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Abstract

We claim that a property of noise-robustness is important for reli-
able physical random bit generators (RBGs), and we report that RBGs
using chaotic semiconductor lasers are noise-robust, i.e. insensitive to
properties of a noise source. Here, we study an $influenc\grave{e}$ of changes
in the temporal correlation of noise sequence on unpredictability of
the laser chaos employing the Lang-Kobayashi model, and compare it
with that of a bistable RBG.

1 Introduction

Random bit generation is one of the important technologies of the
information security, such as secret key generation, secret calculation,
and secret distribution. For the information security technology, ran-
dom bits should be hard to predict. Thus, physical random bit genera-
tion is expected to be employed for the technologies, since the physical
random bits are generated from unpredictable physical phenomena, as
thermal noise and quantum noise. Recently, many researchers study
and develop physical RBGs by using semiconductor lasers [1], a super-
luminescent LED [2], and hybrid Boolean networks [3]. These studies
mainly focus their attention on the generation speed of the random
bits, and less attention is being paid to reliability of the RBGs.

In this paper, for the reliable physical RBG, we emphasize that
physical RBGs should be noise-robust. In general, physical RBGs.
use some kind of noise source as a black box, which means noise is
generated by unknown rules and it is hard to control. Therefore, the
properties of noise can be changed unexpectedly or some hidden prop-
erties of noise might exist or appear because of our limited knowledge
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of noise source. For instance, the noise distribution get to be biased or
the noise sequence can get to have a temporal correlation accidentally.

Even so, the reliable physical RBGs are required to be less affected
by the changes of noise properties and/or appearing the hidden noise

properties, particularly for the usage of the security technology. More
concretely, we say that physical RBGs are noise-robust if the unpre-
dictability of the physical RBGs is not sensitive to the noise properties.

The physical RBG by the semiconductor laser chaos is one of the
promising physical RBGs since it can generate random bits fast enough
[1] and its unpredictability is theoretically examined by Harayama $et$

al. [7]. Hence, we study the noise-robustness of physical RBG by

the laser chaos in this paper. Dependency of the noise strength on
the unpredictability of physical RBG by the laser chaos is studied
by Mikami et al. [6]. Here, we consider the temporal correlation

of noise time sequence. Specifically, by employing Lang-Kobayashi
model, we study the noise-robustness of physical RBG by the laser
chaos, and also we compare it with that of the bistable RBG which is

now commonly used, for instance, in Intel’s Ivy Bridge [4].
The numerical model of the laser chaos, the numerical method, and

the noise sequence is described in Sec. 2 briefly. The noise-robustness
of RBGs by chaotic laser to the temporal correlation of noise sequence
are studied in Sec. 3. In Sec. 4, we give conclusions and discussions.

2 Numerical model and method

The chaotic dynamics of the semiconductor laser with delayed feed-
back can be studied by the Lang-Kobayashi model equation:

$\frac{dE(t)}{dt}=\frac{1}{2}[-\frac{1}{\tau_{p}}+F(E(t), N(t))]E(t)$

$+\kappa E(t-\tau_{D})\cos\theta(t)+\xi_{E}(t)$ ,

$\frac{d\phi(t)}{dt}=\frac{\alpha}{2}[-\frac{1}{\tau_{p}}+F(E(t), N(t))]$

$- \kappa\frac{E(t-\tau_{D})}{E(t)}\sin\theta(t)+\xi_{\phi}(t)$ ,

$\frac{dN(t)}{dt}=-\frac{N(t)}{\tau_{s}}-F(E(t), N(t))E(t)^{2}+J$, (1)

where $E(t)\in \mathbb{R}$ is an amplitude of a complex electric field, $\phi(t)\in \mathbb{R}$

is a phase of a complex electric field, $N(t)\in \mathbb{R}$ is a career density,

$\theta(t)$ $:=\omega\tau+\phi(t)-\phi(t-\tau)$ , and $F(E(t),$ $N(t))$ $:=G_{N} \frac{N(t)-N_{0}}{1+\epsilon E(t)^{2}}$ . The

parameter in the equations and their values used in the numerical

experiments are shown in Tab.1. The period of the relaxation oscil-
lation is $T_{relax}=2\pi/\omega_{relax}=0.35[ns]$ , the external cavity length is

$L=c\tau_{D}/2=0.037[m]$ , and $J/J_{th}=1.44.$ $\xi(t)$ is a model of the noise
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in the laser system such as the spontaneous emission, which is usually
assumed as a white Gaussian process. Here we consider $\xi(t)$ as a Orn-
stein- Uhlenbeck (OU) process in Sec.4. Numerical solutions of the
Lang-Kobayashi equation are calculated by using 4th order Runge-
Kutta method (the time step $\Delta t=1.0\cross 10^{-3}$ ), and the Ornstein-
Uhlenbeck (OU) process is calculated by using the method of Fox $et$

