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HOLDER REGULARITY OF LIMIT STATE FUNCTIONS IN RANDOM COMPLEX
DYNAMICAL SYSTEMS

JOHANNES JAERISCH AND HIROKI SUMI

ABSTRACT. We study the Holder regularity of limit state functions of random complex dynamical systems
on the Riemann sphere. We employ the multifractal formalism in ergodic theory to investigate the spectrum
of Holder exponents of these functions, which gives rise to a gradation between chaos and order in random

complex dynamical systems.

1. INTRODUCTION AND STATEMENT OF RESULTS

Random complex dynamical systems were first studied by J. E. Fornaess and N. Sibony ([FS91]). For
the recent studies on random complex dynamical systems we refer to the second author’s works [Suml1,
Suml3, Suml14]. The study of random complex dynamical systems is deeply related to the dynamics of
semigroups of rational maps. We denote by Rat the set of all non-constant rational maps on the Riemann
sphere C. A subsemigroup of Rat with semigroup operation being functional composition is called a ra-
tional semigroup. The first study of the dynamics of rational semigroups was conducted by A. Hinkkanen
and G. J. Martin ([HM96]), who were interested in the role of polynomial semigroups (i.e.; semigroups of
non-constant polynomial maps) while studying various one-complex-dimensional module spaces for dis-
crete groups, and by F. Ren’s group ([GR96]), who studied such senﬁgmups from the perspective of random
dynamical systems. We refer to Section 2 for a brief introduction.

In this paper, we consider a Markov process on the Riemann sphere C given by choosing independently
and identically distributed from a set of rational maps. To define the process, let I be a finite index set with
at least two elements and let (f;)ic; € (Rat) be a family of rational maps with degree at least two. For a
probability vector (p;)ies € (0, 1)! with ¥;e; pi = 1 we define the Markov process on C given by
(1.1 P(z,A) := Y pila(fi(z)), foreachz € C and every Borel set A C C,
iel
where 14 denotes the characteristic function of A. The associated transition operator M of the process acting
on the Banach space C (@) of continuous complex-valued functions endowed with the sup-norm is given by
M:C(C)—c(€), (M@)z):=Y pih(fi(z), foreachheC(C)andzeC.
icl
A non-zero element p € C(C) is called a unitary eigenfunction of M if there exists a € C with la] =1
such that Mp = ap. Denote by U C C((E) the C-vector space of finite linear combinations of unitary
eigenfunctions of M. The elements of U are called limit state ﬁmct;’ons.
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Question 1.1. What can'we say about the Hélder regularity of limit state functions?
1.1. Motivation. Before we state our main results on Question 1.1 let us outline our motivation.

1.1.1. Gradation between chaos and order. To study all the possible paths of the process defined in (1.1)
we consider the dynamics of the semigroup G generated by the family (fj)ic;. We use

G:=(firiel):={fo,°fa, 9 °fa :nGN,(Qi,...,a)n)EI"}

to denote the rational semigroup generated by (fi)ic;. Since G contains elements of degree at least two,
there exist points in C which exhibit a chaotic behavior under the dynamics of G. Namely, it is well known

* that G has a non-empty Julia set J(G) which is given by
J(G):= {z €C: there exists no non-empty neighborhood U of z such that (gjy )< is normal} .

On the other hand, by a recent result of Sumi ([Sum11, Theorem 3.15]), under the assumption that the
kernel Julia set N,eg g~ (J(G)) is empty, we have that the iterates of the transition operator M stabilize.

More precisely, we have that

c@®=va{hec®: lim M ®). -0}
n 00
This means that, although the Julia set J (G) is non-empty, the averaging procedure obtained from the
iteration of M has a stable behavior. From this point of view, it is natural to investigate the regularity of the
limit state functions, which appear in the limit stage of the averaging procedure. The Hoélder regularity of

limit state functions gives rise to a gradation between chaos and order (see [Sum11, Sum13, Sum14]).

1.1.2. Singular functions on the Riemann sphere. Limit state functions can provide examples of devil’'s

staircase-like functions on the Riemann sphere ([Sum! 1, Sum13]). This type of functions is called a devil’s
coliseum ([Sum11]). A devil’s coliseum is a continuous fuhctiQn which varies only on a thin fractal set. We

give the following example from the recent work of Sumi ([Suml11]):

Example 1.2. Let ¢1(z) := 2> — 1, ¢2(z) := 22/4, fi := @; 0 ¢; for i € {1,2}. We consider the process
introduced in (1.1) with p1 = p2 = 1/2. The space of limit state functions U is the 2-dimensional space
given by U = C1 @ CT.,, where T,, denotes the function of probability of tending to inﬁnity. On the left
- hand side of the following figure we see the Julia set J(G) of G = (f1, f2), on the right hand side we see the
limit state function T... Note that T, varies precisely on J(G). We refer to [Suml 1] for the details.

