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1. INTRODUCTION

We start with recalling the notion of nonsingular random dynamical sys-
tem with stationary noise. Let $(X, \mathcal{B}, m)$ be a Lebesgue space (i.e. it is mea-
surably isomorphic to the unit interval with the Lebesgue measure) and let
$\{\tau_{s}\}_{s\in S}$ be a family of $m$-nonsingular transformations on $(X, \mathcal{B}, m)$ indexed
by a polish space $(S, \mathcal{B}(S))$ such that the map $S\cross X\ni(s, x)\mapsto\tau_{s}x\in X$

is $(\mathcal{B}(S)\cross \mathcal{B})/\mathcal{B}$-measurable. Let $(\Omega, \mathcal{F}, P)$ be a probability space and
$\sigma$ : $\Omegaarrow\Omega$ a $P$-preserving transformation. Take an $S$-valued random
variable $\xi$ on $(\Omega, \mathcal{F}, P)$ and define an $S$-valued stationary process $\{\xi_{n}\}_{n=1}^{\infty}$

by $\xi_{n}=\xi 0\sigma^{n-1}(n\in \mathbb{N})$ . We consider the family of random maps
$X_{n}$ : $Xarrow X$ given by

(1.1) $X_{0}(\omega)x=x, X_{n+1}(\omega)x=\tau_{\xi_{n+1}(\omega)}X_{n}(\omega)x (n\geq 0)$

for $(x, \omega)\in X\cross\Omega$ and call it the random dynamical system with respect to
$(\Omega, \mathcal{F}, P, \sigma, \{\tau_{s}\}_{s\in S}, \xi)$ . As in Morita [7] (see also [5] and [8]), we introduce
a skew product transformation $T$ : $X\cross\Omegaarrow X\cross\Omega$ defined by

(1.2) $T(x,\omega)=(X_{1}(\omega)x, \sigma\omega) f_{Q}r(x, \omega)\in X\cross\Omega.$

It is easy to see that $T$ is an $(m\cross P)$-nonsingular transformation. The
relation between the asymptotic behavior of the random dynamical sys-
tem $X_{n}$ with respect to the reference measure $m$ and the ergodic-theoretic
properties of the skew product transformation $T$ with restpect to $m\cross P$

are studied in [5], [7], and [8].
The first aim of this article is to give some improvements of the results

on one-dimensional random dynamical systems in the paper [7] obtained
by the author. The other aim is to make remarks on S. R. B. measures
and a sort of sample-wise central limit theorem for general cases.
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2. ERGODIC PROPERTIES OF SKEW PRODUCT TRANSFORMATIONS

CORRESPONDING TO ONE-DIMENSIONAL RANDOM DYNAMICAL

SYSTEMS

In this section we consider the case when $X=[0$ , 1 $]$ and each $\tau_{s}$ is a
generalized Lasota-Yorke map (GLY map for short). An almost everywhere
defined map $\tau$ : $[0, 1]arrow[0$ , 1$]$ is called a GLT map if there exists a family
$\mathcal{P}$ of closed intervals with nonempty interior and a family $\{\tau_{J} : J\in \mathcal{P}\}$ of
maps of class $C^{2}$ satisfying the following.

$(\tau.1)$ int $J\cap$ int $K=\emptyset$ for $J,$ $K\in \mathcal{P}$ with $J\neq K$ and $m([ O, 1]\backslash \bigcup_{J\in \mathcal{P}}J)=$

O.

