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Introduction

Throughout this report, we fix a commutative ring $K$ and a parameter $q\in$ K.
For a natural number $n\in \mathbb{N}=\{0$ , 1, 2, . . . $\}$ , we denote by $H_{n}=H_{n}(q)$ the Iwahori-
Hecke algebra of type $A_{n-1}$ generated by elements $T_{1},$ $T_{2}$ , . . . , $T_{n-1}$ with defining
relations

$T_{i}T_{j}=T_{j}T_{i}$ if $|i-j|\geq 2,$ $T_{i}T_{i+1}T_{i}=T_{i+1}T_{i}T_{i+1},$ $(T_{i}-q)(T_{i}+1)=0.$

Let $\mathfrak{S}_{n}$ denotes the symmetric group of rank $n$ . Then it is known that for each
$w\in \mathfrak{S}_{n}$ with a reduced expression $w=s_{i_{1}}s_{i_{2}}\cdots s_{i_{r}}$ the element $T_{w}:=T_{i_{1}}T_{i_{2}}\cdots T_{i_{r}}$

is well-defined, and that the set $\{T_{w}|w\in \mathfrak{S}_{n}\}$ forms a basis of $H_{n}$ . Hence it is
considered as a $q$-analogue of the symmetric group algebra $k\mathfrak{S}_{n}$ . The Iwahori-
Hecke algebra $H_{n}$ is one of the most important algebra in representation theory. It
first comes from a study of flag varieties over the finite fields, and also appears as
an endomorphism algebra of a certain representation of the quantum general linear
group via an analogue of the Schur-Weyl duality.

Now let $H_{n}$-Mod denotes the (left) module category of $H_{n}$ . In his recent work
the author introduce a family of new categories $\underline{H}_{t}$-Mod indexed by a parameter $t$

which is not necessarily an integer, which “interpolates” ordinary module categories
$H_{n}$-Mod for $n\in \mathbb{N}$ in the following sense. First we introduce an index set $B_{q}(K)$

which contains $\mathbb{N}$ as a subset. An element of $B_{q}(K)$ is called a $q$ -binomial sequence
in K. Now for a while we assume that $q\in K$ is invertible for simplicity. Then for
each $q$-binomial sequence $t\in B_{q}(K)$ , the category $\underline{H}_{t}-\mathcal{M}od$ is defined. We call an
object in $\underline{H}_{t}-\mathcal{M}od$ a fakemodule over $\underline{H}_{t}$ , though “the algebra $\underline{H}_{t}$

” itself does not
really exist. When $t=n\in \mathbb{N}$ , there is an equipped functor

$P:H_{n}-\mathcal{M}odarrow H_{n}-\mathcal{M}od$

called the realization functor, which sends $\underline{H}_{n}$-fakemodules to ordinary $H_{n}$-modules.
This realization functor is full and surjective, so the category $H_{n}-\mathcal{M}od$ can be identi-
fied with a quotient category of $\underline{H}$ $od$ . The structure of the fakemodule category
$\underline{H}_{t}-\mathcal{M}od$ captures a behavior of stable structures of usual $H_{n}$-Mod for $n\gg O$ . It is
sometimes simpler than the usual ones, since its $hom$-spaces almost do not depend
on the choice of $t$ . Based on this property, its super-version $\underline{H}_{t}^{c}-\mathcal{M}od$ , which is the
module category of the Hecke Clifford superalgebra $H_{n}^{c}$ in non-integral rank, is used
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by the author [Mor14] to determine the generalized cellular structure of the ordinal
module category of $H_{n}^{c}.$

This work is a part of “representation theory in non-integral rank”’ developed by
Deligne. In his study of tensor categories, he defined the representation category
of linear algebraic groups $GL_{t}$ [DM82, De190], $O_{t}$ and $Sp_{t}$ [De190], and recently
$\mathfrak{S}_{t}$ [De107] for the rank $t\in \mathbb{C}$ , which is not necessarily an integer. These are
symmetric tensor categories which interpolate the ordinal representation categories
similarly as described above. Comes and his coauthors study the structures of these
categories for $\mathfrak{S}_{t}$ [COII, CK12] and $GL_{t}$ [CW12, Com12] in detail. Recall that
the Tannaka-Krein duality allows us to reconstruct an algebraic group from its
representation category along with its symmetric tensor structure. In this point of
view, by the duality we can regard these tensor categories as generalized groups.

The variations of Deligne’s category are studied in several ways. Knop [Kno06,
Kno07] defined a wide generalization of Deligne’s category, which includes ones for
the finite general linear groups $GL_{t}(\mathbb{F}_{q})$ and the wreath product $G^{t}\rangle\triangleleft \mathfrak{S}_{t}$ for a finite
group $G$ . The author [Mor12] also studied the wreath product of algebras as taking
the symmetric tensor product $Sym_{t}(C)$ of a category $C$ . Etingof [Eti14] considered
many non-compact representations such as degenerate affine Hecke algebras studied
by Mathew [Mat13].

Our $\underline{H}_{t}-\mathcal{M}od$ is considered as a $q$-analogue of the Deligne’s category for $\mathfrak{S}_{t}$ . In
fact, when the classical case $q=1,$ $\underline{H}_{t}-\mathcal{M}od$ contains Deligne’s category as a full
subcategory. When $K$ is a field of characteristic zero, Deligne’s category consisting
of all finitely presented objects in $\underline{H}_{t}-\mathcal{M}od$ . In contrast, in the modular case our
$\underline{H}_{t}-\mathcal{M}od$ has more objects than Deligne’s category.

