
H\"OLDER REGULARITY OF LIMIT STATE FUNCTIONS IN RANDOM COMPLEX
DYNAMICAL SYSTEMS

JOHANNES JAERISCH AND HIROKI SUMI

ABSTRACT. We study the H\"older regularity of limit state functions of random complex dynamical systems

on the Riemann sphere. We employ the multifractal formalism in ergodic theory to investigate the spectrum

of Holder exponents of these functions, which gives rise to a gradation between chaos and order in random

complex dynamical systems.

1. INTRODUCTION AND STATEMENT 0F RESULTS

Random complex dynamical systems were first studied by J. E. Fomaess and N. Sibony ([FS91]). For

the recent studies on random complex dynamical systems we refer to the second author’s works [Sumll,

Sum13, Sum14]. The study of random complex dynamical systems is deeply related to the dynamics of

semigroups of rational maps. We denote by Rat the set of all non-constant rational maps on the Riemann

sphere $\hat{\mathbb{C}}$ . A subsemigroup of Rat with semigroup operation being functional composition is called a ra-

tional semigroup. The first study of the dynamics of rational semigroups was conducted by A. Hinkkanen

and G. J. Martin ([HM96]), who were interested in the role of polynomial semigroups (i.e., semigroups of

non-constant polynomial maps) while studying various one-complex-dimensional module spaces for dis-

crete groups, and by F. Ren’s group ([GR96]), who studied such semigroups from the perspective of random

dynamical systems. We refer to Section 2 for a brief introduction.

In this paper, we consider a Markov process on the Riemann sphere $\hat{\mathbb{C}}$ given by choosing independently

and identically distributed from a set of rational maps. To define the process, let $I$ be a finite index set with

at least two elements and let $(f_{i})_{i\in I}\in(Rat)^{I}$ be a family of rational maps with degree at least two. For a

probability vector $(p_{i})_{i\in 1}\in(0,1)^{1}$ with $\sum_{i\in I}p_{i}=1$ we define the Markov process on $\hat{\mathbb{C}}$ given by

(1.1) $\mathbb{P}(z,A)$
$:= \sum_{i\in I}p_{i}1_{A}(f_{i}(z))$

, for each $z\in\hat{\mathbb{C}}$ and every Borel set $A\subset\hat{\mathbb{C}},$

where $1_{A}$ denotes the characteristic function of$A$ . The associated transition operator $M$ of the process acting

on the Banach space $C(\hat{\mathbb{C}})$ of continuous $complex-valued_{\backslash }$functions endowed with the $\sup$-norm is given by

$M:C(\hat{\mathbb{C}})arrow C(\hat{\mathbb{C}})$ , $(M\varphi)(z)$
$:= \sum_{i\in 1}p_{i}h(f_{i}(z))$

, for each $h\in C(\hat{\mathbb{C}})$ and $z\in\hat{\mathbb{C}}.$

A non-zero element $\rho\in C(\hat{\mathbb{C}})$ is called a unitary eigenfunction of $M$ if there exists $a\in \mathbb{C}$ with $|a|=1$

such that $M\rho=a\rho$ . Denote by $U\subset C(\hat{\mathbb{C}})$ the $\mathbb{C}$-vector space of finite linear combinations of unitary

eigenfunctions of $M$. The elements of $U$ are called limit statefunctions.
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Question 1.1. What can we say about the H\"older regularity of limit statefunctions.?

1.1. Motivation. Before we state our main results on Question l.llet us outline our motivation.

1.1.1. Gradation between chaos and order To study all the possible paths of the process defined in (1.1)

we consider the dynamics of the semigroup $G$ generated by the family $(f_{i})_{i\in I}$ . We use

$G:=\langle f_{i}:i\in I\rangle:=\{f_{\omega_{n}}of_{\omega_{n-1}}o\cdots of_{\omega_{1}}:n\in \mathbb{N}, (\omega_{1}, \ldots, 0\}_{l})\in I^{n}\}$

to denote the rational semigroup generated by $(f_{i})_{i\in I}$ . Since $G$ contains elements of degree at least two,

there exist points in $\hat{\mathbb{C}}$ which exhibit a chaotic behavior under the dynamics of $G$ . Namely, it is well known

that $G$ has a non-empty Julia set $J(G)$ which is given by

$J(G)$ $:=\{z\in\hat{\mathbb{C}}$ : there exists no non-empty neighborhood $U$ of $z$ such that $(g_{|U})_{g\in G}$ is $no\ovalbox{\tt\small REJECT} al\}.$

On the other hand, by a recent result of Sumi ([Sumll, Theorem 3.15 under the assumption that the

kemel Julia set $\bigcap_{g\in G}g^{-1}(J(G))$ is empty, we have that the iterates of the transition operator $M$ stab\’ilize.

