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1 Introduction

Suppose that there are $2n$ atoms of hydrogen and $n$

of oxygen, without any control form outside, they
move adaptively and form $n$ molecules of water,
each of which consists of 2 atoms of hydrogen and
1 of oxygen. In the same way, consider a robot sys-
tem consisting of heterogeneous robots, each robot
executes an algorithm and moves adaptively based
on the movement of other robots, so that as a whole
robots will form some teams, each of which consists
of specific types and specific numbers of robots.
This process can be cahed team assembling by het-
erogeneous mobile robots.

The team assembling problem by heterogeneous
mobile robots is to design a distributed algorithm
that is executed on each robot to navigate it so that
the robots as a whole eventually form some teams,
each of which satisfies a given team specification
defined by the number of members for each type.

This paper newly introduces and investigates the
team assembling problem by a set of heterogeneous,
asynchronous robots. We denote the heterogeneity
by multiple colors of robots in this paper.
We provide a distributed algorithm $\phi$ that solves

the team assembling problem through two phases:
it first makes all robots form a circle to reduce the
problem into an easier problem of team assembling,
then it selects $l$ team leaders to assemble a team at
each of the leaders’ positions. Moreover, we show
a necessary condition that team assembling prob-
lem is solvable only if $GCD(a_{1}, a_{2}, \cdots, a_{k})=1,$

where $GCD$ denotes the greatest common divisor,
and $a_{i}\in N(1\leq i\leq k)$ , denotes the number of
robots of color $c_{i}$ in each team.
Related work The pattern formation problem by
homogeneous robots has been discussed extensively
in the previous research, in which robots must ar-
range themselves to form a given geometric pattern
$F$ from an initial configuration $I$ in a finite num-

ber of steps. Based on the pattern formation prob-
lem, we increase the types of robots, robots of each
type form the same geometric pattern respectively.
If these geometric patterns overlap (positions of
robots) completely, this can be considered as the
team assembling problem by heterogeneous robots.
Moreover, the symmetry breaking is the main diffi-
culty in both of them. The method of breaking the
symmetry in the pattern formation problem can be
applied in the team assembling problem. Thus, the
investigation on the pattern formation problem and
its related problems is vital.

Suzuki and Yamashita [3] first proposed a com-
putational model of autonomous mobile robots,
and they showed that a geometric pattern $F$ is
formable by non-oblivious robots from the initial
configuration $I$ if and only if the symmetricity of
$I$ divides that of $F$ . For oblivious robots, Fuji-
naga et al. [1] showed embedded pattern formation
problem is solvable by asynchronous robots through
the optimum matching between the robots and the
pattern’s points, where they assumed that the pat-
tern’s points are visible to ah robots. Then, in [2],
Fnjinaga et al. showed that the pattern formation
problem by oblivious robots in the asynchronous
model is formable if the symmetricity of $I$ divides
that of $F,$ $I$ and $F$ do not contain multiplicities
(thus this result also holds for the semi-synchronous
model and the fuhy synchronous model).

The rest of this paper is orgamzed as follows: In
section 2, we introduce our model of robots. In
section 3, we formally define the problem of team
assembling, and show our main result on this prob-
lem. In section 4, we present the algorithm and the
necessary condition of team assembling. At last,
we conclude this paper in section 5.
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2 System Model

The system consists of a set of heterogeneous robots
in a -dimentional Euclidean plane, where each
robot is modeled as a colored point. Let $C=$

$\{c_{1}, c_{2}, \cdots, c_{k}\}(k>1)$ be a set of $k$ colors and
$R=\{r_{1}, r_{2}, \cdots, r_{\mathfrak{n}}\}$ be a set of $n$ robots. We intro-
duce a function $c$ on $r$: for all $i=1$ , 2, $\cdots,$ $n$ , such
that $c:Rarrow C(1\leq j\leq k, c_{j}\in C)$ . The robots are
heterogeneous in the sense by (1) the robots can
identifY the colors of all robots, (2) there is no way
to identify robots of the same color (we use $r_{i}$ just
for notation), and (3) the robots of the same color
execute the same algorithm.