( $\tau$ ,2)(regularity) $\tau_{J}|_{intJ}=\tau|_{intJ}$ for each $J\in \mathcal{P}.$

( $\tau$ .3)(finiteness) $\#\{K:K=\tau_{J}J\}<+\infty.$

$(\tau.4)$ (non-degeneracy) $d( \tau)=\inf_{J\in \mathcal{P}}\inf_{x\in J}|D\tau_{J}(x)|>0$ , where $Df$ de-
notes the derivative of $f.$

$|D^{2}\tau_{J}(x)|$

( $\tau$ .5)(finite distorsion) $R( \tau)=\sup_{J\in \mathcal{P}}\sup_{x\in J}(D\tau_{J}(x))^{2}<+\infty.$

The quantities $d(\tau)$ and $R(\tau)$ are depending only on $\tau$ and independent
of the choice of $\mathcal{P}$ . For a GLY map $\tau,$

$\mathcal{P}(\tau)$ denotes the minimal family
in the sense of refinement of measurable partition satisfying the conditions
above. Note that the set of GLY maps is closed under composition. Put
$\triangle(\tau)=\min\{m(\tau_{J}J) : J\in \mathcal{P}(\tau)\}$ . We introduce the following.

(2.1) $\alpha(\tau)=d(\tau)^{-1}, \beta(\tau)=2(\frac{1}{\triangle(\tau)}+R(\tau))$

For the family $\{\tau_{s}\}_{s\in S}$ and for $N\in \mathbb{N}$ put

(2.2) $\alpha(s)=\alpha(\tau_{s}) , \beta_{N}(s_{N}, s_{N-1}, \mathcal{S}_{1})=\beta(\tau_{s_{N}}\circ\tau_{s_{N-1}}o . . . 0\tau_{s_{1}})$ .

Consider the following conditions.

Condition $A$

$M_{0}= \sup\{M\in[-\infty, +\infty]$ : $\sum_{n=1}^{\infty}P(\frac{1}{n}\sum_{k=1}^{n}\log\alpha(\xi_{k})\geq-M)<+\infty\}$

$>0.$
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Condition B There exists a positive integer $N>M_{0}^{-1}\log 2$ such that
$\beta_{N}(\xi_{N}, \xi_{1})$ is integrable with respect to $P$ , where $M_{0}^{-1}$ is regarded as $0$

if $M_{0}=+\infty.$

REMARK 2.1. (1) Condition A is the same as the condition (A.1) in [7].
We mention about a few examples for which more intuitive conditions are
sufficient for the validity of Condition $A$ (see [7]).

(i) If there exists $d>1$ satisfying $d(\tau_{s})\geq d$ for all $s\in S$ , then Condition
A is valid.

(ii) If $\{\xi_{n}\}$ is a strongly mixing sequence with mixing coefficient $\{\phi_{n}\}$

satisfying

$\sum_{n=1}^{\infty}n\phi(n)<\infty,$

particularly, if $\{\xi_{n}\}$ is an independent and identically distributed sequence,
then the condition

(2.3) $\int_{\Omega}\log\alpha(\xi)dP<0$

is sufficient for Condition A. For the definition of strongly mixing property
in this case see Chapter 18 in [3].

(iii) Let $\Omega$ be a compact commutative group and $P$ the normalized Haar
measure. We assume that there is an element $a\in\Omega$ such that $\{a^{n}\}_{n\in \mathbb{Z}}$

is dense in $\Omega$ . Let $\sigma$ be the rotation on $\Omega$ given by $a$ i.e. $\sigma\omega=a\omega$ for
$\omega\in\Omega$ . Let $S=\Omega$ and let $\xi$ be the identity map. If there exists a

continuous function $\varphi$ on $\Omega$ satisfying $\alpha\leq\varphi$ and $\int_{\Omega}\log\varphi dP<0$ , we see

that Condition A is satisfied.

(2) Condition $B$ is much milder than the condition (A.2) in [7] which
implies that

$\sup_{s\in S}\alpha(s)<+\infty,$ $\sup_{s\in S}\beta_{1}(s)<+\infty$ , and
$s_{1},$

$\sup_{s_{N}\in S^{N}}\beta_{N}(s_{N}, \ldots, \mathcal{S}_{1})<+\infty.$

The following theorem is a renewal version of Theorem 2.1 in [7]. About
the technical terms in ergodic theory in the below, weak-mixing, exactness,
for example, the reader can consult [11].
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THEOREM 2.2. Let $X_{n}$ be a random dynamical system with respect to
$(\Omega, \mathcal{F}, P, \sigma, \{\tau_{s}\}_{s\in S})$ such that $\{\tau_{s}\}_{s\in S}$ is a family of $GLY$ maps and let $T$

be the corresponding skew product transformation. Assume that Condition
$A$ and Condition $B$ are satisfied. Then we have the following.