More precisely, we have that

$C(\hat{\mathbb{C}})=U\oplus\{h\in C(\hat{\mathbb{C}})lhmnarrow\infty\Vert M^{n}(h)\Vert_{\infty}arrow 0\}.$

This means that, although the Julia set $J(G)$ is non-empty, the averaging procedure obtained from the

iteration of $M$ has a stable behavior. From this point of view, it is natural to investigate the regularity of the

limit state functions, which appear in the limit stage of the averaging procedure. The H\"older regularity of

limit state functions gives rise to a gradation between chaos and order (see [Sumll, Sum13, Sum14

1.1.2. Singularfunctions on the Riemann sphere. Limit state functions can provide examples of devil’s

staircase-like functions on the Riemann sphere ([Sumll, Sum13 This type of functions is called a devil’s

coliseum ([Sumll A devil’s coliseum is a continuous function which varies only on a thin fractal set. We

give the following example from the recent work of Sumi ([Suml l

Example 1.2. Let $\varphi_{1}(z)$ $:=z^{2}-1,$ $\varphi_{2}(z)$ $:=z^{2}/4,$ $f_{i}$ $:=\varphi_{i^{O}}\varphi_{i}$ for $i\in\{1$ , 2 $\}$ . We consider the process

introduced in (1.1) with $p_{1}=p_{2}=1/2$ . The space of limit state functions $U$ is the 2-dimensional space

given by $U=\mathbb{C}1\oplus \mathbb{C}T_{\infty}$ , where $T_{\infty}$ denotes the function of probability of tending to infinity. On the left

hand side of the following figure we see the Julia set $J(G)$ of $G=\langle f_{1},f_{2}\rangle$ , on the right hand side we see the

limit state function $T_{\infty}$ . Note that $T_{\infty}$ vari\‘es precisely on $J(G)$ . We refer to [Sumll] for the details.

1.2. Main result. To state our main result, we need further definitions. Fora function $\rho:\hat{\mathbb{C}}arrow \mathbb{C}$ we denote

by H\"ol $(\rho, \cdot)$ the pointwise H\"older exponent of $\rho$ which is for $z\in\hat{\mathbb{C}}$ given by

H\"o1 $( \rho,z):=\sup\{\beta\in \mathbb{R}:\lim_{yarrow z}\sup_{y\neq z}\frac{|p(y)-\rho(z)|}{d(y,z)^{\beta}}<\infty\}\in[0,\infty],$
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where $d$ refers to the spherical distance on $\hat{\mathbb{C}}$ . For $\alpha\in \mathbb{R}$ we define the level sets

$H(\rho, \alpha):=\{z\in\hat{\mathbb{C}}:$ H\"ol $(p, z)=\alpha\}.$

Moreover, we set

$\Re_{un}$ $:= \inf\{\alpha\in \mathbb{R}:H(p, \alpha)\neq\emptyset\}$ and $\%_{ax}:=\sup\{\alpha\in \mathbb{R}:H(\rho,\alpha)\neq\emptyset\}.$

We say that $G=\langle f_{i}$ : $i\in I\rangle$ is hyperbolic if $\overline{\bigcup_{g\in GJ\{id\}}g(\bigcup_{i\in I}CV(f_{j}))}\subset\hat{\mathbb{C}}\backslash J(G)$ , where CV(f) refers to the

set of critical values of $f_{i}$ . We say that $(f_{i})_{\iota’\in I}$ satisfies the separation condition if $f^{-1}(J(G))\cap f_{j}^{-1}(J(G))=$