1.2. 'Main result. To state our main result, we need further definitions. For a function p : C — C we denote

by Hol(p, -) the pointwise Holder exponent of p which is for z € C given by

Hol(p,z) := sup{ﬁ €R: ?ii‘;l:}ﬁ%—)(%%l;ﬁ@ < oo} € [0,
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where d refers to the spherical distance on C. For & € R we define the level sets
H(p, )= {zeC:Hol(p,2) =t}
Moreover, we set

Omin :=inf{@d ER:H(p, ) # @} and Omax:=sup{axcR:H(p,x)+#2}.

We say that G = (f; : i € I) is hyperbolic if U,egugiq) 8(Uies CV (i) C €\ J(G), where CV(f;) refers to the
set of critical values of f;. We say that (f;)ies satisfies the separation condition if ' (J(G))n fj“1 J(G)) =
@ forall i, j € I withi# j.

Theorem 1.3 (JS13b). Suppose that G = (f; : i € I) is hyperbolic and satisfies the separation condition. For
the Markov process introduced in (1.1) above, suppose that U contains a non-constant limit state function
and let p € U be non-constant. The following two statements hold:

(1) The numbers Otmin and Oimax do not depend on the choice of non-constant elements p € U..
If Oin < Olmax then the dimension function given by a — dimy (H(p,a)), & € (Oyin, Omax), is a
positive, real-analytic and strictly concave function with maximum dimy (J(G)).
(2) We have Oty = Omax if and only if there exist ¢ € Aut(@), (a;) € C! and A € R such that, for all
iel,
@ofiop ' (2) =" ) and log(deg(fi)) = Alogp:.
In this case we have H(p, Otyin) = J(G).

Note that Theorem 1.3 in particular applies to Example 1.2 with 0f;, < Ofnax-

2. PRELIMINARIES ON RATIONAL SEMIGROUPS
Throughout, let I be a finite index set with at least two elements and let (f;)ic; € (Rat)’ be a family of
rational maps with degree at least two.
Definition 2.1 ([Sum00]). The skew product map associated with f = (fi);; 1s given by
FiNxCoMNxC, f(oz):= (0(®), fu, (2)),

where o : IN — IN denotes the left-shift given by 6 (1, @,,...) := (@, @3,...), for @ = (0, a,,...) € IN.
For @ € IN we define

Fg:= {26‘61 (fw,, © fany °"'°f“’1)

N is normal in a neighbourhood of z} and Jg :=C \ Fp.
ne

For each ® € IN, we set J? := {@} x J,, and we set

1 (7) :=W, F(f):= (INX@)\J(f),

welN

where the closure is taken with respect to the product topology on N x C. Let m : IN x C — IN and
Mg : IN x € — C denote the canonical projections.

We refer to [Sum00, Proposition 3.2] for the proof of the following proposition.
Proposition 2.2. The following three statements hold:

(1) For each @ € IN we have f(J?) = J°® and (fin,l—l(w))_l (JoO) = Jo.
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@ fUF) =15, F1UAH) =10
@) e (J(f)) =J(G).

For a holomorphic map 4 : C—oCandze (ﬁ, the norm of the derivative of h at z € C with respect to the
spherical metric is denoted by ||/’ (z)||. ‘

Definition 2.3 ([Sum98]). For each n € N and (@,2) € J (f), we set (f") (@,2) := (fa, © fa, , 0+ ©
fo,)'(z). We say that f (or the rational semigroup G = (f; : i € I)) is expanding if there exist constants
C>0and A > 1 suchthatforalln €N,
inf || (") (@,2)| > €A,
(@2)el(f)
where || ( f")' (@,z) || denotes the norm of the derivative of fg, © fo,_, 0+ 0 fo atz with respect to the

spherical metric.

Remark 2.4. 1t follows from Proposition 2.6 below that, for a rational semigroup G = (f; : i € I}, the notion

of expandingness is independent of the choice of the generator system.

