or $0$ depending on whether $V_{m}(t)<R$

or $V_{m}(t)\geq R$ . Hence, we have

$p_{m}^{(2)}(t, y)=p_{m}^{(1)}(t, y)+E[(1-t-V_{m}(t))1_{\{V_{m}(t)<R\}}].$

Coditioning on $V_{m}(t)$ (via $V_{m}$ ) yields

$E[(1-t-V_{m}(t))1_{\{V_{m}(t)<R\}}]$ $=$ $\int_{0}^{1-t}(1-t-v)e^{-yv}\frac{dF_{V_{m}}(t+v)}{1-F_{V_{m}}(t)}$

$= \int_{0}^{1-t}(1-t-v)e^{-yv}m\frac{(1-t-v)^{m-1}}{(1-t)^{m}}dv$

$= mp_{7n}^{(1)}(t, y)$ ,

where the last equality follows from (7). Thus the proof is complete.

Remark 2. Since $E[V_{m}]= \int_{0}^{1}vf_{V_{m}}(v)dv=1/(m+1)$ (see Remark 1),
$v^{(1)}$ gets small as $m$ gets large, and so $v_{m}^{(1)}/E[V_{m}]$ may be considered as a stan-
dardized optimal payoff of MODEL 1. Then (15) can be seen as an equivalence
relation between the optimal payoff of MODEL 2 and the standardized optimal
value of MODEL 1.

Table 1 presents some numerical values of $c_{7n},$
$v_{m}^{(1)}$

Table 1
Values of $c_{m},$

$v_{m}^{(1)}$ and $v^{(2)}$ for several $m$ , where $v_{m}^{(2.)}=(m+1)v_{\gamma n}^{(1)}.$

$\frac{\frac{m}{2.11983.69255.35207.04118.742310.449519.016901234510}}{c_{m}}$

$v^{(1)}$ 0.4352 0.2022 0.1309 0.0966 0.0765 0.0634 0.0341
$v^{(2)}$ 0.4352 0.4045 0.3926 0.3865 0.3827 0.3803 0.3746
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Appendix $A$

We show that the priors given by (1) and (2) satisfy the $condition\pi_{k+j}/\pi_{k}(\sigma_{k+j}/\sigma_{k})$

is non-increasing in $k$ for each possible value of $j.$

The prior given by (1): We have, for $1\leq k\leq n,$

$\pi_{k}=(\frac{n-k+1}{n})^{m}$ $\sigma_{k}=n[(\frac{n-k+1}{n})^{m+1}-(\frac{n-k}{n})^{m+1}]$

Hence, it is easy to see that

$\frac{\pi_{k+j}}{\pi_{k}}=(1-\frac{j}{n-k+1})^{7n}$

is decreasing in $k$ for $j+k\leq n$ . On the other hand,

$\frac{\sigma_{k+j}}{\sigma_{k}}=\frac{(n-k-j+1)^{m+1}-(n-k-j)^{m+1}}{(n-k+1)^{m+1}-(n-k)^{m+1}}.$

To show that $\sigma_{k+j}/\sigma_{k}$ is non-increasing in $k$ for possible $j$ , it suffces to show
that

$f(x)= \frac{(x-j+1)^{m+1}-(x-j)^{7n+1}}{(x+1)^{m+1}-x^{m+1}}$

is non-decreasing in $x$ for $x\geq j$ . This can be done by showing that $df(x)/dx\geq 0.$

We have by a straightforward calculation

$\frac{df(x)}{dx}=\frac{(m+1)_{9}(x)}{[(x+1)^{m+1}-x^{m+1}]^{2}}$

where

$g(x) = j[(x+1)^{m}-x^{m}][(x-j+1)^{m}-(x-j)^{m}]$

$+\{[(x+1)x-jx]^{m}-[(x+1)x-j(x+1)]^{m}\}$

$>$ $0,$

as desired.

The prior given by (2): We have, for $1\leq k\leq n,$

$\pi_{k}=\frac{(^{n+m-k}m)}{(\begin{array}{l}n+m-1m\end{array})}, \sigma_{k}=\frac{(n-k+1)^{[7n]}+m(n-k)^{[m]}}{n^{[m]}},$

if the notation $a^{[m]}=a(a+1)\cdots(a+m-1)$ is introduced for a positive integer
$a$ . It is easy to see that

$\frac{\pi_{k+j}}{\pi_{k}}=\prod_{i=1}^{j}(\frac{1}{1+\frac{m}{n+1-i-k}})$
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is decreasing in $k$ for a fixed $j$ . On the other hand,

$\frac{\sigma_{k+j}}{\sigma_{k}}=\frac{(n-k-j+1)^{[m]}+m(n-k-j)^{[m]}}{(n-k+1)^{[m]}+m(n-k)^{[m]}}.$

Let $A=n-k,$ $B=n-k-j$ for which $n-k-j\geq 1$ . Then we have by a
straightforward calculation

$\sigma_{k+j}$ $\sigma_{k+1+j}$

$\sigma_{k}$ $\sigma_{k+1}$

$= \frac{m(A-B)[(m+1)^{2}AB+(m-1)\{(m+1)(A+B)-1\}]B^{[m]}}{B(B+m-1)((m+1)A+m)((m+1)A-1)A[m]}$

$>$ $0,$

as desired.