$\emptyset$ for all $i,$ $j\in I$ with $i\neq j.$

Theorem 13 $(JS13b)$. Suppose that $G=\langle f_{i}$ : $i\in I\rangle$ is hyperbolic and satisfies the separation condition. For

the Markov process int$\prime$oduced in (1.1) above, suppose that $U$ contains a non-constant limit statejunction

and let $\rho\in U$ be non-constant. The following two statements hold:

(1) The numbers $\alpha_{mn}$ and $m_{ax}$ do not depend on the choice ofnon-constant elements $\rho\in U.$

If $\alpha_{nun}<\%ax$ then the dimensionjUnction given by $\alpha\mapsto\dim_{H}(H(\rho, \alpha \alpha\in(q_{mn}, (h_{ax})$ , is a

positive, real-analytic and strictly concavefunction with maximum $\dim_{H}(J(G))$ .
(2) We have $M_{n}=q_{nax}$ ifand only if there exist $\varphi\in Aut(\hat{\mathbb{C}})$ , $(a_{i})\in \mathbb{C}^{I}$ and $\lambda\in \mathbb{R}$ such that, for all

$i\in$

$\varphi of_{i}o\varphi^{-1}(z)=a_{i}z^{\pm\deg(f_{l})}$ and $\log(\deg(f_{i}))=\lambda\log p_{i}.$

In this case we have $H(p, q_{mn})=J(G)$ .

Note that Theorem 1.3 in particular applies to Example 1.2 with $T_{n}<\alpha_{\max}.$

2. PRELIMINARIES ON RATIONAL SEMIGROUPS

Throughout, let $I$ be a finite index set with at least two elements and let $(f_{i})_{i\in I}\in(Rat)^{I}$ be a family of

rational maps with degree at least two.

Defininon 2.1 ([Sum00]). The skew product map associated with $f=(f_{i})_{i\in 1}$ is given by

$\tilde{f}:I^{N}\cross\hat{\mathbb{C}}arrow I^{N}\cross\hat{\mathbb{C}}, \tilde{f}(\omega,z):=(\sigma(\omega),f_{\omega_{1}}(z))$ ,

where $\sigma:1^{N}arrow I^{N}$ denotes the left-shift given by $\sigma$ $(\omega_{1}, \omega_{2}, \cdots)$ $:=(oo_{2},0y_{3}, . ..)$ , for $\omega=(\omega_{1}, \omega_{2}, \ldots)\in I^{N}.$

For $\omega\in I^{N}$ we define

$F_{\omega}$ $:=\{z\in\hat{\mathbb{C}}$ : $(f_{\omega_{n}}of_{\omega_{n-1}}o\cdots of_{\omega_{1}})_{n\in N}$ is nonnal in a neighbourhood of $z\}$ and $J_{\omega}$
$:=\hat{\mathbb{C}}\backslash F_{\omega}.$

For each $\omega\in I^{N}$ , we set $J^{\omega}$
$:=\{\omega\}\cross J_{\omega}$ and we set

$J(\tilde{f}):=\overline{\cup J^{\omega}}, F(\tilde{f}):=(I^{N}\cross\hat{\mathbb{C}})\backslash J(\tilde{f})$ ,
$\omega\in I^{N}$

where the closure is taken with respect to the product topology on $I^{N}\cross\hat{\mathbb{C}}$ . Let $\pi_{1}$ : $I^{N}\cross\hat{\mathbb{C}}arrow 1^{N}$ and

$\pi_{\hat{\mathbb{C}}}$ : $I^{N}\cross\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ denote the canonical projections.

We refer to [Sum00, Proposition 3.2] for the proof of the following proposition.

Proposition 2.2. The following three statements hold:

(1) For each $\omega\in I^{N}$ we have $;(J^{\omega})=J^{\sigma\omega}$ and $(\tilde{f_{|\pi_{1}^{-1}(\omega)}})^{-1}(J^{\sigma\omega})=J^{\omega}.$
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(2) $\tilde{f}(J(\tilde{f}))=J(\tilde{f})$ , $\tilde{f}^{-1}(J(\tilde{f}))=J(\tilde{f})$ .
(3) $\pi_{\hat{\mathbb{C}}}(J(\tilde{f}))=J(G)$ .

