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7-tilting modules over Nakayama algebras
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1 Introduction

The notion of tilting modules plays a central role in representation theory of algebras. As
an important result, there is a bijection between basic tilting modules and functorially
finite faithful torsion classes for a given algebra. The bijection produces fruitful results
for tilting modules. To give a class of modules corresponding bijectively functorially finite
torsion classes, the author in [AIR] introduced the notion of (support) 7-tilting modules.
Indeed, they showed that there is a bijection between basic support 7-tilting modules
and functorially finite torsion classes. By the bijection, support 7-tilting modules hold
various properties of tilting modules. Moreover, they correspond bijectively with many
important objects in representation theory, e.g., basic two-term silting complexes and
basic cluster-tilting objects. Therefore it is important to give a classification of (support)
7-tilting modules.

In this report, we give a classification of 7-tilting modules over Nakayama algebras.
The following theorem is our main result.

Theorem 1.1. Let A be a Nakayama algebra with n simple modules. Assume that the
length of every indecomposable projective A-module is at least n. Then there is a bijection
between

(1) the set T-tiltA of isomorphism classes of basic T-tilting A-modules,
(2) the set T(n) of triangulations of an n-regular polygon with a puncture.

Throughout this report, we use the following notation. By an algebra we mean basic,
ring-indecomposable and finite dimensional algebra over an algebraically closed field K,
and by a module we mean a finitely generated right module. For an algebra A, we denote
by modA the category of finitely generated right A-modules. We denote by |[i, ;] the
interval {i,s+1,...,7 — 1,5} of integers ¢ < j. Let {e;,es,...,€,} be a complete set of
primitive orthogonal idempotents of an algebra A. For each i € [1,n], we put P, = ¢;A
and S; = P,/radP,.



2 Preliminaries

Let A be a finite dimensional K-algebra. In this section, we collect some results which
are necessary in this report. We start with basic fact for representation theory of finite
dimensional algebras.

(1) The category modA is Krull-Schmidt, that is, any module M in modA is isomorphic
to a finite direct sum M1 &M, &- - -®M,,, where My, M,, ..., M,, are indecomposable
A-modules. Moreover, the direct sum is uniquely determined up to isomorphism and
permutation. Then we let |M| := m. We say that M is basic if M,,..., M, are
pairwise nonisomorphic.

(2) We say that A is basic if it is basic as a A-module. A basic algebra A is isomor-
phic to the bounded quiver algebra KQ/I, where @ is a finite quiver and I is an
admissible ideal of the path algebra K@. Then, for the vertex set {1,2,...,n} in
@, we have a decomposition A = P, ® P, & --- ® P, as a A-module, where P; is
an indecomposable projective A-module. Moreover, each indecomposable projective
(respectively, simple) A-module is isomorphic to P; (respectively, S; := P;/radP;) for
some ¢ € {1,2,...,n}.

(3) For a A-module M with a minimal projective presentation P~! 2 P® — M — 0, we
define 7M in modA by an exact sequence

0—-7M —>yP 12 vP°,

where v := Homg(Homy(—,A), K). We call 7 the AR translation of A. We have
7P =0 if P is a projective A-module.

2.1 7-tilting modules

In this subsection, we recall the definition of 7-tilting modules.

Definition 2.1. (1) We call M in modA 7-rigid if Homs (M, 7M) = 0.
(2) We call M in modA 7-tilting if it is 7-rigid and | M| = |A|.

(3) We call M in modA support T-tilting if there exists an idempotent e € A such that
M is a 7-tilting (A/AeA)-module.

We denote by 7-rigidA the set of isomorphism classes of indecomposable 7-rigid A-
modules and by 7-tiltA the set of isomorphism classes of basic 7-tilting A-modules.

Example 2.2. Every projective A-module is a 7-rigid A-module by the definition of 7.
In particular, A is a 7-tilting A-module.

By the following remark, 7-tilting modules are a generalization of tilting modules. A
A-module T is said to be tilting if it satisfies three conditions: (a) the projective dimension
is at most one, (b) rigid (i.e., Ext}(T,T) = 0), and (c) |T| = |A|.
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Remark 2.3. Every 7-rigid A-module is rigid and the converse holds if the projective
dimension of a rigid A-module is at most one. Thus, if a A-module satisfies the condition
(a) and (b) above, then it is 7-rigid. Hence tilting A-modules are 7-tilting A-modules.
Moreover, if A is hereditary (i.e., the global dimension of A is at most one), then 7-tilting
A-modules are exactly tilting.