$al.[5].$

$\overline{\frac{SymbolsParametersVa1ues}{\tau_{D}Externa1-cavityround-triptime0.25ns}}$

$\tau_{p}$ Photon lifetime 1. $927ps$
$\tau_{s}$ Carrier lifetime 2.04 ns
$\alpha$ Linewidth enhancement factor 5.0

$G_{N}$ Gain coefficient $8.4\cross 10^{-13}m^{3}s^{-1}$

$N_{0}$ Carrier density at transparency $1.400\cross 10^{24}m^{-3}$

$\epsilon$ Gain saturation coeffcient $2.5\cross 10^{-23}$

$\kappa$ Feedback strength 6.25 $ns^{-1}$

$J$ Injection current $1.42\cross 10^{33}m^{-3}s^{-1}$

$\omega$ Optical angular frequency $1.225\cross 10^{15}s^{-1}$

$D$ Noise strength $1.0\cross 10^{-4}$

Tab. 1: The parameters in the Lang-Kobayashi equation and their values
used in the numerical experiments.

3 Correlated noise

Next, we study the robustness of RBGs using chaotic laser to the
temporal correlation of noise sequence. As mentioned in Sec. 2, we
use the Ornstein- Uhlenbeck (OU) process $\xi(t)$ governed by

$\frac{d\xi}{dt}=-\gamma\xi+\sqrt{2\gamma D}\zeta$ , (2)

where $\zeta$ is the white Gaussian process, i.e. $\langle\zeta(t)\rangle=0,$ $\langle\zeta(t)\zeta(s)\rangle=$

$\delta(t-s)$ . Then, the OU process has following properties [8]: $\langle\xi(t)\rangle=$

$0,$ $\langle\xi(t)\xi(s)\rangle=De^{-\gamma|t-s|}.$ $D$ is fixed as shown in the Tab.1, and the
correlation time $T_{\gamma}$ $:=1/\gamma$ is a control parameter.

To measure the unpredictability of the laser chaos, we define a
correlation coefficient of the amplitude of the electric fields $E(t)$ . Here,
we write the laser state and the noise state as $(x, \xi)$ , and their time
evolutions as

$(x(T), \xi(T))=\varphi_{\gamma,i}^{T}(x(0), \xi(0))$ , (3)

where $\varphi_{\gamma,i}^{T}$ is a time evolution operator defined by the evolution $equaf_{t}$

tions (1), (2) with the parameter $\gamma$ . The subscript $i$ represents the
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index of the noise realization, $i.e$ . the different indices mean the differ-
ent noise realizations, which cause the different time evolutions though
the initial conditions are same; $\varphi_{\gamma,1}^{T}(x(O), \xi(0))\neq\varphi_{\gamma,2}^{T}(x(0), \xi(0))$ . Us-
ing these notation, we define the correlation coeffcient as

$C(T_{\gamma}, T_{s}):= \frac{\langle\tilde{E}(\varphi_{\gamma,1}^{T_{s}}(x,\xi))\tilde{E}(\varphi_{\gamma,2}^{T_{s}}(x,\xi))\rangle}{Var(\tilde{E})}$

(4)

where $\tilde{E}$ is a fluctuation part of $E;\tilde{E}(x)=E(x)-\langle E\rangle$ , and $T_{s}$ is

the RBG sampling time. The correlation coefficient $C(T_{\gamma}, T_{s})$ evalu-
ates how fast the correlation vanishes by the difference of the noise

realization only. $C(T_{\gamma}, T_{8})$ can be used as an indicator of the unpre-
dictability of the RBG, i.e. $C(T_{\gamma},T_{s})=0$ indicates that the RBG is
unpredictable.

We examine the parameter dependence of the correlation coeffi-
cient $C(T_{\gamma}, T_{s})$ as shown in Fig.1. The darker area corresponds to
the lower correlation $C(T_{\gamma}, T_{s})\simeq 0$ , and the lighter area corresponds
to the higher correlation $C(T_{\gamma}, T_{s})\simeq 1$ . Let us consider the func-
tional relation $T_{s}=f(T_{\gamma})$ defined by the boarder between the area
$C(T_{\gamma}, T_{s})>0$ and the area $C(T_{\gamma}, T_{s})=$ O. The light blue curve in
the figure is defined by $C(T_{\gamma}, T_{s})=0.1$ as a reference. The results
show that the longer the noise correlation time $T_{\gamma}$ is, the longer the

required sampling interval. $T_{s}$ is. Interestingly, in the long correlation
time region $(T_{\gamma}\gg 1)$ , the required sampling interval depends on the
noise correlation time $T_{\gamma}$ logarithmically as $T_{s}\propto logT_{\gamma}.$

As a reference, in the case of the bistable RBG, the required
sampling interval is linearly proportional to the correlation time as
$T_{s}\propto T_{\gamma}$ . Thus, as we increase the noise correlation time $T_{\gamma}$ , the sam-
pling interval $T_{s}$ in the case of the chaos laser gets longer with a slower
speed than that in the case of the bistable case. In this sense, the laser
chaos RBG is robust to the noise correlation, and in particular more
robust tha the bistable RBG.

