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1 Introduction

Software reliability growth model [5] is known as one of the mathematical tools for quantitative software

reliability assessment. Among the software reliability growth models proposed so far, nonhomogeneous

Poisson process (NHPP)-based models, which are called NHPP models, are widely applied to practical

software reliability assessment due to their applicability and simple mathematical structure. It is known

that there exists a case that the characteristic of the software failure-occurrence or the fault-detection

phenomenon changes notably in an actual testing-phase of a software development process due to changes

of some factors which are related to the software reliability growth process. And such changes influence on

the accuracy of software reliability assessment based on the software reliability growth model. Generally,

testing-time when such changes are observed is ordinarily called a change-point [6]. Taking the effect

of change-point on the software reliability growth process into consideration in the software reliability

modeling is one of the important issues for accurate software reliability assessment.

From the background mentioned above, software reliability growth models with the effect of change

point have been proposed so far [2, 3, 6, 7]. These models might contribute the accuracy improvement

of software reliability assessment based on a software reliability growth model. However, it is known

that the probability distribution of the software failure-occurrence time-interval has improper or defective
property [1] especially in the NHPP models and the NHPP-based change-point models in which the total

number of detectable faults is assumed to be finite. This property leads to inconvenience situation in

quantitative software reliability assessment. That is, we cannot precisely derive the mean time between

software failures (MTBF or MTBSF). Therefore, we usually use the instantaneous or cumulative MTBF

[5] as the substitute measures for the proper MTBF. We apply the mending method proposed by Grottke

and Trivedi [1] to our NHPP-based change-point modeling framework [3], and proposed an all-stage

truncated change-point modeling framework. Finally, we show numerical examples of application of our

proposed change-point model to software reliability assessment, and discuss the importance of using the

proper MTBF in software reliability assessment by using actual fault counting data.

2 NHPP Modeling Framework

Let $\{N(t), t\geq 0\}$ denote a counting process representing the total number of faults detected up to

testing-time $t$ . From the basic assumptions [4], the probability that $m$ faults are detected up to testing-

time $t$ is derived as

$Pr\{N(t)=m\}=\sum_{n}(\begin{array}{l}nm\end{array})\{F(t)\}^{m}\{1-F(t)\}^{n-m}Pr\{N_{0}=n\}$ , (1)

in which $N_{0}$ represents the initial fault content. From Eq. (1), we can derive an NHPP with mean value

function $E[N(t)]\equiv\Lambda(t)=\omega F(t)$ if we assume that $N_{0}$ follows a Poisson distribution with mean $\omega$ . The
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software reliability function $R(x|t)$ , which means the probability that a software failure does not occur
in the time-interval $(t, t+x$], is derived as

$R(x|t, N(t)=i-1)=\exp[-\omega\{F(x+t)-F(x)\}]$ . (2)

We should note that the corresponding probability distribution function $G(x|t)\equiv 1-R(x|t)$ has the

following properties:

$\lim_{xarrow 0}G(x|t)=1-\lim_{xarrow 0}R(x|t)=0$ , (3)

$\lim_{xarrow\infty}G(x|t)=1-\lim_{xarrow 0}R(x|t)=1-\exp[-\omega(1-F(t))]$ . (4)

Therefore, the probability distribution function $G(x|t)$ is defective or improper. Such defective distribu-

tion implies that there is the possibility no failure will occur at all. This might be unrealistic especially

for the first software failure-occurrence time distribution, $F(x|0)$ , except for thoroughly tested software.
And, we cannot precisely derive the MTBF.

Further, the conditional distribution of the number of faults remaining $N_{0}-N(t)$ given that $N(t)=i-1$

follows Poisson distribution with mean $\omega(1-F(t))$ because

$Pr\{N_{0}=n|N(t)=i-1\}=\frac{Pr\{N(t)=i-1|N_{0}=n\}Pr\{N_{0}=n\}}{\sum_{k=i-1}^{\infty}Pr\{N(t)=i-1|N_{0}=k\}Pr\{N_{0}=k\}}$

$= \frac{\{\omega(1-F(t))\}^{n-(i-1)}}{\{n-(i-1)\}!}\exp[-\omega(1-F(t))] (n\geqi-1)$ . (5)

From Eq. (5), we can see that $Pr\{N_{0}=i-1|N(t)=i-1\}=\exp[-\omega(1-F(t))]$ . This equation is the

same as Eq. (4). This implies that no additional faults are left in the software. These properties of the

NHPP models are uncomfortable for us in realistic software reliability modeling.