(1) There exists an $(m\cross P)$ -absolutely continuous $T$ -invariant probability
measure.

(2) (a) If the $mea\mathcal{S}ure$-theoretic dynamical system $(\sigma, P)$ is ergodic, there
exists a finite number of $(m\cross P)$ -absolutely continuous $T$ -invariant proba-
bility $mea\mathcal{S}ures$ , say $Q_{1}$ , . . . , $Q_{r}$ such that the measure-theoretic dynamical
system $(T, Q_{i})$ is ergodic for each $i(1\leq i\leq r)$ and any $T$ -invariant
$(m\cross P)$ -absolutely continuous probability measure can be expressed as a
convex combination of $Q_{i}’ s.$

(b) For each $i(1\leq i\leq r)$ , we can find a finite number of disjoint
measurable subsets $L_{i,0}$ , . . . , $L_{i.N_{i}-1}$ of $[0$ , 1 $]$ $\cross\Omega$ such that $TL_{i,j}=L_{i,j+1}$

(mod $N_{i}$) and if we put $Q_{i,j}=N_{i}Q_{i}|_{L_{i,j}}$ for $j(0\leq j\leq N_{i}-1)$ , then it

is $T^{N_{i}}$ -invariant and the measure-theoretic dynamical system $(T^{N_{i}}, Q_{i,j})$ is

totally ergodic.

(c) If the measure-theoretic dynamical system $(\sigma, P)$ is weak-mixing,

then so is the measure-theoretic dynamical system $(T^{N_{i}}, Q_{i,j})$ for each pair
$(i,j)$ with $1\leq i\leq r$ and $0\leq j\leq N_{i}-1.$

(d) If the measure-theoretic dynamical system $(\sigma, P)i\mathcal{S}$ exact, then so is

the measure-theoretic dynamical system $(T^{N_{i}}, Q_{i,j})$ for each pair $(i,j)$ with
$1\leq i\leq r$ and $0\leq j\leq N_{i}-1.$

REMARK 2.3. In [7] the assertions (1) and (4) are proved provided that the
assumptions (A.1) and (A.2) are fulfilled. The assertion (3) of Theorem 2.1
in [7] is corresponding to the assertion (b) in Theorem 2.2 in the above. The
proof in [7] was carried out with the assumption of the total ergodicity of
$(\sigma, P)$ . But now we have seen that the total ergodicity is too mach stronger

than we need. The assertion (c) is novel.

Since we do not have enough space, we just restrict ourselves to state
the basic lemma which plays important roles in proving Theorem 2.2. The
detailed proof of the theorem will be given elsewhere.
For the sake of stating the basic lemma, we need the notion of Perron-

Frobenius operators for nonsingular transformations. Let $(Y, C, v)$ be a
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probability space and let $\tau$ : $Yarrow Y$ be a $\nu$-nonsingular transformation.
Then we can define a bounded linear operator $\mathcal{L}_{\tau,\nu}$ : $L^{1}(v)arrow L^{1}(\nu)$ char-
acterized by the formula

$\int_{Y}(\mathcal{L}_{\tau,\nu}f)gd\nu=\int_{Y}f(go\tau)dv$ for $f\in L^{1}(\nu)$ and $g\in L^{\infty}(\nu)$ .