1. Stable structures of the module category

1.1. Parabolic modules. A composition $\lambda=(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r})$ of $n\in \mathbb{N}$ is a
finite tuple of natural numbers $\lambda_{i}\in \mathbb{N}$ such that $| \lambda|:=\sum_{i}\lambda_{i}=n$ . For such $\lambda$ , let
$H_{\lambda}\subset H_{n}$ denotes the corresponding parabolic subalgebra

$H_{\lambda}:=H_{\lambda_{1}}\otimes H_{\lambda_{2}}\otimes\cdots\otimes H_{\lambda_{r}}\mapsto H_{n}.$

Let $km_{\lambda}$ be the trivial module of $H_{\lambda}$ spanned by $m_{\lambda}$ on which each $T_{w}\in H_{\lambda}$ acts
by a scalar $q^{\ell(w)}$ . Its induced $H_{n}$-module

$M_{\lambda}:=H_{n}\otimes_{H_{\lambda}}Km_{\lambda}$

is called the parabolic module. For example, $1_{n}:=M_{(n)}$ is the trivial module of $H_{n}$

and $M_{(1^{\mathfrak{n}})}\simeq H_{n}$ is its left regular representation where $(1^{n}):=(1,1, \ldots, 1)$ .
To represent elements of these parabolic modules and homomorphisms between

them, we here introduce notions on tableaux. As usual, the Young diagram of a
composition $\lambda$ is defined by

$Y(\lambda):=\{(i,j)|1\leq i, 1\leq j\leq\lambda_{i}\}.$

A row-semistandard tableau of shape $\lambda$ is a function $T:Y(\lambda)arrow\{1$ , 2, . . . $\}$ which
satisfies $T(i,j)\leq T(i,j+1)$ for each pair of adjacent boxes $(i,j)$ , $(i,j+1)\in Y(\lambda)$ ,
that is, entries in each row of $T$ are weakly increasing. The weight of such tableau
is a composition $\mu=(\mu_{1}, \mu_{2}, \ldots)$ whose i-th component is $\mu_{i}:=\#T^{-1}(i)$ . We
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denote by $Tab_{\lambda;\mu}$ the set of row-semistandard tableaux of shape $\lambda$ and weight $\mu$ . For
example,

$Tab_{(2,3);(3,1,0,1)}=\{_{\frac{\underline{\frac{11}{12}}4}{}}, \frac{\frac{12}{11}4}{}, \frac{\underline{\frac{14}{11}}2}{}, \}.$

A row-semistandard tableau is called a row-standard tableau if its weight is $(1^{n})$ .
We denote by $Tab_{\lambda}:=Tab_{\lambda;(1^{n})}$ the set of row-standard tableaux of shape $\lambda.$

The $k$-module $M_{\lambda}$ $($ resp. $Hom_{H_{n}}(M_{\mu}, M_{\lambda}))$ has a basis parametrized by the set
$Tab_{\lambda}$ (resp. $Tab_{\lambda;\mu}$ ) described as follows. First for a row-standard tableau $T$ , let
$d(T)\in \mathfrak{S}_{n}$ be a permutation obtained by reading its entries from left to right for
each rows from top to bottom. For example,

corresponds to $d(T)=(\begin{array}{llllllll}1 2 3 4 5 6 7 81 2 4 5 3 7 8 6\end{array})=\mathcal{S}_{3}S_{4}S_{6}\mathcal{S}_{7}.$

For each $T\in Tab_{\lambda}$ , we let $m_{T}:=T_{d(w)}m_{\lambda}\in M_{\lambda}$ . Then one can prove that the set
$\{m_{T}|T\in Tab_{\lambda}\}$ forms a basis of $M_{\lambda}$ . Suppose each number $i$ is contained in the
$r(i)$ -th row of T. The action of $H_{n}$ on it is described as

$T_{i}\cdot m_{T}=\{\begin{array}{ll}qm_{T} if r(i)=r(i+1) ,m_{s_{i}T} if r(i)<r(i+1) ,qm_{T}+(q-1)m_{s_{i}T} if r(i)>r(i+1) .\end{array}$

Next take two compositions $\lambda,$
$\mu$ of $n$ . For $S\in Tab_{\lambda;\mu}$ , we denote by $Tab_{S}$ the set

$\{T\in Tab_{\lambda}|T|_{\mu}=S\}$ where $T|_{\mu}$ is a row-semistandard tableau of weight $\mu$ obtained
from $T$ by replacing its entries 1, 2, . . . , $\mu_{1}$ by 1, $\mu_{1}+1$ , . . . , $\mu_{1}+\mu_{2}$ by 2, and so
forth. For example, for

we have

Since $M_{\mu}$ is a cyclic module, an $H_{n}$-homomorphism $M_{\mu}arrow M_{\lambda}$ is determined by the
value on $m_{\mu}$ . In this point of view, we have an isomorphism

$Hom_{H_{n}}(M_{\mu}, M_{\lambda})\simeq\{x\in M_{\lambda}|T_{w}x=q^{\ell(w)}x$ for all $T_{w}\in H_{\mu}\}.$

The right-hand side has a basis $\{m_{S}|S\in Tab_{\lambda;\mu}\}$ where $m_{S}:= \sum_{T\in Tab_{S}}m_{T}$ . When
there are no risks of confusions, we denote by the same symbol $m_{S}$ the corresponding
$H_{n}$-homomorphism $M_{\mu}arrow M_{\lambda}.$

1.2. Induced modules. The direct sum category $\oplus_{n}(H_{n}-\mathcal{M}od)$ has the struc-
ture of tensor category by the convolution product $*$ defined as

$V*W:=H_{m+n}\otimes_{H_{(m,n)}}(V\otimes W)\in H_{m+n}$-Mod

for $V\in H_{m}-\mathcal{M}od$ and $W\in H_{n}-\mathcal{M}od,$ where $\otimes$ denotes the outer tensor product of
modules. For example, for a composition $\lambda=(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r})$ the parabolic module
$M_{\lambda}$ can be expressed as

$M_{\lambda}\simeq 1_{\lambda_{1}}*1_{\lambda_{2}}*\cdots*1_{\lambda_{r}}.$
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We define the induction functor as taking convolution with the trivial module. It
plays a central role in what follows.