3 Change-Point Modeling

Now we define the following stochastic quantities being related to our modeling approach in this paper:
$X_{i}$ : the i-th software failure-occurrence time before change-point $(X_{0}=0, i=0,1,2, \cdots)$ , $S_{i}$ : the i-th

software failure-occurrence time-interval before change-point $(S_{i}=X_{i}-X_{i-1}, S_{0}=0, i=1,2, \cdots)$ ,
$Y_{i}$ : the i-th software failure-occurrence time after change-point $(Y_{0}=0, i=0,1,2, \cdots)$ , $T_{i}$ : the i-th

software failure-occurrence time-interval after change-point $(T_{i}=Y_{i}-Y_{i-1}, T_{0}=0, i=1,2, \cdots)$ .
We assume that the stochastic quantities before and those after change-point have the following rela-

tionships: $Y_{i}=\alpha(X_{i})$ , $T_{i}=\alpha(S_{i})$ , $J_{i}(\alpha^{-1}(t))=K_{i}(t)$ , respectively, where $\alpha(t)$ is a testing-environmental

function representing the relationship between the stochastic quantities of the software failure-occurrence

times or time-intervals before change-point and those after change-point, $J_{i}(t)$ and $K_{i}(t)$ the probability

distribution functions with respect to the random variables $S_{i}$ and $T_{i}$ , respectively. In our change-point

modeling, we assume that the testing-environmental function is given as $\alpha(t)=at$ $(\alpha>0)$ , where $\alpha$ is

the proportional constant representing the relative magnitude of the effect of change-point on the software
reliability growth process. Suppose that $n$ faults have been detected up to change-point and their fault-

detection times from the test-beginning $(t=0)$ have been observed as $0<x_{1}<x_{2}<\cdots<x_{n}<\tau$ , where
$\tau$ represents change-point. Then, the probability distribution function of $T_{1}$ , a random variable repre-

senting the time-interval from the change point to the l-st software failure-occurrence after change-point,

can be derived as

$\overline{K}_{1}(t)\equiv Pr\{T_{1}>t\}=\frac{Pr\{S_{n+1}>\tau-x_{n}+t/\alpha\}}{Pr\{S_{n+1}>\tau-x_{n}\}}$

$= \frac{\exp[-\{\Lambda_{B}(\tau+t/\alpha)-\Lambda_{B}(x_{n})\}]}{\exp[-\Lambda_{B}(\tau)-\Lambda_{B}(x_{n})]}$ , (6)
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where $\overline{K}_{1}(t)$ indicates the cofunction of the probability distribution function $K_{1}(t)\equiv Pr\{T_{1}\leq t\}$ , i.e.,
$\overline{K}_{1}(t)\equiv 1-K_{1}(t)$ , and $\Lambda_{B}(t)(\equiv\omega K_{1}(t))$ represents the expected number of faults detected up to change-

point, i.e., a mean value function for the NHPP before change-point. From Eq. (6), the expected number

of faults detected up to $t\in(\tau, \infty]$ after $change-$point, $M_{A}(t)$ , can be formulated as

$\Lambda_{A}(t)=-\log Pr\{T_{1}>t-\tau\}=-\log\overline{K}_{1}(t-\tau)$

$= \Lambda_{B}(\tau+\frac{t-\tau}{\alpha})-\Lambda_{B}(\tau)$ . (7)

Then, the expected number of faults detected up to testing-time $t(t\in(0, \infty], 0<\tau<t)$ $[3]$ can be

derived as

$\Lambda(t)=\{\begin{array}{ll}\Lambda_{1}(t)=\Lambda_{B}(t) (0\leq t\leq\tau) \Lambda_{2}(t)=\Lambda_{B}(\tau)+\Lambda_{A}(t)=\Lambda_{B}(\tau+\frac{t-\tau}{\alpha}) (\tau<t) .\end{array}$ (S)

From Eq. (8), we can see that an NHPP-based software reliability growth model with change-point can

be developed by assuming a suitable probability distribution function for the software failure-occurrence

time before change-point.