One of the most important facts concerned with $\mathcal{L}_{\tau,\nu}$ is that for $h\in L^{1}(\nu)$ ,

the complex-valued measure $h\nu$ with density $h$ is $\tau$-invariant if and only if
$h$ is fixed point of $\mathcal{L}_{\tau,\nu}.$

We also need the notion of total variation of Lebesgue measurable func-
tion on the interval. For a Lebesgue measurable function $f$ on $[0$ , 1 $]$ , we

put $\vee f=\inf\vee\tilde{f}\sim$ , where the infimum is taken over all the versions of $f$

$and\vee\tilde{f}\sim$ denotes the total variation of $\tilde{f}.$

In what follows we assume that Condition A and Condition B. Choose $\delta$

satisfying $2e^{-NM_{0}}<\delta<1$ , where $M_{0}$ and $N$ are the numbers which appear
in Condition A and Condition $B$ , respectively. For any positive integers

$p<n$ , we put

$\Omega_{p}^{n}=\bigcup_{j=p-1}^{n-1}$ $(\alpha(\xi_{n})\alpha(\xi_{n-1})$ . . . . . $\alpha(\xi_{n-j})\geq(2^{-1}\delta)^{(j+1)/N})$ .

Finally we introduce a function space $F\subset L^{\infty}(m\cross P)$ . $\Phi\in L^{\infty}(m\cross P)$

belongs to $F$ if and only if for each $\omega,$
$\fbox{Error::0x0000} \Phi$ $\omega$ ) $<\infty$ as a function on $[0$ , 1 $]$

and the function $\fbox{Error::0x0000} \Phi$ is an element of $L^{\infty}(P)$ , i.e. $\Vert\fbox{Error::0x0000} \Phi\Vert_{\infty,P}<\infty.$

Now we can state the basic lemma.

LEMMA 2.4. Assume that Condition $A$ and Condition $B$ are valid. Then
there exist a positive $con\mathcal{S}tantC$ and $\rho$ with $0<\rho<1$ such that for any

integer $p$ , we can find $K_{p}\in L^{1}(P)$ such that for any integer $n>p$ , function
$\Phi\in F$ , and set $B\in \mathcal{B}\cross \mathcal{F}$ we have

$| \int_{B}\mathcal{L}_{T,m\cross P}^{n}\Phi d(m\cross P)|\leq\int_{\Omega_{p}^{n}}\Vert\Phi\Vert_{1,m}dP+\int_{B}\mathcal{L}_{\sigma,P}^{n}(K_{p}\Vert\Phi\Vert_{1,m})d(m\cross P)$

$+C\rho^{n}\Vert\vee\Phi\Vert_{\infty,P}(m\cross P)(B)$ .
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We note that we make use of Lemma 2.4 in order to checking for $\Phi\in$

$L^{1}(m\cross P)$ how good the uniform integrability or weak compactness in
$L^{1}(m\cross P)$ of the sequence $\{\mathcal{L}^{n}\Phi\}_{n=0}^{\infty}$ is. For example, if we show that the

set of $\Phi\in L^{1}(m\cross P)$ for which the sequence $\{(1/n)\sum_{k=0}^{n-1}\mathcal{L}_{T,m\cross P}^{k}\Phi\}_{n=1}^{\infty}$ is

uniformly integrable is dense in $L^{1}(m\cross P)$ , then we see that the sequence
$\{(1/n)\sum_{k=0}^{n-1}\mathcal{L}_{T,m\cross P}^{k}\}_{n=0}^{\infty}$ of time-averaged Perron-Frobenius operators con-
verges in the strong operator topology in $L^{1}(m\cross P)$ . This yields the validity
of the assertion (1) in Theorem 2. $2.To$ prove the basic lemma we need the
following version of the Lasota-Yorke type inequality (Lemma 3.1 in [10],
see also [6]).

LEMMA 2.5. For any $GLY$ map $\tau$ , we have

$\vee \mathcal{L}_{\tau,m}f\leq 2\alpha(\tau)\vee f+\beta(\tau)\Vert f\Vert_{1,m}.$

REMARK 2.6. The assertion (1) in Theorem 2.2 is obtained as a corollary
of much stronger result that for any $\Phi\in L^{1}(m\cross P)$ , the time average