Definition 2.5 ([Sum98]). A rational semigroup G is hyperbolic if P(G) C €\ J(G), where P (G) denotes
the postcritical set of G given by

P(G):= U CV (g).
geG
The next proposition characterises when G is expanding.

Proposition 2.6 ([Sum98]). G = (f; : i € I) is expanding if and only if G is hyperbolic.
3. ON THE PROOF OF THE MAIN RESULT

The proof consists mainly of two parts. In the first part we give a dynamical description of the level sets
H(p,a). It turns out that these sets can be described in terms of the limiting behaviour of quotients of
Birkhoff sums with respect to the skew product map f. In the second part, we derive the main result by

employing the multifractal formalism in ergodic theory.

3.1. Dynamical description of the level sets. It is not difficult to see that

logsupcp(.n [P () — P (2)]

, forze C.
logr

Hol(p, z) = liminf
r—0

- We aim to give a dynamical description with respect to the dynamical system (J(f), f). Define potentials

£:I(f) =R {(r,2):=—log|fy (), for (r,2) € J(F),
and
v:J(f) >R, Y(r,2):=logps,, for(1,2)€J(f),
where (p;)ie; refers to the probability vector of the process introduced in (1.1). We denote by S,,C re'sp.

S, the Birkhoff sums of € resp. W with respect to (J(f), 7). We can now state the main lemma. Note that
for each z € J(G) there exists a unique @ € I such that (@,z) € J ()

Lemma 3.1. For each (0,z) € J (f) we have
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Proof. We may suppose that Mp = p. We give a sketch of the proof, the details can be found in [JS13].
Since z € J(G) and G is hyperbolic, there exists ry > 0 such that, for all n € N, there exists a holomorphic
map @ : B(fa, o~ 0 fay)(2), 70) > € with (fay 00 fuy) 0 b = id and do((fay, 00 fu,)(2)) = 2. Put
By := ¢o(B((fw, ©- - © fw,)(2),70)). Fora,b € B, we have '

p(a)—p(b) = (M"p)(a) — (M"p)(b)
= Y puoopa(P((fao0fy)@) —p((fr00 0 f1)(8))

(T1,-,Tn)ED

After making ry sufficiently small, we can deduce the following: since (f;);c; satisfies separation condition
and p F(G) is locally constant on F (G) by [Suml1, Theorem 3.15(1)}, we have foralla,b € B,

p(a)—p(®B) =pa, - P, (P((fon 00 fur ) (@) — P ((fw, 0 -+ © fu ) (B)))-

Since p varies on the J(G) by [Sum11], we deduce that sup, ,cp |0(a) — p(b)| < pg, ---+- pr, < V(@)
Finally, by Koebe’s distortion theorem, we have that B, is close to a ball of radius 7, := ||(fg, 0 -0
fo ) (@)]I7! < €¢(@2) which finishes the proof. : 0

3.2. Application of the Multifractal Formalism. The multifractal formalism goes back to the work of
[Man74, FP85, HIK*86] motivated by statistical physics. We employ the multifractal formalism for
level sets given by quotients of Birkhoff sums with respect to the skew product associated with a ratio-
nal semigroup ([JS13]). For a similar kind of multifractal formalism for conformal repellers we refer to
[PW97, Pes97].

The free energy function is the unique function? : R — R such that 2 (B +1 (B) Z, f) =0foreach B €R,
where & (-, f) denotes the topological pressure with respect to f ((Wal82]). The convex conjugate of t
([Roc70, Section 12}) is given by

t":R—->RU{eo}, t*(c):=sup{Bc—t(B)}, ceR.
BeR

Since the dynamical system (J(f), f) is expanding and the potentials { and W are Holder continuous, it is
well known that ¢ is real-analytic (see e.g. [Rue78, Pes97]). Consequently, its convex conjugate function
t* is real-analytic on its domain. The multifractal formalism now relates the Hausdorff dimension of the
level-sets s { (@,2) € J(f): lim,,_,.,,S,,lil/S,,f = a} to the function ¢*:

Theorem 3.2 ([JS13)). For each & € (Qmin, Omax) We have

1e{(@,2) €J(F): i 8,9/8,8 = @} = ~+*(~01).

Finally, let us remark that the spectrum degenerates if and only if the potentials Z’ -and ¥ are linearly
dependent in the cohomology class of bounded continuous functions. Employing a result of A. Zdunik
[Zdu90] and proceeding as in [SU12), the statemtent in Theorem 1.3 (2) follows.
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