For a holomorphic map $h:\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ and $z\in\hat{\mathbb{C}}$ , the norm of the derivative of $h$ at $z\in\hat{\mathbb{C}}$ with respect to the

spherical metric is denoted by $\Vert h’(z)\Vert.$

Definition 2.3 ([Sum98]). For each $n\in \mathbb{N}$ and $(\omega,z)\in J(\tilde{f})$ , we set $(\tilde{f}^{n})’(\omega,z)$ $:=(f_{\omega_{n}}\circ f_{\omega_{n-1}}o\cdots 0$

$f_{\omega_{1}})’(z)$ . We say that $\tilde{f}$ (or the rational semigroup $G=\langle f_{i}$ : $i\in I\rangle$ ) is expanding if there exist constants

$C>0$ and $\lambda>1$ such that for all $n\in \mathbb{N},$

$inf\Vert(\tilde{f}^{n})’(\omega,z)\Vert\geq C\lambda^{n},$

$(\omega,z)\in J(\tilde{f})$

where $\Vert(\tilde{f}^{n})’(\omega,z)\Vert$ denotes the norm of the derivative of $f_{\omega_{n}}\circ f_{\omega_{n-1}}o\cdots\circ f_{\omega_{1}}$ at $z$ with respect to the

spherical metric.

Remark 2.4. It follows from Proposition 2.6 below that, for a rational semigroup $G=\langle f_{i}:i\in I\rangle$ , the notion

of expandingness is independent of the choice of the generator system.

Definition 2.5 ([Sum98]). A rational semigroup $G$ is hyperbolic if $P(G)\subset\hat{\mathbb{C}}\backslash J(G)$ , where $P(G)$ denotes

the postcritical set of $G$ given by

$P(G):= \bigcup_{g\in G}CV(g)$
.

The next proposition characterises when $G$ is expanding.

Proposition 2.6 ([Sum98]). $G=\langle f_{i}:i\in I\rangle$ is expanding if and only if $G$ is hyperbolic.

3. ON THE PROOF OF THE MAIN RESULT

The proof consists mainly of two parts. In the first part we give a dynamical description of the level sets

$H(\rho, \alpha)$ . It turns out that these sets can be described in terms of the limiting behaviour of quotients of

Birkhoff sums with respect to the skew product map $\tilde{f}$. In the second part, we derive the main result by

employing the multifractal formalism in ergodic theory.

3.1. Dynamical description of the level sets. It is not difficult to see that

H\"o1 $(p,z)= \lim_{rarrow}\inf_{0}\frac{\log\sup_{y\in B(z,r)}|\rho(y)-p(z)|}{\log r}$ , for $z\in\hat{\mathbb{C}}.$

We aim to give a dynamical description with respect to the dynamical system $(J(\tilde{f}),\tilde{f})$ . Define potentials

$\tilde{\zeta}$ : $J(\tilde{f})arrow \mathbb{R}$ $\tilde{\zeta}(\tau,z):=-\log\Vert f_{\tau_{1}}’(z)\Vert$ , for $(\tau,z)\in J(\tilde{f})$ ,

and

$\tilde{\psi}:J(\tilde{f})arrow \mathbb{R},$ $\tilde{\psi}(\tau,z):=\log p_{\tau_{1}}$ , , for $(\tau,z)\in J(\tilde{f})$ ,

where $(p_{i})_{i\in I}$ refers to the probability vector of the process introduced in (1.1). We denote by $S_{n}\tilde{\zeta}$ resp.
$S_{n}\tilde{\psi}$ the Birkhoff sums of $\tilde{\zeta}$ resp. $\tilde{\psi}$ with respect to $(J(\tilde{f}),\tilde{f})$ . We can now state the main lemma. Note that

for each $z\in J(G)$ there exists a unique $\omega\in I^{\mathbb{N}}$ such that $(\omega,z)\in J(\tilde{f})$ .

Lemma 3.1. For each $(\omega,z)\in J(\tilde{f})$ we have

$\lim_{narrow\infty}\inf\frac{S_{n}\tilde{\psi}((\omega,z))}{S_{n}\tilde{\zeta}((\omega,z))}$ $=$ H\"ol $(\rho, z)$ .
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Proof We may suppose that $M\rho=\rho$ . We give a sketch of the proof, the details can be found in [JS13].