$\frac{1}{n}\sum_{k=0}^{n-1}\mathcal{L}_{T,m\cross P}^{k}\Phi$ converges in $L^{1}(m\cross P)$ . This implies that for $P$-almost

every $\omega$ , there exists $\Gamma(\omega)\in \mathcal{B}([0,1])$ with $m(\Gamma(\omega))=1$ such that for each
$x\in\Gamma(\omega)$ we can find a Borel probability measure $\mu_{(x,\omega)}$ satisfying

$\lim_{narrow\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(X_{k}(\omega)x)=\int_{[0,1]}fd\mu_{(x,\omega)}$

for each $f\in C([O,$ $1$ In particular, the measure-theoretic dynamical
system $(\sigma, P)$ is ergodic, we can show that there is a positive integer
$r$ independent of $\omega$ such that there exist $r$ Borel probability measures
$\mu_{(1,\omega)}$ , . . . , $\mu_{(r,\omega)}$ on $[0$ , 1 $]$ which are absolutely continuous with respect to

the Lebesgue measaure $m$ and a measurable partition $|\{\Gamma(1, \omega), . . . , \Gamma(r, \omega)\}$

of $\Gamma(\omega)$ such that

$\lim_{narrow\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(X_{k}(\omega)x)=\int_{[0,1]}fd\mu_{(j,\omega)}$
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holds for $x\in\Gamma(j,\omega)$ and $f\in C([O,$ $1$ This sort of result can be found
in Buzzi [1]. Each measure $\mu(j, \omega)$ is to be called a Sinai-Ruelle-Bowen
measure (S. R. B. measure) or physical measure of the random dynamical
system $X_{n}$ . Moreover, in the case when $\{\xi_{n}\}$ is a independent sequence,
the deterministic version lemma in [9] yields that the measures $\mu(j, \omega)$ and
the sets $\Gamma(j, \omega)$ turn out to be independent of $\omega.$

3. REMARKS ON PHYSICAL MEASURES AND WEAK LAW OF

SAMPLE-WISE CENTRAL LIMIT PHENOMENA

In this section we develop the general theory of random dynamical sys-
tems. In what follows $X_{n}$ is a random dynamical system whose state space
$X$ is a compact metric space. First we consider the situation as in Remark
2.6 in the previous section.

PROPOSITION 3.1. Let $X_{n}$ be a random dynamical system whose state
$\mathcal{S}paceX$ is a compact metric space. Suppose that the sequence
$\{(1/n)\sum_{k=0}^{n-1}\mathcal{L}_{T,m\cross P}^{k}\}_{n=1}^{\infty}$ of time-averaged Perron-Frobenius operators con-
verges to a projection with finite rank in the $\mathcal{S}trong$ operator topology in
$L^{1}(m\cross P)$ . Then, the noise dynamical $\mathcal{S}y_{\mathcal{S}}tem(\sigma, P)$ has a finite number of
ergodic components, say $\Omega(1)$ , . . . , $\Omega(q)$ . Consider an ergodic component
$\Omega(i)$ . Then there $exist_{\mathcal{S}}$ a positive integer $r_{i}$ such that $P$ -almost every $\omega\in$

$\Omega(i)$ , we can find a family $\{\Gamma(i, 1,\omega), . . . , \Gamma(i, r_{i}, \omega)\}$ of disjoint elements
in $\mathcal{B}(X)$ with $m( \bigcup_{j=1}^{r_{i}}\Gamma(i,j,\omega))=1$ and a family $\{\mu_{(i,1,\omega)}, . . . , \mu_{(i,r_{i},\omega)}\}$ of
$m$ -absolutely continuous Borel probability measures such that

$\lim_{narrow\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(X_{k}(\omega)x)=\int_{X}fd\mu_{(i,j,\omega)}$

holds for $x\in\Gamma(i,j, \omega)$ and $f\in C(X)$ .