We obtain a close connection between support 7-tilting modules and other important
objects in representation theory.

Theorem 2.4. ([AIR, Theorem 0.5]) Let A be a finite dimensional K -algebra. Then there
are bijections between

(1) the set of isomorphism classes of basic support T-tilting A-modules,
(2) the set of functorially finite torsion classes in modA,
(3) the set of isomorphism classes of basic two-term silting complezes for A,

(4) the set of isomorphism classes of basic cluster-tilting objects in a 2-Calabi-Yau tri-
angulated category C if A is an associated 2-Calabi- Yau tilted algebras.

Hence it is an important to give a classification of (support) 7-tilting modules.

2.2 Nakayama algebras

In this subsection, we recall properties of Nakayama algebras. A module M is said to be
uniserial if it has a unique composition series. A finite dimensional algebra is said to be
Nakayama if every indecomposable projective module and every indecomposable injective
module are uniserial. Nakayama algebras is given by the following quivers.

Proposition 2.5. ([ASS, V.3.2]) A basic ring-indecomposable algebra is Nakayama if and
only if its quiver is either A'n or A,.

A, 1
N
n 2
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In the following, we assume that A is a basic ring-indecomposable Nakayama algebra
with n := |A|. We give a concrete description of indecomposable A-modules. We denote
by ¢(M) the length of a A-module M.

Proposition 2.6. ([ASS, V.3.5, V.4.1 and V.4.2]) For any indecomposable A-module M,
there exist i € [1,n] and | € [1,£(P;)] such that M ~ P;/rad'P; and | = ¢(M). Moreover,
if M is not projective, then we have TM ~ radP,/rad*' P, and £(TM) = ¢(M).




By Proposition 2.6, each indecomposable A-module M is uniquely determined, up to
isomorphism, by its simple top S; and the length [ := £(M). In this case, M has a unique
composition series with the associated composition factors S;, S;_1,...,S;-111.

We give an example of Nakayama algebras. We let A} := K A, /J", where J is the
arrow ideal of K ﬁn. The Auslander-Reiten quiver of A, can be drawn easily [ASS, V.4.1].
For example, the Auslander-Reiten quiver of A] is given by the following quiver, where
the broken arrows mean the action of the AR translation 7:

2.3 Triangulations

In this subsection, we recall the definition and properties of triangulations. Let G,, be an
n-regular polygon with a puncture. We label the points of G, counterclockwise around
the boundary by 1,2,...,n.

Definition 2.7. Let ¢, 5 € [1,n].

(1) An inner arc (i,7) in G, is a path from the point i to the point j homotopic to the
boundary path i,i+1,...,i+1 = j (mod n), where [ is the smallest positive integer
satisfying ¢ + 1 =7 (mod n) and [ > 2. Then we call ¢ an initial point, j a terminal
point, and €((i,j)) := { the length of the inner arc. By definition, 2 < £((3,j)) <n
holds for any inner arc in G,.

(2) A projective arc (e, j) in G, is a path from the puncture to the point j. Then we call
J a terminal point.

(3) An admissible arc is an inner arc or a projective arc. Namely,
Arc(n) := {admissible arcs in G,} = {(i,7) | 1,5 € [l,n]}H{(O,j) |7 €[1,n]}

Note that, if i # j, (i,j) and (j,¢) are different arcs as the picture in Figure 1 shows.

Definition 2.8. (1) Two admissible arcs in G, are called compatible if they do not in-
tersect in G, (except their initial and terminal pbints).

(2) A triangulation of G, is a maximal set of distinct pairwise compatible admissible
arcs. We denote by 7 (n) the set of triangulations of G,.
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Figure 1: Admissible arcs in a polygon with a puncture

(3) For integers ly,l3,...,l, > 1, we denote by 7 (n;li,ls,...,l,) the subset of 7(n)
consisting of triangulations such that the length of every inner arc with the terminal
point j is at most I; for any j € [1,n].

For example, the set of all projective arcs gives a triangulation of G,,.
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Figure 2: Triangulations of G,

By easy observation, triangulations have the following properties.

Proposition 2.9. Fach triangulation of G, consists of exactly n admissible arcs and
contains at least one projective arc.