Let $Z_{0}$ be the global $x-y$ coordinate system.
Each robot $r$: does not know the global coordi-
nate system, however, each robot $r$: has its own
local $x-y$ coordinate system $Z_{i}$ , where the origin
of the local coordinate system is the current po
sition of $r_{i}$ , and the unit distance never change.
We assume that $Z_{0}$ and $Z_{i}’s$ are all right-handed.
Hence, the robots have the sense of clockwise and
counter-clockwise directions. Let $p_{1}(t)\in \mathbb{R}^{2}$ be
the location of robot $r$, (in $Z_{0}$ ) at time $t$ , where
$\mathbb{R}$ is the set of real numbers. Then the multiset
$C(t)=\{(p_{1}(t), c(r_{1}))|r.$ $\in R\}$ is called the configu-
ration at time $t$ . The occurrences of an element is
caJled its multiplicity.
Each robot repeats a Look-Compute-Move cycle.

In a Look phase, the robot obtains the positions
and colors of other robots in its local coordinate
system, in a Compute phase, it computes its next
location and track to the next location with a given
algorithm, and in a Move phase, it moves to the
next location along the computed track.
We consider discrete time $0$ , 1, . . .. Then an

infinite sequence $\mathcal{E}$ : $C(O)$ , $C(1)$ , $\cdots$ is called an
execution with an initial configuration $I=C(O)$ .
We assume that $I$ does not contain multiplicities,
i.e., all elements in $C(O)$ are distinct.
With respect to the activation schedule model,

three main models have been discussed in the liter-
atures, i.e., the fully synchronous model, the semi-
synchronous model and the asynchronous model. In
the fully synchronous model (FSYNC), all robots
synchronously execute a Look ComputeMove cy-
cle at each discrete time $0$ , 1, . . .. In the $asy\mathfrak{n}-$

chronous model (ASYNC), robots asynchronously
execute each of their Look, Compute, Move phases,
which may be interleaved. For instance, a robot

may finish the Look phase but another robot may
just start its Look phase. The semi-asynchronous
model (SSYNC) is a particular model between
fully synchronous model and asynchronous model,
in which some robots may not start their Look-
ComputeMove cycle, but all of those who start
the cycle synchronously execute each of its Look,
Compute and Move at each discrete time $0$ , 1, . . ..
In our paper we consider an asynchronous model
(ASYNCH).

3 Problem definition and ter-
minology

3.1 Problem definition

We call a $k$-tuple $A=(a_{1}, a_{2}, \cdots, a_{k})$ a specifi-
cation of a team. Given a specification $A$ and an $l$

$(l\in N)$ , voe say that an algorithm $\phi$ solves the team
assembling problem from any initial configuration
$C(O)$ of a set of robots $R=\{r_{1}, r_{2}, \cdots, r_{n}\}$ such
that $|\{r_{i}|c(r_{1})=c_{j}\}|=l\cdot a_{j}$ for any $j=1$ , 2, $\cdots,$

$k,$

if for any execution $\mathcal{E}$ : $C(O)$ , $C(1)$ , $\cdots$ , there is
a time instant $t_{0}$ such that for any $t(t\geq t_{0})$ ,
(1) $C(t)=C(t_{0})$ and (2) there exists $l$ distinct
points $q_{1},$ $q_{2},$ $\cdots,$ $q_{l}$ in $C(t)$ , and for each point $q_{f}$

$(1\leq f\leq l)$ , $|\{r_{1}|p_{i}(t)=q_{f}, c(r_{i})=c_{h}\}|=a_{h}$ holds
for $aJ1h(1\leq h\leq k)$ .