DEFINITION 1.1. Let $k,$ $n\in \mathbb{N}$ . For an $H_{n}$-module $V$ , we denote by $Ind_{k}V$ the
$H_{k+n}$-module

$Ind_{k}V:=1_{k}*V.$

This defines a functor $Ind_{k}:H_{n}-\mathcal{M}odarrow H_{k+n^{-}}\mathcal{M}od$ between module categories.

Since the action $H_{k+n}\cap H_{(k,n)}$ is free, it follows that the functor $Ind_{k}$ is exact.
More strongly we can prove that this functor has both left and right adjoint.

DEFINITION 1.2. Let $k,$ $n\in \mathbb{N}$ . For an $H_{k+n}$-module $W$ , we define $H_{n}$-modules

${\rm Res}_{k}W:=Hom_{H_{(k,n)}}(1_{k}\otimes H_{n}, W|_{(k,n)})$

$\simeq\{x\in W|T_{i}x=qx$ for $1\leq i\leq k\},$

${\rm Res}_{k}’W:=(H_{n}\otimes 1_{k}^{*})\otimes_{H_{(n,k)}}W|_{(n,k)}$

$\simeq W/\sim$ , where $T_{i}x\sim qx$ for $n+1\leq i\leq n+k$

where we denote by $W|_{\lambda}$ the restricted $H_{\lambda}$-module. ${\rm Res}_{k}$ and ${\rm Res}_{k}’$ are functors
$H_{k+n^{-}}\mathcal{M}odarrow H_{n}-\mathcal{M}od.$

PROPOSITION 1.3. ${\rm Res}_{k}$ (resp. ${\rm Res}_{k}’$) is a right (resp. lefl) adjoint of $Ind_{k}.$

Now for a convention, we let $H_{n}-\mathcal{M}od:=\{O\}$ for $n\in \mathbb{Z}$ such that $n<0$ . We also
extend the definitions of the functors above for $k,$ $n\in \mathbb{Z}$ so that these are zero when
the condition $k,$ $n\geq 0$ is not satisfied. For two induced modules, we can describe
the set of homomorphisms between them as follows.

THEOREM 1.4. Let $d,$ $m,$ $n\in \mathbb{N}$ such that $m,$ $n\leq d$ . For each $V\in H_{m}-\mathcal{M}od$ and
$W\in H_{n}-\mathcal{M}od$ , there is an isomorphism of $K$ -modules

$Hom_{H_{d}}(Ind_{d-m}V, Ind_{d-n}W)\simeq\bigoplus_{m+n-d\leq i}Hom_{H_{i}}({\rm Res}_{m-i}’V, {\rm Res}_{n-i}W)$

natural in $V$ and $W.$

The summand in the right-hand side above is zero unless $0\leq i\leq m,$ $n$ . In
particular, as we varies the rank $d\in \mathbb{N}$ larger, this set is stable for $d\geq m+n$ . This
phenomenon suggests us that there should be a category which covers $H_{d^{-}}\mathcal{M}od$ and
has the $hom$-sets in the form

$\bigoplus_{i}Hom_{H_{i}}({\rm Res}_{m-i}’V, {\rm Res}_{n-i}W)$
,

the stable set which does not depend on $d$ . We realize this imaginary category as
$\underline{H}$ $od$ , the category of fakemodules, in the next section.

Note that a parabolic module $M_{\lambda}$ is a special case of induced modules, that is,
we can write $M_{\lambda}\simeq Ind_{\lambda_{1}}M_{\lambda’}$ where $\lambda’=(\lambda_{2}, \ldots, \lambda_{r})$ . Taking $d\gg O$ corresponds to
considering Young diagrams whose first rows are very long:

The theorem says that the structure of the module category will be stable for such
Young diagrams with sufficiently long first rows.
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1.3. String diagrams. In order to explain the isomorphism in Theorem 1.4
precisely, we introduce string diagrams which are useful for calculation in theory
of 2-categories. In a diagram we visualize a functor by a colored string. The right
(resp. left) region separated by a string stands for the domain (resp. codomain)
category of the corresponding functor. A composite of these functors is represented
by a sequence of strings arranged horizontally. In particular, the identity functor is
represented by the “no strings”’ diagram. A natural transformation between such
functors are represented by a figure connecting these sequences from top to bottom.

In this report, we represent the functor $Ind_{k}$ by a down arrow $\downarrow$ , and both
${\rm Res}_{k},$ ${\rm Res}_{k}’$ by up arrows $\uparrow$ which are labeled by $k$ . For example, $f:Ind_{3}{\rm Res}_{6}arrow$

${\rm Res}_{4}{\rm Res}_{1}Ind_{2}$ is represented by a figure like

Note that the diagram above can not distinguish ${\rm Res}_{k}$ from ${\rm Res}_{k}’$ , but we only use
diagrams when it is clear from the context.

The adjointness between $Ind_{k}$ and ${\rm Res}_{k}$ yields natural transformations

$\delta_{k}:Idarrow{\rm Res}_{k}Ind_{k}, \epsilon_{k}:Ind_{k}{\rm Res}_{k}arrow Id$

called the unit and the counit respectively. We represent these morphisms by the
cap and the cup diagrams:

We also have the the unit $\delta_{k}’$ : $Idarrow Ind_{k}{\rm Res}_{k}’$ counit $\epsilon_{k}’:{\rm Res}_{k}’Ind_{k}arrow Id$ induced by
the other adjunction. We represent them by the same diagrams as above but arrows
are reversed:

Now let $k,$ $l\in \mathbb{N}$ . We define three $H_{k+l}$-homomorphisms

$\mu(k,l):M_{(k,l)}arrow 1_{k+l},$ $\triangle_{(k,l)}:1_{k+l}arrow M_{(k,l)}$ $\sigma_{(k,l)}:M_{(l,k)}arrow M_{(k,l)}$

which correspond to the row-semistandard tableaux

respectively. These homomorphisms induce natural transformations between func-
tors $H_{n}-\mathcal{M}odarrow H_{k+l+n}$-Mod,

$\mu_{(k,l)}:Ind_{k}Ind_{l}arrow Ind_{k+l},$ $\triangle_{(k,l)}:Ind_{k+l}arrow Ind_{k}Ind_{l},$ $\sigma_{(k,l)}:Ind_{l}Ind_{k}arrow Ind_{k}Ind_{l}$

which we denote by the same symbols. Again, if $k$ and $l$ do not satisfy $k,$ $l\geq 0$ , then
these morphisms are defined to be zero. We represent these natural transformations
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by the string diagrams

$\Delta_{(k,l)}=k\bigwedge_{l}^{k+l} \sigma_{(k,l)}=kl\nearrow\backslash _{l}^{\int k},$

that is, junction, branch, and crossing of strings respectively. Finally, an obvious
isomorphism $Ind_{0}\simeq Id$ and its inverse are represented by broken strings:

$0\downarrow$

and $0\uparrow.$

Now the isomorphism in Theorem 1.4 can be represented as follows. For an $H_{i^{-}}$

homomorphism $f:{\rm Res}_{m-i}’Varrow{\rm Res}_{n-i}W$ in the right-hand side, the corresponding
$H_{d}$-homomorphism $Ind_{d-m}Varrow Ind_{d-n}W$ can be illustrated as

The theorem follows by studying the double cosets $\mathfrak{S}_{(d-m,m)}\cap \mathfrak{S}_{n}\wedge \mathfrak{S}_{(d-n,n)}.$

2. The category of fakemodules

2.1. Binomial sequences. Before we proceed to the main definition, we need
to explain the index set $B_{q}(K)$ of $q$-binomial sequences. The key point of our theory is
that the composition of certain $H_{n}$-homomorphism can be computed by $q$ -binomial
coeffients. Here a $q$-binomial coeffient $\{\begin{array}{l}nk\end{array}\}$ for $n,$

$k\in \mathbb{N}$ is defined as

$\{\begin{array}{l}nk\end{array}\}:=\frac{[n][n-1]\cdots[n-k+1]}{[1][2]\cdots[k]}=\frac{[n]!}{[k]![n-k]!}$

where $[i]:=1+q+\cdots+q^{i-1}$ is the $q$-integer and $[i]!:=[1][2]\cdots[i]$ is the $q$-factorial.
This rational function for the variable $q$ actually is in the polynomial ring $\mathbb{Z}[q]$ , so
assigning the actual value of $q\in k$ we can regard $\{\begin{array}{l}nk\end{array}\}\in k.$ A $q$-binomial sequence is
a generalization of the function $Narrow k;k\mapsto\{\begin{array}{l}nk\end{array}\}$ for $n\in \mathbb{N}.$

DEFINITION 2.1. A $q$ -binomial sequence in $K$ is a function $t:\mathbb{N}arrow k$ , whose
values are written as $k\mapsto\{\begin{array}{l}tk\end{array}\}$ , which satisfies

$\{\begin{array}{l}t0\end{array}\}=1$ and $\{\begin{array}{l}tk\end{array}\}\{\begin{array}{l}tl\end{array}\}=\sum_{0\leq i\leq k,l}q^{(k-i)(l-i)}\{\begin{array}{l}li\end{array}\}\{k +l-il\} \{\begin{array}{ll} tk +l-i\end{array}\}.$

We denote by $B_{q}(K)$ the set of all $q$-binomial sequences in K.

When $q=1$ , a 1-binomial coefficient $\{\begin{array}{l}nk\end{array}\}$ is just the ordinary binomial coefficient
$(\begin{array}{l}nk\end{array})$ . So we prefer writing a value of 1-binomial sequence as $(\begin{array}{l}tk\end{array})$ rather than $\{\begin{array}{l}tk\end{array}\}.$

As described above, each natural number defines a $q$-binomial sequence. Namely:

LEMMA 2.2. For each $n\in \mathbb{N}$ , the function $k\mapsto\{\begin{array}{l}nk\end{array}\}$ is a $q$ -binomial sequence.
Moreover, the map $\mathbb{N}arrow B_{q}(K)$ is injective.
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Henceforth we regard $\mathbb{N}$ as a subset of $B_{q}(K)$ via this embedding. Interestingly
the addition on $\mathbb{N}$ can be lifted to the whole set $B_{q}(k)$ as follows, which makes it
into a commutative monoid.

PROPOSITION 2.3. For two $q$ -binomial sequences $t$ and $u$ , let

$\{\begin{array}{ll}t+ uk \end{array}\}(\begin{array}{l}i2\end{array})\{\begin{array}{l}k-ji\end{array}\}\{\begin{array}{ll}i+ ji \end{array}\}\{\begin{array}{l}tk-j\end{array}\}\{\begin{array}{ll}u i+ j\end{array}\}.$

Then $t+u$ is also a $q$ -binomial sequence. $B_{q}(K)$ forms a commutative monoid with
respect to this addition and the unit element O.

Now in the examples below we assume that $K$ is a field. We here give the complete
classification of $q$-binomial sequences under this assumption. Let $e:=char_{q}k$ be the
$q$ -characteristic of $k$ , the minimum positive number such that $[e]=0$ . When there
are no such numbers we let $e=0$ for convention.