Since $z\in J(G)$ and $G$ is hyperbolic, there exists $r_{0}>0$ such that, for all $n\in \mathbb{N}$, there exists a holomorphic

map $\phi_{n}:B((f_{\omega_{n}}o\cdots of_{\omega_{1}})(z),ro)arrow\hat{\mathbb{C}}$ with $(f_{\omega_{n}}o\cdots of_{\omega_{1}})$ $\circ\phi_{n}=id$ and $\phi_{n}((f_{\omega_{n}}o\cdots of_{\omega_{1}})(z))=z$ . Put
$B_{n}$ $:=\phi_{n}(B((f_{\omega_{\mathfrak{n}}}\circ\cdots of_{\omega_{1}})(z),r0$ For $a,b\in B_{n}$ we have

$\rho(a)-p(b)=(M^{n}\rho)(a)-(M^{n}\rho)(b)$

$=$ $\sum$
$p_{\tau_{1}}$

. $\cdots$ $p_{\tau_{n}}(\rho((f_{T_{n}}o\cdots\circ f_{\tau_{1}})(a))-\rho((f_{T_{n}}\circ\cdots of_{\tau_{1}})(b)))$

$(\tau_{1_{\rangle\rangle}}\ldots\tau_{n})\in I^{n}$

After making $r0$ sufficiently small, we can deduce the following: since $(f_{i})_{i\in I}$ satisfies separation condition

and $\rho_{|F(G)}$ is locally constant on $F(G)$ by [Sumll, Theorem 3.15(1)], we have for all $a,b\in B_{n}$

$\rho(a)-\rho(b)=p_{\omega_{1}}\cdots\cdot\cdot p_{\omega_{n}}(p((f_{\omega_{\pi}}\circ\cdots of_{\omega_{1}})(a))-p((f_{\omega_{n}}o\cdots of_{\omega_{1}})(b)))$ .

Since $\rho$ varies on the $J(G)$ by [Sumll], we deduce that su$p_{a,b\in B_{n}}|\rho(a)-\rho(b)|_{\wedge}\cdot p_{\tau_{1}}\cdots\cdot\cdot p_{T_{n}\wedge}\cdot e^{S_{n}\psi(\omega,z)}.$

Finally, by Koebe’s distortion theorem, we have that $B_{n}$ is close to a ball of radius $r_{n}:=\Vert(f_{\omega_{n}}o\cdots 0$

$f_{\omega_{1}})’(z)\Vert^{-1_{\wedge}}\cdot e^{s_{n}\zeta(\omega,z)}$ , which finishes the proof. $\square$

3.2. Application of the Multifractal Formalism. The multifractal formalism goes back to the work of

[Man74, FP85, $HJK^{+}86$ ] motivated by statistical physics. We employ the multifractal formalism for

level sets given by quotients of Birkhoff sums with respect to the skew product associated with a ratio-

nal semigroup ([JS13]). For a similar kind of multifractal formalism for conformal repellers we refer to

[PW97, Pes97].

Thefree $energyfi\ell$nction is the unique function $t:\mathbb{R}arrow \mathbb{R}$ such that $\mathscr{P}(\beta\tilde{\psi}+t(\beta)\tilde{\zeta},\tilde{f})=0$ for each $\beta\in \mathbb{R},$

where $\mathscr{P}$ $\tilde{f}$) denotes, the topological pressure with respect to $\tilde{f}([Wa182])$ . The convex conjugate of $t$

([Roc70, Section 12]) is given by

$t^{*}: \mathbb{R}arrow \mathbb{R}\cup\{\infty\}, t^{*}(c):=\sup_{\beta\in R}\{\beta c-t(\beta)\}, c\in \mathbb{R}.$

Since the dynamical system $(J(\tilde{f}),\tilde{f})$ is expanding and the potentials $\tilde{\zeta}$ and $\tilde{\psi}$ are H\"older continuous, it is

welrknown that $t$ is real-analytic (see e.g. [Rue78, Pes97 Consequently, its convex conjugate function
$t^{*}$ is real-analytic on its domain. The multifractal formalism now relates the Hausdorff dimension of the

level-sets $\pi_{\hat{\mathbb{C}}}\{(\omega,z)\in J(\tilde{f})$ : $\lim_{narrow\infty}S_{n}\tilde{\psi}/S_{n}\tilde{\zeta}=\alpha\}$ to the function $t^{*}$ :

Theorem 3.2 $([JS13 For each \alpha\in(\mathfrak{R}_{\dot{u}n}, \%_{ax})$ we have

$\pi_{\hat{\mathbb{C}}}\{(\omega,z)\in J(f):\lim_{narrow\infty}S_{n}^{-}\psi/S_{n}\tilde{\zeta}=\alpha\}=-t^{*}(-\alpha)$ .