3.2 Terminology and Main result

The lexicographic order. Let a word be a se-
quence of positive numbers. The lexicogruphic
order on two words $X=x_{1}x_{2}\cdots x_{\mathfrak{n}}$ and $Y=$

$y_{1}y_{2}\cdots y_{n}$ is the relation defined by $X<Y$ if and
only if there is a positive integer $t(t\leq n)$ such that
$x_{1}=y_{l}$ and $x_{t+1}<y_{t+1}$ holds for every positive in-
teger $i\leq t.$

The greatest common divisor. Let $a_{1},$ $a_{2},$ $\cdots,$

$a_{k}$ be $k$ integers, then by $GCD(a_{1}, a_{2}, \cdots, a_{k})$ ,
we denote the greatest common divisor of
$a_{1},$ $a_{2},$ $\cdots,$ $a_{k}.$

Main result In this paper, we prove the following
theorem.

Theorem 3.1. For any initial configuration I not
containing multiplicities, the team assembling prob-
lem is solvable from I by oblivious asynchronous
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robots if and only if $GCD(a_{1}, \cdots, a_{i}, \cdots, a_{k})=$

$1.$

4 Team Assembling Algo-
rithm

In this section, we provide our algorithm $\phi$ to solve
the team assembling problem in such a way that
it first navigates all robots on a circle (Cirde for-
mation), then selects $l$ distinguishable and invari-
ant robots as team leaders (Team leader selection),
finally makes all non-leader robots gather at the
positions where team leaders locate (Team assem-
bling).

4.1 Circle formation

Since the circle formation problem has been exten-
sively investigated in the previous research, we just
use the existing algorithm $\psi$ in [2] by Fujinaga et
al. Note that in our robot system robots have mul-
tiple colors, we use the existing method by ignoring
the colors.
We would like to explain an outline of algorithm

$\psi$ , which consists of four phases. Let $I$ and $F$ de-
note the initial configuration and terminal config-
uration, respectively. Phase 1 is to form a regular
$n$-gon $H$ with a radius $\mu$ smaller than $l(F)/2$ and
the center being $c(I)$ , where $l(I)$ denotes the radius
of the largest empty circle (its interior does not in-
clude a point) in $I$ , and $c(I)$ denotes the center of $I.$

Let $F’=F\backslash H$ , Phase 2 and Phase 3 are to roughly
solve the formation problem for $F’$ , by invoking the
modified CWM (clockwise matching). In Phase 4,
the robots in $H$ resume their correct positions.

4.2 Team leader selection

In this subsection, we start with a configuration $I’$

where all robots locate on the circumference of the
smallest enclosing circle, i.e., the output of circle
formation. Firstly, we describe each robot $r_{i}’s10-$

cal view through its own local x-y coordinate, and
show that all robots’s local views can be ordered
globally, irrespective of the coordinate system of
each $r_{0}$ . Using the total order, we provide an $alg\sigma-$

rithm $A_{p}$ to select $l$ distinguishable team leaders.

Local view. Without loss of generality, we as-
sume that $R=\{r_{1}, r_{2}, \cdots, r_{\mathfrak{n}}\}$ appear clockwise
on circumference. Let $p_{1},p_{2},$ $p_{n}$ be the loca-
tions of these robots, and $c(r_{1})$ , $c(r_{2})$ , $\cdots,$ $c(r_{n})$ be
the colors of these robots. For any two points $p$:
and $p_{j}$ , we denote the length of arc $p_{i}p_{j}$ from $p_{i}$

to $p_{j}$ in the clockwise direction by $\ell(p_{i},p_{j})$ , and
let $\ell_{i}=\ell(p_{i},p_{(i+1)})$ . Thus, a distance tuple $L_{i}=$