EXAMPLE 2.4. When $q=0$ , we have $B_{0}(K)=\mathbb{N}\cup\{\infty\}$ . Here $\infty$ is a $q$-binomial
sequence which satisfy $\infty+t=\infty$ for all $t\in B_{q}(K)$ defined by

$\{\begin{array}{l}\infty k\end{array}\}:=\frac{1}{(1-q)(1-q^{2})\cdots(1-q^{k})}$

when $1-q^{i}(i\geq 1)$ are all invertible. In this case we have just $\{\begin{array}{l}\infty k\end{array}\}=1$ for all $k.$

EXAMPLE 2.5. Suppose $q\neq 0$ and $e=0$ . Then the map

$B_{q}(K)arrow K$

$t\mapsto[t]$

where $[t]:=\{\begin{array}{l}t1\end{array}\}$ is bijective. For each $x\in K$ , the corresponding $t\in B_{q}(K)$ such that
$x=[t]$ is given by

$\{\begin{array}{l}tk\end{array}\}:=q^{-(\begin{array}{l}i2\end{array})}\frac{x(x-[1])\cdots.(.x-[k-1])}{[1][2]\cdot[k]}.$

Beware that this bijection does not preserve addition unless $q=1.$

EXAMPLE 2.6. When $e>0$ , there is an exact sequence of commutative monoids

$0arrow B_{1}(K)arrow B_{q}(K)arrow \mathbb{Z}/e\mathbb{Z}arrow 0.$

Moreover if $q=1$ (i.e. $e=$ char $K>0$) naturally $B_{1}(K)=\mathbb{Z}_{e}$ , the set of $e$-adic
integers. In this case the values for $n\in \mathbb{Z}_{e}$ is given by

$(\begin{array}{l}nk\end{array}):=(\begin{array}{lll}n mod e^{k} k \end{array})$

which is well-defined modulo $e$ by Lucas’s theorem.

We will use such a $q$-binomial sequence $t$ to specify the (rank” of the “Iwahori-
Hecke algebra $\underline{H}_{t}$

” However, in the following construction of its fakemodule cate-
gory, we will need to use $q$-binomial sequencs $t-m$” for all $m\in \mathbb{N}$ . Its uniqueness
is guaranteed by the next lemma, while its existence is not in general.

LEMMA 2.7. The $\mathcal{S}hifl$ map $B_{q}(K)arrow B_{q}(K);t\mapsto t+1$ is injective. It is also
surjective if and only if $q\in K$ is invertible.
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Hence we have to use $q$-binomial sequences only which have following property:

DEFINITION 2.8. A $q$ -binomial sequence $t$ in $k$ is said to be total if $t-m$ exists
for all $m\in \mathbb{N}$ . We denote by $B_{q}^{+}(K)$ the set of total $q$-binomial sequences; so

$B_{q}^{+}( k):=\bigcap_{m\in N}(B_{q}(k)+m)$
.

The subset $B_{q}^{+}(k)$ is an ideal of $B_{q}(K)$ with respect to the addition. As we noted
above, if $q$ is invertible then $B_{q}^{+}(k)=B_{q}(k)$ . On the other hand, for $q=0$ we have
just $B_{0}^{+}(k)=\{\infty\}.$

2.2. The category of induced fakemodules. Now let $t\in B_{q}^{+}(k)$ be a total
$q$-binomial sequence in $k$ . In order to define the whole category $\underline{H}_{t}-\mathcal{M}od$ , we first
need to introduce its full subcategory $\underline{H}_{t}-\mathcal{M}od_{0}$ . An object of $\underline{H}_{t}-\mathcal{M}od_{0}$ is written as
$\underline{Ind}_{t-m}V$ , and called an induced fakemodule. It is made to imitate the behaviors of
the ordinary induced module $Ind_{d-m}V$ which we introduced in the previous section.
We define the category $\underline{H}_{t}-\mathcal{M}od_{0}$ in terms of generators and relations as follows.

DEFINITION 2.9. An object in the category $\underline{H}_{t}-\mathcal{M}od_{0}$ is an $H_{m}$-module $V$ for
some $m\in \mathbb{N}$ , represented by the symbol $\underline{Ind}_{t-m}V$ . Morphisms between these objects
are generated by

$\underline{Ind}_{t-m}f:\underline{Ind}_{t-m}Varrow\underline{Ind}_{t-m}W,$

defined for each $H_{m}$-homomorphism $f:Varrow W$ , and

$A_{(t-m-k,k)}V:\underline{Ind}_{t-m-k}Ind_{k}Varrow\underline{Ind}_{t-m}V,$

$\underline{\Delta}_{(t-m-k,k)}V:\underline{Ind}_{t-m}Varrow\underline{Ind,_{-m-k}}Ind_{k}V$

defined for each $H_{m}$-module $V$ and $k\in \mathbb{N}$ , with relations listed below. The first two
of them are:

(a) $\underline{Ind}_{t-m}$ is a $k$-linear functor $H_{m}-\mathcal{M}odarrow\underline{H}_{t}-\mathcal{M}od$ . That is,

$\underline{Ind}_{t-m}id_{V}=id_{\underline{Ind}_{t-m}V}, \underline{Ind}_{t-m}(f\circ g)=\underline{Ind}_{t-m}f\circ\underline{Ind}_{t-m}g$

and
$\underline{Ind}_{t-m}(af+bg)=a\cdot\underline{Ind}_{t-m}f+b\cdot\underline{Ind}_{t-m}g$

for suitable $H_{m}$-homomorphisms $f,$ $g$ and scalars $a,$ $b\in k.$

(b) $g_{(t-m-k,k)}$ and $\underline{\triangle}_{(t-m-k,k)}$ are both natural transformations between functors
$H_{m}-\mathcal{M}odarrow\underline{H},-\mathcal{M}od$ , respectively $\underline{Ind}_{t-m-k}Ind_{k}\vec{-}\underline{Ind}_{t-m}$ . That is, the
square below and its dual commute for any $H_{m}$-homomorphism $f:Varrow W$ :

$\underline{Ind}_{t-m-k}Ind_{k}V^{1}arrow\underline{Ind}_{t-m}V4_{(t-m-k,k)^{V}}$

$\underline{Ind}_{t-m-k}Ind_{k}f\downarrow |\underline{Ind}_{t-m}f$

$\underline{Ind}_{-m-k}Ind_{k}Warrow\underline{Ind}_{t-m}W.$
$A_{(t-n-k,k)}W$

The rest relations are represented by diagrams as we do before. To represent the
functor $\underline{Ind}$ and the natural transformations $g$ and $\underline{\Delta}$ , we use same diagrams as
$Ind,$ $\mu$ and $\triangle$ . Here arrows which represent $\underline{Ind}$ always appear in leftmost of each
diagram.