3 Main result

In this section, we give a proof of Theorem 1.1. First, we give a criterion for indecompos-
able modules to be 7-rigid.

Proposition 3.1. Let M be an indecomposable nonprojective A-module. Then M is T-
rigid if and only if (M) < n holds.

Proof. By Proposition 2.6, we may assume that M (respectively, 7M) has a (unique)
composition series with associated composition factors topM = S;,S;_1,...,Sj141 =
socM (respectively, toprM = S;_1,Sj-a,...,Sj-1 = soctM), where l = Z(M) = {(TM).
If I < n holds, then M (respectively, 7M) does not have S;_, (respectively, S;) as a
composition factor. Thus we have Homy (M, 7 M) = 0, and hence M is 7-rigid. On the
other hand, if I > n holds, then M (respectively, 7M) has S;_; (respectively, S;) as a
composition factor. Thus there exists a non-zero morphism M — 7M in modA, and hence
M is not 7-rigid. a

Secondly, we give a correspondence between indecomposable 7-rigid modules and ad-
missible arcs. By Proposition 3.1, every indecomposable nonprojective 7-rigid A-module
M is uniquely determined by its simple top S; and its simple socle Si. Such an indecom-
posable 7-rigid module is denoted by (k — 2, j). Moreover, let (e, ) := P;.



Proposition 3.2. Let A be a Nakayama algebra and ¢; := £(P;). The following hold.
(1) There is a bijection
£ rerigidh — {(e,) | i € [1,n]} [[{(5.5) | 4, € [1,n], £((,5)) < 4}
given by (i,4) = (i,j) for i € [1,n] [[{e} and j € [1,n].
(2) For any i,k € [1,n][[{e} and 3,1 € [1,n], (i,7) & (k,1) is T-rigid if and only if (i, 5)
and (k,l) are compatible .
Proof. (1) By Proposition 3.1, every indecomposable A-module M is either a projective
A-module or a A-module with ¢(M) < min{¢(P),n}, where P is a projective cover of M.
Thus there are one-to-one correspondences
{P;|jelln]} «— {{o,j)|J € [Ln]}

{(5,9) 14,5 € [L,n], £((,5)) <min{f,n}} — {(i,5) | 1,5 € [1,n], £((i,5)) <45}
(2) Assume that (¢, j) ® (k, 1) is not 7-rigid. We may assume that Homy ((¢, §), 7(k, 1)) # 0
and k # {e}. Then (i, j) (respectively, 7(k,1)) has Sx_; (respectively, S;) as a composition
factor. Thus (¢, ) and (k,!) are compatible. Conversely, we can easily check, if (i, j) and
(k,1) are compatible, then (i,7) @ (k,!) is 7-rigid. O

As a conclusion, we obtain the following theorem. This is a generalization of Theorem
1.1.

Theorem 3.3. ([Ad]) Let A be a Nakayama algebra with n simple modules and ¢; := ¢(FP;)
for any j € [1,n]. Then there is a bijection

T-titA — T (n; €1, 4o, - -+, 4y)
gwen by M =My @ My ® - ® My, — {f(My), f(My),- -+, f(My)}.
Proof. Tt follows from Proposition 3.2. O
As an application of Theorem 3.3, we give a proof of the following well-known result.
Corollary 3.4. Let A .= K /_fn be a path algebra. Then there is a bijection between
(1) the set tiltA of isomorphism classes of basic tilting A-modules,
(2) the set of triangulations of an (n + 2)-regular polygon (with no puncture).
Proof. By Theorem 3.3 and ¢(P;) = ¢ for any ¢ € [1,n], we have a bijection
-titA — T(n;1,2,...,n).
Since A is hereditary, we have 7-tiltA = tiltA by Remark 2.3. On the other hand, we
show that
' T(n;1,2,...,n) ={X € T(n) | (o,n) € X}.

Indeed, assume that X € 7(n) with (e,n) € X. Then we have ¢((i,j)) < j for each
inner arc (i,j) € X. Thus, we have X € T(n;1,2,...,n). Conversely, assume that
X € T(n;1,2,...,n). Clearly, the projective arc (e, n) is compatible with all admissible
arc in X. Thus, we have (o,n) € X. Note that 7(n;1,2,...,n) can identify the set of
triangulations of an (n + 2)-regular polygon (with no puncture). O
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