4 Mending NHPP Models

Grottke and Rivedi [1] considered to use the zero-truncated Poisson distribution:

$Pr\{N_{0}=n|N_{0}>0\}=\frac{Pr\{N_{0}=n,N_{0}>0\}}{Pr\{N_{0}>0\}}=\frac{\omega^{n}}{n!}\frac{e^{-\omega}}{1-e^{-\omega}}$ $(n=1,2, \cdots)$ , (9)

where $N_{0}$ follows Poisson distribution with mean $\omega$ , for the probability distribution of the initial fault

content. Applying Eq. (9) to Eq. (1), we have

$\{\begin{array}{ll}Pr\{N(t)=0\}=\frac{\exp[\omega(1-F(t)]-1}{e^{\omega}-1}, Pr\{N(t)=m\}=\frac{\{\omega F(t)\}^{m}}{m!}\frac{e^{-\omega F(t)}}{1-e^{-\omega}} (m=1,2, \cdots) .\end{array}$ (10)

And the mean value function $A(t)$ can be derived as

$\Lambda(t)=\sum_{m=1}^{\infty}m\frac{\{\omega F(t)\}^{m}}{m!}\frac{e^{-\omega F(t)}}{1-e^{-\omega}}=\frac{\omega F(t)}{1-e^{-\omega}}$ . (11)

Eqs. (10) and (11) are called the first-stage truncated model from the point of view of CTMC software

reliability modeling. Actually, the probability distribution of the first software failure-occurrence time

satisfies: $G_{X_{1}}(0|0)=0$ and $G_{X_{1}}(\infty|0)=1$ because

$R_{X_{1}}(x|0, N(0)=0)= \frac{\exp[\omega(1-F(x))]-1}{e^{\omega}-1}$ . (12)

And the hazard rates for the $X_{2},$ $X_{3},$ $\cdots$ are $\omega f(t)$ , which means the probability distribution of the other

software failure time-interval are defective.

For developing the all-stage truncated model, Grottke and Rivedi [1] considers the conditional proba-

258



bility distribution of $N_{0}|N(t)=i-1$ in Eq. (5). Substituting Eq. (9) into Eq. (5), we have

$Pr\{N_{0}=n|N(t)=i-1\}$

$= \frac{Pr\{N(t)=i-1|N_{0}=n\}Pr\{N_{0}=n\}}{\sum_{k=i-}^{\infty}{}_{1}Pr\{N(t)=i-1|N_{0}=k\}Pr\{N_{0}=k\}}$

$=[ (\begin{array}{l}ni-1\end{array})F(t)^{i-1}\{1-F(t)\}^{n-(i-1)}\frac{\omega^{n}}{n!}\frac{e^{-\omega}}{1-e^{-\omega}}]$

$/[ \sum_{k=i-1}^{\infty}(\begin{array}{l}ki-1\end{array})F(t)^{i-1}\{1-F(t)\}^{k-(i-1)}\frac{\omega^{k}}{k!}\frac{e^{-\omega}}{1-e^{-\omega}}]$

$= \frac{\{\omega(1-F(t))\}^{n-(i-1)}}{(n-(i-1))!}\frac{1}{\exp[\omega(1-F(t))]-1}$ $(n\geq i-1)$ . (13)

We should note that

$Pr\{N_{0}=n|N(0)=0\}=\underline{\omega^{n}}\underline{e^{-\omega}}$

(14)
$n!1-e^{-\omega}$ ’

which is the same as Eq. (9), when $i-1=0$ and $t=0$ in Eq. (13). Further, the software reliability
function for the all-stage truncated model can be obtained as

$R(x|t, N(t)=i-1)$

$= \sum_{n=i}^{\infty}Pr\{N(t+x)-N(t)=0|N_{0}=n, N(t)=i-1\}Pr\{N_{0}=n|N(t)=i-1\}$

$= \sum_{i=n}^{\infty}\{\frac{1-F(t+x)}{1-F(t)}\}^{n-(i-1)}\frac{\{\omega(1-F(t))\}^{n-(i-1)}}{(n-(i-1))!}\frac{1}{\exp[\omega(1-F(t))]-1}$

$= \frac{\exp[\omega(1-F(t+x))]-1}{\exp[\omega(1-F(t))]-1}$ $(n\geq i-1)$ . (15)

We should note that Eq. (15) tends to zero for $xarrow\infty$ and tends to 1 for $xarrow 0$ . Eq. (15) implies
that at least one faults will be eventually detected during infinite testing-time because the probability
distributions of the software failure-occurrence time-interval are non-defective or proper.