28



THE MODULE CATEGORY OF THE IWAHORI-HECKE ALGEBRA

(1) The associativity and the coassociativity laws:

(2) The unit and the counit laws:

(3) The graded bialgebra relation:

(4) The bubble elimination:

As we mentioned above, an object and a morphism in $\underline{H}_{t}-\mathcal{M}od$ is called an $\underline{H}_{t^{-}}$

fakemodule and an $\underline{H}_{t}$ -fakemorphism respectively. We denote by $Hom_{\underline{H}_{t}}$ the set of
fakemorphisms between fakemodules instead of $Hom_{\underline{H}_{t}-\mathcal{M}od_{0}}$ for simplicity.

When the rank $t$ is an usual integral rank $d\in \mathbb{N}$ , the relations above are easily
verified. Hence there is a canonical functor $P:\underline{H}$ $od_{0}arrow H_{d}$-Mod which sends
$\underline{Ind}_{d-m}$ to $Ind_{d-m},$ $g_{(d-m-k,k)}$ to $\mu_{(d-m-k,k)}$ and $\underline{\triangle}_{(d-m-k,k)}$ to $\triangle_{(d-m-k,k)}$ . We call
it the realization functor which realize a module from a fakemodule. Note that
we have a natural isomorphism $Ind_{0}V\simeq V$ , and $Ind_{0}f=f$ for $f:Varrow W$ via
this isomorphism. The category $\underline{H}_{d}-\mathcal{M}od_{0}$ has the corresponding object $\underline{Ind}_{0}V$ and
the morphism $\underline{Ind}_{0}f$ so that the functor $P$ is full and surjective. However, in the
definition we use values of $q$-binomial coefficients $\{\begin{array}{l}d-mk\end{array}\}$ for negative integers. So in
order to define $\underline{H}$ $od_{0}$ we must have that the $q$-binomial sequence $d$ is total, or
equivalently, $q\in K$ is invertible. Summarizing the above:

PROPOSITION 2.10. Suppose that $q\in K$ is invertible. Then for each $d\in \mathbb{N}$ , there
is a full and surjective functor $P:-H_{A}-\mathcal{M}od_{0}arrow H_{d}$ -Mod such that $P\underline{Ind}_{d-m}=$

$Ind_{d-m},$ $Pg_{(d-m-k,k)}=\mu_{(d-m-k,k)}$ and $P\underline{\triangle}_{(d-m-k,k)}=\Delta_{(d-m-k,k)}.$

We remark that if $m>d$ then a module $Ind_{d-m}V$ is zero by definition while the
corresponding fakemodule $\underline{Ind}_{d-m}V$ is not. Actually, the kernel of the realization $P$

is generated by such fakemodules.
As we claimed before, we can completely describe the set of fakemorphisms in

$\underline{H}_{t}-\mathcal{M}od_{0}$ as follows.

THEOREM 2.11. For $V\in H_{m}-\mathcal{M}od$ and $W\in H_{n}$ -Mod, we have

$Hom_{\underline{H}_{t}}(\underline{Ind}_{t-m}V,\underline{Ind}_{t-n}W)\simeq\bigoplus_{i}Hom_{H_{i}}({\rm Res}_{m-i}’V, {\rm Res}_{n-i}W)$
.

This isomorphism is defined similarly as in Theorem 1.4 using $\underline{\triangle}$ and $g$ instead of
$\triangle$ and $\mu$ according to the string diagram in \S 1.3.
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Fkom this result immediately we obtain the statement below.

COROLLARY 2.12. Suppose $q$ is invertible and let $d\in \mathbb{N}$ . For $V\in H_{m}-\mathcal{M}od$ and
$W\in H_{n}-\mathcal{M}od$ , the realization on the morphisms

$Hom_{\underline{H}_{d}}(\underline{Ind}_{d-m}V,\underline{Ind}_{d-n}W)arrow Hom_{H_{d}}(Ind_{d-m}V, Ind_{d-n}W)$

is an isomorphism when $d\geq m+n.$

The fakemodule category has more morphisms than the ordinal module category,
which is usually hidden from our view.

2.3. Parabolic fakemodules. Recall that induction is taking convolution prod-
uct with the trivial module. By the definition of the category, we can define convo-
lution product of a fakemodule and a usual module as

$(\underline{Ind}_{t-m}V)*W:=\underline{Ind}_{t-m}(V*W)$

for each $V\in H_{m}-\mathcal{M}od$ and $W\in H_{n}-\mathcal{M}od$ . It defines a functor

$*:\underline{H} od_{0}\cross H_{n}-\mathcal{M}odarrow\underline{H}_{t+n}-\mathcal{M}od_{0}.$

We denote by $\underline{1}_{t}$ the trivial fakemodule $\underline{Ind}_{t}1_{0}$ . Then an induced fakemodule
can be also written as $\underline{Ind}_{t-m}V\simeq\underline{1}_{t-m}*V$ using the convolution. This product
is also associative, so it provides a structure of right $\oplus_{n}(H_{n}-\mathcal{M}od)$-module for the
category $\oplus_{m}(\underline{H}_{t} od_{0})$ .

Recall again that a parabolic module $M_{\lambda}$ is a special case of an induced module.
We here introduce parabolic fakemodules into our category $\underline{H}_{t}-\mathcal{M}od_{0}$ by imitating
this construction.