Sketch of Proof. Let $r$ be the dimension of eigenspace of $\mathcal{L}_{T,m\cross P}$ corre-
sponding to the eigenvalue 1. Then the number of ergodic components of
the $(m\cross P)$-absolutely continuous $T$-invariant measure whose density is

the strong limit of $(1/n) \sum_{k=0}^{n-1}\mathcal{L}_{T,m\cross P}^{k}1$ is $r$ . Suppose that $\Lambda_{1}$ , . . . , $\Lambda_{p}$ are
disjoint a-invariant elements in $\mathcal{F}$ . It is easy to see that $X\cross\Lambda_{1}$ , . . . , $X\cross\Lambda_{p}$
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are $T$-invariant. Thus $p$ is not greater than $r$ . This yields the finiteness of
ergodic components of $(\sigma, P)$ .

Now we may assume that $(\sigma, P)$ is ergodic. Let $H_{1}$ , . . . , $H_{r}$ be a family of

density functions of ergodic invariant probability measures for $T$ forming
a basis of the eigenspace of $\mathcal{L}_{T,m\cross P}$ corresponding to the eigenvalue 1.

Put $E_{i}=(H_{i}>0)$ for $i=1$ , . . . , $r$ . It is not so hard to show that

there exists $F_{i}\subset E_{i}$ with $(m\cross P)(F_{i})=(m\cross P)(E_{i})$ such that for each
$(x, \omega)\in C_{i}=\bigcup_{k=0}^{\infty}T^{-k}F_{i}$

$\lim_{narrow\infty}\frac{1}{n}\sum_{k=0}^{n-1}f(X_{k}(\omega)x)=\int_{X}f(x’)(\int_{\Omega}H_{i}(x’,\omega’)P(d\omega’))m(dx’)$

holds for $f\in C(X)$ (cf. Section 6 in [8], see also Theorem VII.6.13 in [2]).

On the other hand we can show that any invariant probability density $H$

satisfies $\int_{X}H(x, \omega)m(dx)=1$ for $P$-almost every $\omega$ by virtue of the ergod-

icity of $(\sigma, P)$ . Then by putting $\triangle_{j}=\{\omega\in\Omega : \int_{X}H_{j}(x,\omega)m(dx)=1\}$

we have

$P( \{\omega\in\Omega:m((\bigcup_{j=1}^{r}C_{j})_{\omega})=1\}\cap\bigcap_{k=1}^{r}\triangle_{k})=1.$

Therefore it is easy to see that we obtain the desired result by putting
$\Gamma(1,j,\omega)=(C_{j})_{\omega}$ and $\mu(i,j)=h_{j}m$ for each $j$ , where $h_{j}\in L^{1}(m)$ is

defined by

$h_{j}(x)= \int_{\Omega}H_{j}(x,\omega)P(d\omega)$

and $(C_{j})_{\omega}$ is the $\omega$-section of $C_{j}$ as usual.
$\square$

We have explained about the case when a random dynamical system
admits physical measures i.e. the strong law of large numbers holds with
respect to the reference measure $m$ for the system. Next we study the
central limit theorem for random dynamical system with respect to the
reference measure. For the sake of simplicity we assume that the noise
$(\sigma, P)$ is exact and the corresponding skew product transformation is also
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exact with respect to the unique $(m\cross P)$-absolutely continuous invariant
measure.

PROPOSITION 3.2. Let $X_{n}$ be a random dynamical system whose state
space $X$ is a compact metric space. Suppose that the sequence $\{\mathcal{L}_{T,m\cross P}^{n}\}_{n=1}^{\infty}$

of iterated Perron-Frobenius operators converges in the strong operator

topology in $L^{1}(m\cross P)$ to the projection onto the one-dimensional space
spanned by the unique invariant probability $den\mathcal{S}ity$ H. Let $g$ be a bounded

real-valued function on $X$ satisfyin9 $\int_{X}gd\mu=0$ for the unique physical

measure $\mu$ . Consider the normalized partial sum

$S_{n}g(x, \omega)=\sum_{k=0}^{n-1}g(X_{k}(\omega)x)=\sum_{k=0}^{n-1}g(T^{k}(x,\omega))$ $((x, \omega)\in X\cross\Omega)$ .

Then the following are equivalent.