4 Conclusion

We study the noise-robustness of an RBG using a chaotic laser mod-
eled by the Lang-Kobayashi equation, in particular the robustness
to the temporal correlation of the noise. It is found that the RBG
by the chaos laser is robust in the sense that the required sampling
interval depends on the noise correlation time $T_{\gamma}$ logarithmically as
$T_{s}\propto\log T_{\gamma}$ in the long correlation time region $(T_{\gamma}\gg 1)$ , which is
more robust than the bistable RBG case ( $T_{s}\propto T_{\gamma}$ for all $T_{\gamma}$ ).
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Fig. 1: The correlation coefficient $C(T_{\gamma}, T_{s})$ for temporally correlated noise.
The light blue curve is defined by $C(T_{\gamma}, T_{s})=0.1$ . The white broken line
represents $T_{s}\propto 0.5\log T_{\gamma}$ as a reference of the discussion in the appendix A.

Appendix A Why $T_{s}\propto\log T_{\gamma}(T_{\gamma}\gg 1)$

$?$

Let us consider an equation of motion with noise $dx/dt=F(x)+\xi_{x}$

and $dy/dt=F(y)+\xi_{y}$ . Initially, we suppose $\delta(0)=\Delta(0)=0$ , where
$\delta(t)=y(t)-x(t)$ and $\Delta(t)=\xi_{y}(t)-\xi_{x}(t)$ . An error vector $\delta$ is
governed by a variational equation $d\delta(t)/dt=DF_{x}\delta(t)+\Delta(t)$ , where
$DF_{x}$ is Jacobian matrix at $x.$

Initially, the error vector $\delta$ is governed by $d\delta(t)/dt\simeq\Delta(t)$ . Consid-
ering $\xi_{x}(t)$ , $\xi_{y}(t)$ as the OU process (see (2)) and the evolution equation
$d\delta(t)/dt=\Delta(t)$ , we can obtain

$\langle\triangle^{2}(t)\rangle=2\langle\xi^{2}(t)\rangle=2D(1-e^{-2\gamma t})$ (5)

$\langle\delta^{2}(t)\rangle=\frac{4D}{\gamma}(t-\frac{2}{\gamma}(1-e^{-\gamma t})+\frac{1}{2\gamma}(1-e^{-2\gamma t}))$ . (6)

Here we study the case of $\gamma\ll 1(T_{\gamma}\gg 1)$ and $t=0(1)$ $(or t\ll 1)$ ,
thus, the variance mentioned above can be approximated by [8]

$\langle\Delta^{2}(t)\rangle=4\gamma Dt$ (7)

$\langle\delta^{2}(t)\rangle=\frac{4\gamma D}{3}t^{3}$ . (8)

We compare the term in the variation equation $d\delta(t)/dt=DF_{x}\delta(t)+$

$\triangle(t)$ , and we find that there is a $\gamma$ independent transition time $\tilde{t}$ as
follows: the evolution of the error vector is dominated by the OU
noise $d\delta(t)/dt\simeq\Delta(t)$ $(0\leq t\ll\tilde{t})$ and by the chaotic dynamics
$d\delta(t)/dt\simeq DF_{x}\delta(t)$ $(t\gg\tilde{t})$ . The transition time is $\tilde{t}=\sqrt{3}c(c=$

const which is given by $c\sqrt{\langle\delta^{2}(\tilde{t})\rangle}=\sqrt{\langle\Delta^{2}(\tilde{t})\rangle}.$
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The time taken until a microscopic noise $\delta$ grows to be a macro-
scopic one $A$ is

$T:= \tilde{t}+\frac{1}{\lambda}\ln(\frac{A}{\sqrt{4\gamma D/3}\tilde{t}^{3/2}})$ . (9)

Here, we assume that the maximum Lyapunov exponent $\lambda$ does not
depend on the existence of the noise term. If $T_{s}\gg T$ , there are no
correlation between states $x$ and $y$ , i.e. $C\simeq 0$ , and if $T_{s}\ll T$ , the
states $x$ and $y$ are correlated, i.e. $C>$ O. Therefore, $T_{s}=f(T_{\gamma})$ is
given by

$T_{s}=f(T_{\gamma})= \tilde{t}+\frac{1}{\lambda}$ In $( \frac{A}{\sqrt{4D/3}\tilde{t}^{3/2}})+\frac{1}{2\lambda}$ In $T_{\gamma}$ . (10)

When the system is purely deterministic (no noise), the maximum
Lyapunov exponent is calculated as $\lambda\sim 2.6$ . Using this result, the

slope of the function $T_{s}=f(T_{\gamma})$ at $T_{\gamma}\gg 1$ is $\frac{l}{2\lambda\log_{10}e}\sim 0.45$ from tbe
above argument, which is near the slope in the Figure 2.
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