DEFINITION 2.13. Let $t$ be a total $q$-binomial sequence. A fakecomposition $\lambda=$

$(\lambda_{1}, \lambda’)$ of $t$ is a pair of a total $q$-binomial sequence $\lambda_{1}$ and a composition $\lambda’$ such
that $|\lambda|:=\lambda_{1}+|\lambda’|=t$ . For such $\lambda$ , we write $\lambda=(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots)$ where $\lambda_{i}:=\lambda_{i-1}’$

for $i\geq 2$ . Let $\underline{M}_{\lambda}\in\underline{H}_{t}-\mathcal{M}od_{0}$ be a fakemodule defined by

$\underline{M}_{\lambda}:=\underline{Ind}_{\lambda_{1}}M_{\lambda’}\simeq\underline{1}_{\lambda_{1}}*1_{\lambda_{2}}*1_{\lambda_{3}}*\cdots*1_{\lambda_{l}}.$

Let $\lambda$ and $\mu$ be two fakecompositions of $t$ . Let $\lambda|_{d}$ and $\mu|_{d}$ be corresponding
fakecompositions of $d\in \mathbb{N}$ obtained by replacing their first components. By Theo-
rem 2.11 the set of $H_{d}$-homomorphisms $M_{\mu|d}arrow M_{\lambda|d}$ stabilizes for sufficiently large
$d$ into the set of $\underline{H}_{t}$-fakemorphisms $\underline{M}_{\mu}arrow\underline{M}_{\lambda}$ . So as a basis of $Hom_{\underline{H}_{d}}(\underline{M}_{\mu},\underline{M}_{\lambda})$

we can take the set $Tab_{\lambda|d;\mu|d}$ for $d\gg O$ which converges to a finite set. Formally we
define

$\underline{Tab}_{\lambda;\mu}:=\underline{1i_{\mathfrak{R}_{t}d}}Tab_{\lambda|d;\mu|d}$

where the map $Tab_{\lambda|d;\mu|d}\mapsto Tab_{\lambda|d+1;\mu|d+1}$ is inserting 1 on the first row of the
tableau from left. For example, when $\lambda=(t-2,2)$ and $\mu=(t-3,2,1)$ , the set
$\underline{Tab}_{(t-2,2)_{)}\cdot(t-3,2,1)}$ consisting of the tableaux
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regardless of $t$ . We denote by the symbol $\underline{m}_{S}$ the fakemorphism $\underline{M}_{\mu}arrow\underline{M}_{\lambda}$ corre-
sponding to $S$ , so that the set $\{\underline{m}_{S}|S\in\underline{Tab}_{\lambda;\mu}\}$ is a basis of $Hom_{\underline{H}_{t}}(\underline{M}_{\mu},\underline{M}_{\lambda})$ . We
can also compute the composition of such fakemorphisms by regarding $t$ as a large
number.

When $q$ is invertible, for a fakecomposition $\lambda$ of $d\in \mathbb{N}$ the realization functor $P$

sends the fakemodule $\underline{M}_{\lambda}$ to $M_{\lambda}$ if $\lambda$ is a composition $($ that $is, \lambda_{1}\geq 0)$ and otherwise
O. For two compositions $\lambda$ and $\mu$ , the realization of fakemorphisms is given by

$P:Hom_{\underline{H}_{d}}(\underline{M}_{\mu},\underline{M}_{\lambda})arrow Hom_{H_{d}}(M_{\mu}, M_{\lambda})$

$\underline{m}_{S}\mapsto\{\begin{array}{ll}m_{S} if S\in Tab_{\lambda;\mu},0 otherwise.\end{array}$

More precisely, to realize the $\underline{H}_{d}$-fakemorphism $\underline{m}_{S}$ to an $H_{d}$-homomorphism $m_{S},$

we should cut off superfluous 1 $s$ in the first row of S. When there are not enough
such 1 $s$ , it produces a zero homomorphism. If $t=4$ in the example above, the
realization map for $\lambda=(2,2)$ and $\mu=(1,2,1)$ is given by

$- \mapsto-\frac{12}{\frac {}{}23}, -\mapsto\overline{\sqrt{223}^{1}}$

$- \mapsto-\frac{22}{\frac {}{}13},$ $-\mapsto\overline{\#_{12}^{23}}$

where we represent morphisms $m_{S}$ and $\underline{m}_{S}$ by a tableau $S$ itself for short.

2.4. Completion of category. Unfortunately, the category $\underline{H}_{t}-\mathcal{M}od_{0}$ lacks
the ability to apply various categorical operations. We here see that the category
$\underline{H}_{t}-\mathcal{M}od_{0}$ can be naturally embedded to a larger category $\underline{H}_{t}$-Mod which admits
several operations. The category $\underline{H}_{t}$-Mod is constructed from $\underline{H}_{t}-\mathcal{M}od_{0}$ using the
process of two completions of category, namely pseudo-abelian envelope (see [De107,

\S 1]) and indization (see [KS06, \S 6

DEFINITION 2.14. Let $\underline{H}_{t}-mod_{0}$ be the full subcategory of $\underline{H}_{t}-\mathcal{M}od_{0}$ consisting
of objects $\underline{Ind}_{t-m}V$ such that $V$ is finitely presented. Then we put

$\underline{H}_{t}$-mod $:=(\underline{H}_{t}-mod_{0})^{psab},$

the pseudo-abelian envelope of the category $\underline{H}_{t}-mod_{0}$ . That is, an object in $\underline{H}_{t}$-mod
is a direct summand of a formal direct sum of objects in $\underline{H}_{t}-mod_{0}.$

$\underline{H}_{t}-mod_{0}$ is considered as the (category of finitely presented $\underline{H}_{t}$-fakemodules”’
Note that it contains all parabolic fakemodules $\underline{M}_{\lambda}$ . Recall that for an algebra $A,$

any $A$-module is a direct limit (i.e. filtered colimit) of finitely presented ones. Based
on this observation, we introduce the definition of the whole fakemodule category
$\underline{H}_{t}-\mathcal{M}od$ as follows.