(1) $S_{n}g/\sqrt{n}$ converges in law to the standard normal $di_{\mathcal{S}}$tribution with
respect to the unique $(m\cross P)-ab_{\mathcal{S}}$olutely continuous invariant probability
measure $Q=H\cdot(m\cross P)$ .

(2) $S_{n}g/\sqrt{n}converge\mathcal{S}$ in law to the standard normal distribution with
respect to $m\cross P.$

(3) $S_{n}g/\sqrt{n}$ converges in law to the standard normal distribution with
respect to any $(m\cross P)$ -absolutely continuous probability measure.
(4) For any continuous function $u$ on $\mathbb{R}$ with compact support

$\int_{X}u(\frac{S_{n}g(x,\omega)}{\sqrt{n}})m(dx)arrow\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}u(t)e^{-t^{2}/2}dt$

in probability with $re\mathcal{S}pect$ to $P$ as $narrow\infty.$

(5) For any continuous function $u$ on $\mathbb{R}$ with compact support and m-
absolutely $continuou\mathcal{S}$ probability $mea\mathcal{S}ure\nu$

$\int_{X}u(\frac{S_{n}g(x,\omega)}{\sqrt{n}})v(dx)arrow\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}u(t)e^{-t^{2}/2}dt$

in probability with respect to $P$ as $narrow\infty.$
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(6) For any continuous function $u$ on $\mathbb{R}$ with compact support

$\int_{X}u(\frac{S_{n}g(x,\omega)}{\sqrt{n}})m(dx)arrow\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}u(t)e^{-t^{2}/2}dt$

in $L^{1}(P)$ as $narrow\infty.$

(7) For any continuous junction $u$ on $\mathbb{R}$ with compact support and m-
absolutely continuous probability measure $v$

$\int_{X}u(\frac{S_{n}g(x,\omega)}{\sqrt{n}})v(dx)arrow\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}u(t)e^{-t^{2}/2}dt$

in $L^{1}(P)$ as $narrow\infty.$

Sketch of Proof. We just show how to get (7) from (1). We assume that
the distribution of the normalized partial sum $S_{n}g/\sqrt{n}$ with respect to $Q=$

$H\cdot(m\cross P)$ converges in law to the standard norma distribution. Choose any
real-valued element $u\in C_{c}(\mathbb{R})$ , where $C_{c}(\mathbb{R})$ is the totality of continuous
functions on $\mathbb{R}$ with compact support. In addition, we choose sequences
$\{p_{n}\}$ and $\{q_{n}\}$ of positive integers such that $n=p_{n}+q_{n},$ $\lim_{narrow\infty}p_{n}=$

$\lim_{narrow\infty}q_{n}=+\infty$ and $\lim_{narrow\infty}q_{n}/n=0$ . Then we have for $\Phi\in L^{1}(m\cross P)$

$\lim_{narrow}\sup_{\infty}\int_{X\cross\Omega}\Phi\cdot u(S_{n}g/\sqrt{n})d(m\cross P)$

$= \lim_{narrow}\sup_{\infty}\int_{X\cross\Omega}\Phi\cdot u((S_{p_{n}}g)\circ T^{q_{n}}/\sqrt{n}+S_{q_{n}}g/\sqrt{n})d(m\cross P)$

$= \lim_{narrow}\sup_{\infty}\int_{X\cross\Omega}\Phi\cdot u((S_{p_{n}}g)\circ T^{q_{n}}/\sqrt{n})d(m\cross P)$

(3.1) $= \lim_{\prime}\sup_{\infty narrow}\int_{Xx\Omega}(\mathcal{L}_{T,m\cross P}^{q_{n}}\Phi)\cdot u(\sqrt{(p_{n}/n)}S_{p_{n}}g/\sqrt{p_{n}})d(m\cross P)$

$= \lim_{narrow\infty}\int_{X\cross\Omega}(\mathcal{L}_{T,m\cross P}^{q_{n}}\Phi)\cdot u(S_{p_{n}}g/\sqrt{p_{n}})d(m\cross P)$