5 Mending Change-Point Models

In the all-stage truncated NHPP model, in which the all transition rates are identical, we can derive
the mean value function by using the following equation:

$\Lambda(t)=-\ln[R(x|0, N(0)=0)]=\ln[\frac{e^{\omega}-1}{\exp[\omega(1-F(t))]-1}]$ . (16)

In Eq. (16), we can see $\Lambda(t)arrow\infty$ for $tarrow\infty.$

We can derive a mean value function after change-point for the all-stage truncated change-point model
as

$\Lambda_{A}(t)=\Lambda_{B}(\tau+\frac{t-\tau}{\alpha})-\Lambda_{B}(\tau)$

$= \ln[\frac{e^{\omega}-1}{\exp[\omega\{1-F(\tau+\frac{t-\tau}{\beta})\}]-1}]-\ln[\frac{e^{\omega}-1}{\exp[\omega\{1-F(\tau)\})]-1}]$ , (17)

by substituting Eq. (16) into Eq. (7). Then, we have the all-stage truncated change-point model as

$\Lambda(t)=\{\Lambda_{2}(t)\Lambda_{1}(t)=\ln=\ln[_{\frac{\frac{}{}\exp[\omega\{1e^{\omega}--F1(t)\}]-1](e^{\omega}-1}{\exp[\omega\{1-F(\tau+\frac{t-\tau}{\beta})\}]-1}](\tau<t)}0\leq t\leq\tau),$

,
(18)
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Testing Time(number of days)

Fig 1 : Estimated MTBF with the effect of change-point, $MT\hat{B}F(t)$ . $(\tau=17)$

from Eqs. (8) and (17).

6 Numerical Examples

We show numerical examples of application of our change-point modeling to software reliability assess-

ment by using actual fault counting data: $(t_{k}, y_{k})(k=0,1,2, \cdots, 21;t_{21}=21 ($days) , $y_{21}=39;\tau_{1}=17)$ .

This actual data was fault counting data collected from actual testing-phases for the Windows version

software and the change-point was generated by changing the tester and increasing the test personnel.

As one of the examples, we now develop an all-stage truncated change-point model in which the software

failure-occurrence time distribution follows an exponential distribution: $F(t)=1-\exp[-bt]$ . This model

can be derived as

$\Lambda(t)=\{\Lambda_{1}(t)=\Lambda_{2}(t)=\ln\ln\ovalbox{\tt\small REJECT}\frac{\frac{}{}\exp[\omega ee^{\omega}xp-[-1bt]]-1](0\leq e^{\omega}-1}{\exp[\omega\exp\{-b(\tau+\frac{t-\tau}{\beta})\}]-1}]^{t}\leq\tau)(\tau<t)$

,
(19)

based on the modeling framework in Eq. (18).

Applying the actual data mentioned above, we estimate the parameters $\omega,$
$b$ , and $\beta$ by using the

method of maximum likelihood based on the NHPP. Consequently, we respectively obtained $\hat{\omega}=39.5061,$

$\hat{b}=0.1147$ , and $\hat{\beta}=0.2516$ , in which $\hat{\omega},$

$\hat{b}$, and $\hat{\beta}$ are the estimations of $\omega,$
$b$ , and $\beta$ , respectively. Fig. 1

show the time-dependent behavior of the estimated MTBF, which is derived by

MTBF$(t)= \int_{0}^{\infty}R(x|t)dx$ , (20)

by using Eq. (15). For comparing the time-dependent behavior of MTBF with it of the cumulative

MTBF, which is widely applied as the substitution of the MTBF in the conventional NHPP models,

we additionally show the time-dependent behavior of the estimated cumulative MTBF in Fig. 2. The

cumulative MTBF is calculated as $MTBF_{C}(t)=t/\Lambda(t)$ . From Figs. 1 and 2, we can say that the

time-dependent behaviors of the MTBF and the cumulative MTBF are obviously different each other.

This implies the importance of applying the proper MTBF to software reliability assessment. Actually,

$M\overline{TB}F(21)=1.726$ (days) and $M\overline{TB}F_{C}(21)=0.537$ (days). From these results, we can say that the

cumulative MTBF does not work well as the substitution measure for the MTBF.

7 Conclusion

Our change-point model has a useful properties that the probability distributions of the software failure-

occurrence time-interval are non-defective and we can analytically derive the proper MTBF, which is
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Testing Time(number of days)

Fig 2 : Estimated cumulative MTBF with the effect of change-point, $MT\hat{BF}_{C}(t)$ . $(\tau=17)$

one of the typical reliability assessment measures. Change-point models proposed so far do not have

such useful properties. Further we showed numerical examples of application of our all-stage truncated

change-point model to software reliability assessment by using actual fault counting data. Especially, we
compared the time-dependent behaviors of the cumulative MTBF and the proper MTBF, and obviously

showed their differences. In our further studies, we need to check the fitting and predictive performances

of our all-stage truncated change-point model by applying a lot of actual data.
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