DEFINITION 2.15. Let
$\underline{H}_{t}-\mathcal{M}od:=(\underline{H}_{t}-mod)^{ind}$

be the indization of the category $\underline{H}_{t}$-mod. That is, an object in $\underline{H}_{t}$-Mod is a formal
direct limit (ind-object) of objects in $\underline{H}_{t}$-mod.
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Now it follows by definition.

PROPOSITION 2.16. The category $\underline{H}_{t}-\mathcal{M}od$ is closed under taking direct sums,
direct summands and direct limits. $\underline{H}_{t}$ -mod is a full subcategory of $\underline{H}_{t}-\mathcal{M}od$ con-
sisting of finitely presented (or compact) objects.

We define the embedding functor $\underline{H}_{t}-\mathcal{M}od_{0}arrow\underline{H}_{t}-\mathcal{M}od$ as follows. Recall that an
object in $\underline{H}_{t}-\mathcal{M}od_{0}$ is the induced fakemodule $\underline{Ind}_{t-7n}V$ of an arbitrary $H_{m}$-module

$\fbox{Error::0x0000}V.Wr$
esent V $asa$ direct

$\lim_{\in iatheembedditheobect,\underline{Ind}_{t-m}V\underline{H}_{t}-\mathcal{M}od_{0}ismappedtothedi^{\frac{1i_{\mathfrak{R}}}{tI}i}}.$

$\frac{1ini}{\prime}i(\underline{Ind}_{\vee^{-m}},V_{i})\in\underline{H}_{t}-\mathcal{M}od$ of finitely presented fakemodules. Then one can prove
the following.

PROPOSITION 2.17. The functor $\underline{H}_{t}-\mathcal{M}od_{0}arrow\underline{H}_{t}-\mathcal{M}od$ is well-defined and fully
faithful.

We still have the realization $P:\underline{H}$ $odarrow H_{d^{-}}\mathcal{M}od$ for $d\in \mathbb{N}$ , and similarly
several functors $\underline{H}$ $od_{0}arrow C$ can be extended to $\underline{H}$ $odarrow C.$

2.5. Comparison with Deligne’s category. Now assume the classical case
$q=1$ , so in particular every 1-binomial sequence is total. Since in this case we have
an isomorphism $H_{n}\simeq k\mathfrak{S}_{n}$ , it seems better to denote our category by $k\underline{\mathfrak{S}}_{t}-\mathcal{M}od$

rather than $\underline{H}_{t}-\mathcal{M}od$ . Recall that $k\mathfrak{S}_{n}-\mathcal{M}od$ has a tensor product of modules over
$K$ , defined through the diagonal embedding $\mathfrak{S}_{n}\mapsto \mathfrak{S}_{n}\cross \mathfrak{S}_{n}$ . We can lift this tensor
product on the fakemodule category $k\underline{\mathfrak{S}}_{t}-\mathcal{M}od.$

THEOREM 2.18. $k\underline{\mathfrak{S}}_{t}-\mathcal{M}od$ has a canonical structure of tensor category such that
for. each $d\in \mathbb{N}$ the realization

$P:k\underline{\mathfrak{S}}_{A}-\mathcal{M}odarrow k\mathfrak{S}_{d^{-}}\mathcal{M}od$

is a tensor functor.
We finish this report by describing the relation between the motivating Deligne’s

category [De107] and $k\underline{\mathfrak{S}}_{t}-\mathcal{M}od$ . For $t\in B_{1}(K)$ , let $\mathcal{R}ep(\mathfrak{S}_{t})$ denotes the Deligne’s
category for the rank $(\begin{array}{l}tl\end{array})\in k$ . It has an object $[m]\in \mathcal{R}ep(\mathfrak{S}_{t})$ for each $m\in \mathbb{N}$ which
correspond to the parabolic fakemodule $\underline{M}_{(t-m,1^{m})}$ in our notation, and 7&p $(\mathfrak{S}_{t})$ is
generated by these objects. We can define the functor

$\mathcal{R}ep(\mathfrak{S}_{t})arrow K\underline{\mathfrak{S}}_{t}$-mod

$[m]\mapsto\underline{M}_{(t-m,1^{n})}.$

which is fully faithful and preserves tensor product. Hence we can regard that:

PROPOSITION 2.19. Deligne’s category $\mathcal{R}ep(\mathfrak{S}_{t})$ is a tensor full subcategory of
$K\underline{\mathfrak{S}}_{t}$ -mod.

It is well-known that when $k$ is a field of characteristic zero, the category
$Rxp(\mathfrak{S}_{m})$ is semisimple. Since every its simple object is obtained as a direct sum-
mand of the regular representation $M_{(1^{m})}\simeq K\mathfrak{S}_{m}$ , we have a category equivalence
$\mathcal{R}ep(\mathfrak{S}_{t})\simeq k\underline{\mathfrak{S}}_{t}$-mod. In contrast, if $K$ has a positive characteristic then the image
of the embedding $\mathcal{R}ep(\mathfrak{S}_{t})\mapsto K\underline{\mathfrak{S}}_{t}$-mod is a proper full subcategory. We remark
that for each natural number $d\in \mathbb{N}$ , Deligne’s category 7&p $(\mathfrak{S}_{d})$ only depends on
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the scalar value $d\in K$ while our $k\underline{\mathfrak{S}}_{d}-\mathcal{M}od$ gives different categories for each $d\in \mathbb{N}.$

So $k\underline{\mathfrak{S}}_{d}-\mathcal{M}od$ is considered to be capturing more precise structures in the modular

case.
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