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1. Introduction

Fluid phenomena around us often cannot be seen. Water waves are phenomena that commonly and clearly seen
in our ordinary life. And such water wave motion is an attractive subject of fluid dynamics. Thorough understanding
of the phenomenon is not simple and many works have been done on water wave.

Above all, three-dimensional interactions of solitary waves have been actively studied for the last several
decades. Although Korteweg-de Vries (KdV) equation has been known for solitary waves, interactions of solitary
waves attracted much attention after a proposition of Miles’ theory (1981) and a derivation of approximated equations
such as the Kadomtsev-Petviashvili (KP) equation (1970). An experiment of the reflection of solitary waves that
correspongs to the interaction of an incident wave and its reflected wave was first conducted by Perroud (1956). A
vertical reflecting wall was obliquely set in a water tank, so that an incident wave train generated along the tank can hit
the reflecting wall at an angle and interact with its own reflected wave. He found out that when an incident wave
impinges on the reflecting wall, the incident and the reflected waves strongly interact each other and the waveform of
the interacting region resembles Mach reflection that was known as a phenomenon of compressible shock waves.
Although the accuracy of the experiment was not high because of a deficient wave generator, measurement
instruments and the small water tank, the realization of Mach reflection in the interaction of solitary waves was
remarkable. After 20 years of the finding, Miles (1977) theoretically investigated reflections of solitary waves in the
case of small amplitude shallow water waves € << 1 (€ = a;/d : € = the nonlinear parameter, a; = the incident
wave amplitude, d = the uniform water depth). He obtained the solution for the oblique interaction between two
solitons and provided an asymptotic description of the diffraction of a soliton at the comer of interaction angle
—~V3€ < Y < V3e. He predicted that the maximum run up of an incident wave becomes four times higher than the
incident wave amplitude. Tanaka’s numerical result for € = 0.3 shows better agreement with the prediction for
non-grazing reflection than the prediction for strong resonant interaction. Stationary states were also not attained when
itwas close to 1 = v3€. Recently, Yeh, Li & Kodama (2010) have modified the interaction parameter used in Miles’
theory. This modification affects some results when the interaction angle becomes relatively large. Using a new
modified interaction parameter, the result proposed by Tanaka agrees with that of Miles’ theory for non-grazing
reflection better than that of the resonant interaction model. Li, Yeh & Kodama (2011) conducted experiments for
reflection of an obliquely incident solitary wave at a vertical wall in the laboratory wave tank in the cases of
€ = 0.076 — 0.367 with 1y = 30° and 20°. This laboratory experiment presents results supporting Miles’
theoretical predictions, as well as good agreement with Tanaka’s numerical result.

In this study, we extend weakly nonlinear interactions of shallow water waves to strong nonlinear cases with a
numerical scheme, such as the Newton method and the Galerkin method, and calculate periodic steady state solutions.
A wave becomes a solitary wave in shallow water that is not periodic. Because such a non-periodic wave is difficult to
be formed with periodic finctions, we decide parameters so that a wave forms flat surface between adjacent wave
crests. When the nonlinear parameter € is small, most of our results well reproduce Miles’ theory. However, in rather
strong nonlinearity cases of € > 0.1, our results do not agree well with Miles’ theory because the nonlinearity
parameter € in this study is out of Miles’ approximation of weakly nonlinearity € < 1. This tendency is natural and
already reported by other researchers.

2. Formulation of the problem
2.1 Fundamental equation for water waves

We consider free surface gravity waves on an inviscid, incompressible fluid of uniform depth and also
irrotational flow is assumed. d is an uniform depth, ¢ is velocity potential, z = n(x, y, t) is surface displacement,
x,y are horizontal coordinates and z is vertical coordinate. Fundamental equations for water waves are written as
follows

Ap =0 inz < n(x,y,t) @0
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b; +%V¢-V¢ +9z=0 on z=7n(x,y,t) @2

D (P 0 1 ,
BE(;) = (5-5+ Vo - V) [¢t +§-V¢ Vo +gz] =0 on z=7n(x,y,t) @3)
¢,=0as z=-d )

where g is the gravitational acceleration. Equation (2.3) is a Lagrange derivative of Bernoulli’s equation (2.2). In
stead of equation (2.3), equation of Lagrange derivative of a function F(x,¥,2,t) = z — n(x,y,t) = 0 on the
freesurface z = n(x,y,t) canbe used for the boundary condition:

DF d
= 2.5
D (at+V¢> V)F 0 on z=1n(x,y,t) 25)

However, this equation inchudes the free surface displacement 7(x, y,t) as an unknown, for this reason, we must
reduce 7 by equation (2.2). In this point, because equation (2.3) is a form already 7 is reduced, (2.3) is useful.