$(\ell_{i}, \ell_{(i+1)}, \cdots,\ell_{(i-1)})$ denotes the distance distribu-
tion for $r_{i}$ . Note that, though the unit distance of
the coordinate system of each robot is arbitrary, all
robots can agree the ordering of all $L_{i}’s$ . Moreover,
let $Col_{i}=(c(r_{i}), c(r_{(i+1)}), \cdots, c(r_{(i-1)}))$ . $Col_{i}$

means the colors distribution for $r_{\dot{t}}$ . Thus, for each
robot $r_{i}$ , its local view is $\Phi_{i}=(L_{i}, Col_{i})$ . Roughly,
$\Phi_{\iota}$ means the distribution of colored points around
$c(P)$ starting from $r_{i}.$

The total order. We apply the lexicographic or-
der to $\Phi_{i}$ , i.e., (1) $\Phi_{i}<\Phi_{i’}$ holds if and only
if $L_{i}<L_{i’}$ , or $L_{i}=L_{i’}$ and $Col_{i}<Col_{i’}$ ;
(2) $\Phi_{i}=\Phi_{i’}$ holds if and only if $L_{i}=L_{i’}$ and
$Col_{i}=Col_{i’}$ , in which we consider color $c_{j}$ as inte
ger $j$ . As shown in Fig 1, since $\ell_{1}$ is larger than $\ell_{i}$

for any $i=2$, 3, $\cdots$ , 15, we have $L_{1}$ is larger than
$L_{i}$ for any $i=2$ , 3, $\cdots$ , 15, furthermore, $\Phi_{1}$ is the
largest globally. The following Lemma 4.1 show
that each robot can obtain all robots’s local views,
which implies that the global order also adapts to
each robot $r_{i}.$

Lemma 4.1. Each robot $r_{i}$ can obtain all robots’s
local views irrespective of its local coordinate sys-
$tem,$

$\Gamma eam$ leader selection algorithm $A_{p}$ . Without
loss of generality, we assume that $r_{1}$ has the largest
local view and $c(r_{1})=c_{k}$ (if $\ell_{1}>\ell_{i}$ for all $i=$

$2$ , 3, $\cdots,$ $n$ , we use $c(r_{1})=c_{k}$ just for the purpose of
description, if $\ell_{1}=\ell_{2}=\cdots=\ell_{n},$ $c(r_{1})=c_{k}$ holds
actually). Algoritlml $A_{p}$ executes in the following
sense: starting from a robot with the same local
view of $r_{1}$ (the largest local view), $A_{p}$ picks up a
robot in every $a_{k}$ robots from all robots of color $c_{k},$

as team leaders. For example, given $A=(1,4)$ and
$l=3$ , in Fig 1, starting from $r_{1},$ $A_{r}$ picks up a robot
in every 4 robots from all black $(c_{2})$ robots, i.e.,
$r_{1},$ $r_{6},$ $r_{11}$ , as team leaders. We consider such $l$ team
leader robots distinguishable since the definition of
the largest local view.
Note that since there may be multiple robots

with the largest local view, $A_{p}$ may start from
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Figure 1: $\ell_{1}$ is larger than $\ell$ for any $i$ $=$

$2$ , 3, $\cdots$ , 15.

other robot other than $r_{1}$ . Actually, starting from
whichever of robots with the largest local view,
team leader robots selected by $A_{r}$ are invariant if
$GCD(a_{1}, a_{2}, \cdots, a_{k})=1$ . The following Lemma
4.2 shows the result.

Lemma 4.2. $A_{p}$ selects $l$ invariant team leader
robots if $GCD(a_{1}, a_{2}, \cdots, a_{k})=1.$

4.3 Team assembling

In this section, we introduce an oblivious algorithm
$\phi$ to solve the team assembling problem in the fol-
lowing procedure: each robot $r_{i}$ firstly confirms the
team leaders by $A_{r}$ . If $r_{1}$ is a team leader robot, it
stops at position where it locates initially, otherwise
$r_{1}$ moves until it stops at a position where the team
leader locates through four phases, whose terminal
configurations are $F_{1},$ $F_{2},$ $F_{3}$ and $F_{4}$ respectively.
For each phase, we show that team leaders selected
by $A_{p}$ never change during or after the movement
of non-leader robots.
Configuration $F_{1}$ : Let $q_{1},$ $q_{2},$ $\cdots,$ $q_{l}$ be locations
where team leaders locate, and $\xi_{1}$ be the middle
point of the arc $q_{1}q_{(i+1)}$ for $i=1$ , 2, $\cdots,$