$= \lim_{narrow\infty}\int_{X\cross\Omega}\Phi d(m\cross P)\int_{X\cross\Omega}u(S_{p_{n}}g/\sqrt{p_{n}})Hd(m\cross P)$

$= \int_{X\cross\Omega}\Phi d(m\cross P)\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}u(t)e^{-t^{2}/2}dt$
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Note that we have used the convergence assumption on $\mathcal{L}_{T,m\cross P}^{n}$ to obtain
the sixth line from the fifth line in the above. Clearly if we replace ‘lim sup’
by $( \lim$ inf’ we have the same equation as (3.1). Therefore we have

$\lim_{narrow\infty}\int_{X\cross\Omega}\Phi\cdot u(S_{n}g/\sqrt{n})d(m\cross P)$

(3.2)

$= \int_{X\cross\Omega}\Phi d(m\cross P)\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}u(t)e^{-t^{2}/2}dt.$

Taking $\Phi(x, \omega)=f(x)$ for $f\in L^{1}(m)$ with $\int_{X}fdm=1$ , we obtain

(3.3) $\lim_{narrow\infty}\int_{\Omega}(\int_{X}u(S_{n}g/\sqrt{n})\cdot fdm)dP=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}u(t)e^{-t^{2}/2}dtt.$

Next we consider the probability measure $v$ on $X$ with density $f$ and
$C_{0}(\mathbb{R})^{*}$-valued random variable $\varphi_{n}$ satisfying for $u\in C_{0}(\mathbb{R})$

$\langle\varphi_{n}(\omega) , u\rangle=\int_{X}u(S_{n}g(x,\omega)/\sqrt{n})f(x)m(dx)$ ,

where $C_{0}(\mathbb{R})$ is the Banach space obtained by the completion of $C_{c}(\mathbb{R})$ with
respect to the supremum norm, i.e. the space of all continuous functions $u$

on $\mathbb{R}$ with $\lim_{|t|arrow\infty}u(t)=0$ . By virtue of Theorem V.4.2 (Alaoglu Theo-

rem) and Theorem V.5.1 in [2], the closed unit ball of $C_{0}(\mathbb{R})^{*}$ is a compact
metrizable space. Therefore $\{\varphi_{n}\}$ is a sequence of random variables taking
values in a compact metrizable space. Thus it is tight. Take any subse-
quence converging in law. Then by (3.3) we can show that the limit $\varphi$ is
not random and satisfies

$\langle\varphi(\omega) , u\rangle=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}u(t)e^{-t^{2}/2}dt$

for $u\in C_{0}(\mathbb{R})$ . This yields that $\varphi_{n}$ converges in law to $C_{0}(\mathbb{R})^{*}$-valued ran-
dom variable which is constantly the standard norma distribution $N(O, 1)$ .
Now we define the function $F$ : $C_{0}(\mathbb{R})^{*}arrow \mathbb{C}$ by

$F( \varphi)=|\langle\varphi, u\rangle-\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}u(t)e^{-t^{2}/2}dt|.$
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Obviously, it is continuous on the unit closed ball of $C_{0}(\mathbb{R})^{*}$ Thus we
arrive at

$\lim_{narrow\infty}\int_{\Omega}F(\varphi_{n}(\omega))P(d\omega)=\int_{\Omega}F(N(0,1))P(d\omega)=0.$

Hence we have verified that (7) is valid.
$\square$

REMARK 3.3. The central limit theorem for random dynamical system

given by the random iteration of Lasota-Yorke maps with independent $\{\xi_{n}\}$

is discussed in Ishitani [4]. In [4] it is shown that under an appropriate
condition the central limit theorem of mixed type holds with respect to
the product measure $\nu\cross P$ , where $v$ is any probability measure being
absolutely continuous with respect to the Lebesgue measure on the unit
interval. But we can not find literatures which treat the sample-wise central
limit phenomena. So Proposition 3.2 might have novelty. In this stage the
author does not know whether it is possible to replace ‘in probability’ by
(almost surely’ in the assertion (3) in Proposition 3.2.
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