Appendix $B$

From (9), we have

$q_{m}(t, y)$ $=$ $\int_{0}^{1-t}\{\int_{0}^{y}p_{m}(t+r, z)dz\}e^{-yr}(\frac{1-t-r}{1-t})^{m}dr$

$= \frac{e^{-(1-t)y}}{\{(1-t)y\}^{m}}\int_{t}^{1}\{\int_{0}^{y}p_{m}(s, z)dz\}e^{(1-s)y}[(1-s)y]^{m}ds. (A1)$

However, we have, from (8),

$\int_{0}^{y}p_{m}(s, z)dz = \int_{0}^{y}\frac{m!e^{-(1-s)z}}{z\{(1-s)z\}^{7n}}K_{m}((1-s)z)dz$

$= \int_{0}^{(1-s)y}\frac{m!e^{-x}}{x^{m+1}}K_{m}(x)dx$

$=$ $L_{m}((1-s)y)$ . $(A2)$

Substituting (A2) into (A1) immediately yields (10).

Appendix $C$

It is easy to see from the definitions of $K_{7n}(c)$ and $M_{m}(c)$ that

$\frac{d}{dc}\{\frac{M_{m}(c)}{K_{7n}(c)}\}=\frac{c^{rn}e^{c}R_{m}(c)}{m!(K_{m}(c))^{2}},$

where $R_{m}(c)=L_{m}(c)K_{m}(c)-M_{m}(c)$ . Hence, to show that $M_{m}(c)/K_{m}(c)$ is
increasing in $c$ , it suffices to show that $R_{m}(c)$ is increasing, because $R_{m}(0)=0.$

This can be easily seen from

$\frac{dR_{m}(c)}{dc}=\frac{m!e^{-c}}{c^{m+1}}(K_{rn}(c))^{2}>0.$
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Appendix $D$

First observe that, from (8) and (A2),

$Pm( \mathcal{S}, \frac{c}{1-s})=\frac{m!e^{-c}(1-s)}{c^{m+1}}K_{m}(c)$ $(A3)$

and

$\int_{0}^{c/(1-t)}p_{m}(t, y)dy=L_{m}(c)$ . $(A4)$

Substituting (A3) and (A4) into (14) and combining it with (12) and (13) yields

$v_{m}^{*} = \frac{m!e^{-c}K_{m}(c)}{c^{m+1}}\int_{0}^{1}\int_{0}^{t}(1-s)^{m+1}f_{S}(s)f_{T}(t)dsdt$

$+ \frac{L_{m}(c)}{c}\int_{0}^{1}\int_{0}^{s}(1-t)^{m+1}f_{T}(t)f_{S}(\mathcal{S})dtds. (A5)$

Interchanging the order of integration, the first bivariate integral becomes

$c \int_{0}^{1}\{\int_{s}^{1}c(1-t)^{c-1}dt\}(1-s)^{m-c-1}se^{-\frac{cs}{1-s}}ds=c\int_{0}^{1}s(1-\mathcal{S})^{7n-1}e^{-\frac{c\epsilon}{1-\epsilon}}ds(A6)$

The second bivariate integral is equal to

$\int_{0}^{1}\{\int_{0}^{s}c(1-t)^{m+c}dt\}f_{S}(s)ds=(\frac{c}{m+c+1})[1-c\int_{0}^{1}s(1-s)^{rn-1}e^{-\frac{cs}{1-s}}ds](A7)$

However, letting $x=c(1-s)^{-1}$ , we have

$\int_{0}^{1}s(1-s)^{m-1}e^{-\frac{cs}{1-s}}d_{\mathcal{S}}$ $=$ $\int_{c}^{\infty}(\frac{x-c}{x})(\frac{c}{x})^{m-1}e^{-(x-c)}\frac{cdx}{x^{2}}$

$= e^{c}[c^{m} \int_{c}^{\infty}\frac{e^{-x}}{x^{m+1}}dx-c^{m+1}\int_{c}^{\infty}\frac{e^{-x}}{x^{m+2}}dx]$

$= e^{c}[ \frac{c^{m}}{m!}I_{m}(c)-\frac{c^{m+1}}{(m+1)!}I_{m+1}(c)] (A8)$

Substituting $(A6)-(A8)$ into (A5) gives (6) as desired.

Remark 3. See Tamaki (2016) for more detail of the problems considered
here.
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