$l$ , where
$q_{(l+1)}=q_{1}.$

$F_{1}$ is such a configuration that all non-

leader robots locate on the arcs $\xi_{1}q_{(:+1)}$ clockwise.
Let $\epsilon$ be a sufficiently small number, we consider

it is less than $l_{i}$ for any $i=1$ , 2, $\cdots,$ $n$ . Algorithm
1 (the first phase of $\phi$ ) describes the formation of
$F_{1}$ staring form $I’.$

Algorithm 1 (for a non-leader robot $r_{1}$ )

if $r_{1}$ is active then
$r_{1}$ moves toward $r_{i+1}$ along the circumference
clockwise until $\ell_{i}=\epsilon$ , where $i$ is the small-
est integer such that $\ell_{i}>\epsilon$ holds in each arc
$q:q_{(i+1)}.$

else
stay still

end if

Lemma 4.3. Algorithm 1 can form configuration
$F_{1}.$

Proof. We give an example to explain the correct-
ness. As shown in Fig 1, since $r_{1},$ $r_{6},$ $r_{11}$ are team
leaders, $i=2$ , 7, 12 are the smallest subscript such
that $\iota_{:}>\epsilon$ in each leaders interval. Suppose that
only non-leader robot $r_{7}$ is active, Algorithm 1 or-
ders $r_{7}$ to move towards $r_{8}$ until $\ell_{7}=\epsilon$ in the
clockwise direction. Then $r_{8}$ moves towards $r_{9}$ until
$\ell_{8}=\epsilon$ . Such executing continues until $r_{7}$ pass $\xi_{3}.$

Even though at a time instant, $\ell_{6}>\ell_{1}$ may hold,
team leaders selected by $A_{r}$ never change. $\square$

Configuration $F_{2}$ : $F_{2}$ is such a $configur_{\wedge}$ation

that all non-leader robots locate on the arcs $\xi_{1}q_{(:+1)}$

for all $i=1$ , 2, $\cdots,$
$l$ , where $q_{(l+1)}=q_{1}$ , and all $c_{k}$

color robots locate on positions $q_{1},$ $q_{2},$ $\cdots$ , $q_{l}$ such
that $|\{r_{i}|c(r_{1})=c_{k},p(r_{1})=q_{f}, 1\leq f\leq l\}|=a_{k}$

holds.
Algorithm 2 (the second phase of $\phi$) describes

the formation of $F_{2}.$

Lemma 4.4. Algorithm 2 can $fom\iota$ configuration
$F_{2}.$

Proof. Point: since all non-leader robots locate on
the second haves of each $q_{i}q_{(i+1)}$ , any two non-
leader robots will never leave an empty arc greater
than $q_{1}q_{(i+1)}^{\wedge}/2.$ $\square$

Configuration $F_{3}$ : $F_{3}$ is such a configuration
that all robots of color $c_{k}$ gather at positions where
leaders locate with the requirement of $|\{r_{i}|c(r_{1})=$

$c_{k},p(r_{1})=q_{f},$ $1\leq f\leq l\}|=a_{k}$ , and in each
$q:q_{(:+1)}$ , robots of other colors meet the team
specification in number, i.e., $|\{r_{1}|c(r_{i})=c_{j},$ $r_{1}\in$

$q_{f}q_{(f+1)}^{\wedge},$ $1\leq f\leq l\}|=a_{j}$ for all $j=1$ , 2, $\cdots,$ $(k-$