Finally, let us remark that the spectrum degenerates if and only if the potentials $\tilde{\zeta}$ and $\tilde{\psi}$ are linearly

dependent in the cohomology class of bounded continuous functions. Employing a result of A. Zdunik

[Zdu90] and proceeding as in [SU12], the statemtent in Theorem 1.3 (2) follows.

REFERENCES

[FP85] U. Frisch and G. Parisi, On the singularity structure offully deve oped turbulence, Turbulence and predictability in geo-

physical fluid dynamics and climate dynamics (North Holland Amsterdam), 1985, pp. 84-88.
[FS91] J. E. Fornzess and N. Sibony, Random iterations ofrationalfunctions, Ergodic Theory Dynam. Systems 11 (1991), no. 4,

687-708. MR 1145616 (93c:58l73)

[GR96] Z. Gong and F. Ren, A random dynamical system fonned by infinitely mwny jUnctions, J. Fudan Univ. Nat. Sci. 35 (1996),

no. 4, 387-392. MR 1435167 (98k:30032)

96



JOHANNES JAERISCH AND HIROKI SUMI

$[HJK^{+}86]$ T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. J. Shraiman, Fractal measures and their singularities: The

charaCterization ofstrange sets, Phys. Rev. A85 (1986), no. 33, 1141-1151.
[HM96] A. Hinkkanen and G. J. Martin, The dynamics of semigroups of rational functions. 1, Proc. London Math. Soc. (3) 73

(1996), no. 2, 358-384. MR 1397693 (97e:58l98)

[JS13] J. Jaerisch and H. Sumi, Multiffactal formalism for expanding rational semigroups and random complex dynamical sys-

tems, preprint available at http: $//$arxiv.$org/abs/1311.6241$ (2013).

[Man74] B. B. Mandelbrot, In ermittent turbulence in self-similar cascades: divergence of high moments and dimension of the
carrier, Journal of Fluid Mechanics Digital Archive 62 (1974), no. 02, 331-358.

[Pes97] Y. B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press,

Chicago, IL, 1997, Contemporary views and applications. MR MR1489237 (99b:58003)

[PW97] Y. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like

geometric constructions, J. Statist. Phys. 86 (1997), no. 1-2, 233-275. MR 1435198 (97m:58ll8)

[Roc70] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J.,

1970. MR MR0274683 (43#445)

[Rue78] D. Ruelle, Thermodynamicformalism, Encyclopedia ofMathematics and its Applications, vol. 5, Addison-Wesley Publish-

ing Co., Reading, Mass., 1978, The mathematical structures of classical equilibrium’statistical mechanics, With a foreword

by Giovanni Gallavotti and Gian-Carlo Rota. MR 511655 (80g:820l7)

[SU12] H. Sumi and M. Urballski, Bowen parameter and Hausdorffdimensionfor expanding rational semigroups, Discrete Contin.

Dyn. Syst. 32 (2012), no. 7, 2591-2606. MR $29\alpha$)563

[Sum98] H. Sumi, On Hausdorffdimension ofJulia sets ofhyperbolic rational semigroups, Kodai Math. J. 21 (1998), no. 1, 10-28.

MR 1625124 (99h:30029)

[Sum00] –, Skew product maps related to finitely generated rational semigroups, Nonlinearity 13 (2000), no. 4, 995-1019.

[Sumll] –, Random complex dynamics and semigroups ofholomorphic maps, Proc. London Math. Soc. (1) (2011), no. 102,

50-112.

[Sum13] –, Cooperation principle, stability and bifurcation in random complex dynamics, Adv. Math. 245 (2013), 137-181.
[Sum14] –, Randomness-induced phenomena in random complex dynamical systems, Kokyuroku of this volume (2014).

[Wa182] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982,

MR MR648108 (84e:280l7)

[Zdu90] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990),

no. 3, 627-649. MR 1032883 (90m:58l20)

97