1) holds, where $q_{(l+1)}=q_{1}.$
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$\frac{A1gorithm2(foranon-1eaderrobotr_{i})}{ifr_{i}observesthatF_{1}isformedthen}$

if $r_{i}$ is a robot of color $c_{i}$ for any $i$ $=$

$1$ , 2, $\cdots,$ $(k-1)$ then
it stops moving

end if
if $r_{i}$ is a robot of color $c_{k}$ then

it moves towards and gathers at position
where team leader locate clockwise, during
which if there are robots of the same color
$c_{k}$ on its way, $r_{i}$ stops moving, otherwise, $r_{i}$

moves to its destination.
end if

else
it executes Algorithm 1.

end if

Algorithm 3 (the third phase of $\phi$ ) describes the
formation of $F_{3}.$

Algorithm 3 (for a non-leader robot $r_{i}$ )

if $r_{i}$ observes that $F_{2}$ is formed then
if $r_{i}$ is a robot of color $c_{k}$ then

it stops moving.
end if
if $r_{i}$ is a robot of color $c_{j}$ for any $j$ $=$

$1$ , 2, ) $(k-1)$ then
it executes the following
if $|\{r_{h}|r_{h}\in p_{i}\hat{q}_{f},$ $c(r_{h})=c(r_{i})=c_{j},$ $1\leq j\leq$

$(k-1)\}|>a_{J}\prime$ , where $q_{f}$ is the position of
the nearest leader clockwise. then

$r_{i}$ moves counter clockwise until it passes
$q_{(f-1)}.$

end if
end if

else
it executes Algorithm 2.

end if

Lemma 4.5. Algorithm 3 can form configuration
$F_{3}.$

Proof. Point: since robots are heterogeneous, they
can identify the color $(i.e., c_{k})$ of team leaders, and
all $c_{k}$ color robots locate at locations where leaders
locate, which results in no leader candidates left,

The team leader robots can be identified by color
simply. $\square$

Configuration $F_{4}$ : $F_{4}$ is such a configuration
that for each point $q_{f}(1\leq f\leq l)$ , $|\{r_{i}|p(r_{i})=$

$q_{f},$ $c(r_{i})=c_{h}\}|=a_{h}$ for all $h(1\leq h\leq k)$ . That is,
$F_{4}$ is the terminal configuration in our paper.
Algorithm 4 (the fourth phase of $\phi$) describes the

formation of $F_{4}.$

$\frac{A1gori\mathfrak{t}hm4(foranon-1eaderrobotr_{i})}{ifr_{i}observesthatF_{3}isformedthen}$

if $r_{i}$ is a $c_{k}$ color robot then
it stops moving.

end if
if $r_{i}$ is a $c_{j}$ color robot for any $j$ $=$

$1$ , 2, $\cdot$ , $(k-1)$ then
it moves towards the position where team
leader locate clockwise, until it reaches it.

end if
else

it executes Algorithm 3.
end if

Lemma 4.6. Algorithm 4 can form configuration
$F_{4}.$

4.4 Necessary condition

Lemma 4.7. There exists an initial configura-
tion, form which robots can not assemble $l$ teams

if $GCD(a_{1}, a_{2}, \cdots, a_{k})>1$ by any oblivious algo-
rithm.

Proof. We give an example to explain the correct-
ness. Consider the case with $A=(2,2)$ and $l=2,$

as shown in Fig 2. Since robots $r_{1},$ $r_{3},$ $r_{5},$ $r_{7}$ have
the same color and they locate on the vertex of a
regular 4-gon, there is no way to arrange 2 robots
from them to be in one team. This factor also holds
for the robots $r_{2},$ $r_{4},$ $r_{6},$ $r_{8}$ of other color. $\square$

5 Conclusion

In this paper, we showed an oblivious algorithm
$\phi$ to solve the team assembling problem by het-
erogeneous, mobile, and asynchronous robots with
the condition $GCD(a_{1}, a_{2}, \cdots, a_{k})=1$ , from Circle
formation, Team leader selection and Team assem-
bling.
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Figure 2: $\ell_{1}=\ell_{2}=\cdots=\ell_{8}.$
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