2.2 Formulation for numerical calculation

‘We normalize variables as follows.

(x*,y*,z",H*) = (Kx,Ky,Kz,KH), t* = wt, P* = %Z(p, G = . 2.5)
where K is a wave number, w is a frequency of an incident water wave. In order to calculate a steady progressive
wave, we consider moving coordinate,

T =px*—t", Y =qy”, Z=2z" 26)
Here, p = sinf, q = cosf. When a wave number vector of solitary wave (kx, ky),wehavenelations:
kx = Ksinf, k, = Kcosf, tanf = k,/k,,
Interactions pattern for solitary waves in T and Y-ax1s can be treated as period of 2m. Use equation (2.6) and
substitute as
®(Y,Z,T) = ®*(x*,y*,z", H*), H(Y,T) = H(x",y",t"),
Using derived nondimensional variables, we change the form of the fundamental equation for water waves as follows.

P*®rr + q*®yy + D77 = 0 for Z < H(Y,T), @7
1
P(Y,Z,T) = -, + —Z-(psz-pz + @y +9;2)+6Z =0 28)
on Z=H(,T),

Q(Y.Z,T) = &rp + p? (=217 + p2DrDrr + 2Dy yr + Dy P57)
+ 2@y (—2@yy + D1 Dyr + g2y Byy + Py Pyz)

+ ¢Z(—2¢ZT + p2¢T¢ZT + q2¢y¢yz + ¢Z¢ZZ + G) =0on Z (29)
= H(Y,T),
&, =0o0nZ7Z=—d, 210
We introduce the wave steepness
1
WS =2 [H(0,0) — H(m, 0)] @.11)
which is half of the difference between the peak H(0,0) and the trough H (m, 0).
Assuming the velocity potential @ as periodic
N N
®(Y,2,T) = Z Z X(Z)cos(kY) sin(GT), 2.12)
and we have a truncated series as follows:
N N
®(Y,2,T) = Z Z Ajlcosh(ay;Z) + sinh(ay,Z)tanh(;d)cos(kY)sin(T) , o)

k=0j=1

axj = P*j? + q%k2.
3. Numerical scheme

At first, we numerically calculate the free surface displacement by applying Newton's method to the dynamic
boundary condition (2.8). The recurrent formula for Newton's method to calculate the surface displacement H is
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Hpyy =Hy — ml’(y. H,,T), 3.1
Next, we use Galerkin's method to obtain the independent relations for unknowns Ay ;:
(4 n
Fim(Aym, G) =f dY[ dTQ(Y,H(A;m, G), T)cos(IY)sin(mT) = 0, (32

(3.2) can be considered as M-point Fourier transform. Because when [ + m is odd, (3.2) is trivial, the number of
independent relations (3.2) is M (M + 1)/2. Another independent relation is expressed as
W (A, G) = 2wS — [H(0,0; Ax;, G) — H(m,0; Ay;,G)] = 0, (33)

which is a different expression of the wave steepness (2.11). Finally, we can obtain a sufficient number of independent
relations and we can solve the nonlinear equations (3.2) and (3.3). Here, the third order approximation for short-crested
wave calculated by Hsu ez. al. (1979) is used as the initial solution of iteration. We stop the iteration if the difference
between unknowns before and after iteration is smaller than 10~1°, The number of expansion terms of a solution
N(N +1)/2 issetas N = 30. The sampling point for Galerkin’s method (two-dimensional Fourier transform) is
setas 27,
4. Result

We calculated numerical solutions for various incident amplitudes, depths d and angles of
incident waves 8 by changing initial conditions such as wave steepness WS, an initial depths and
angles of wave components ;. Note that wave components with an angle of 8; not always form an
incident wave with the same angle and we can evaluate the angle of an incident wave only from
resulting waveforms. An incident wave amplitude is also evaluated from a result as;

=H(5.2)-H(%,0) @1
2°2 2°°7 '
because of the symmetric condition. Andwe define the a), as the center of the interacting region of wave profile as;
Vs
ay = H(0,0) —H(3.0), 42)

that is the same as the definition of wave steepness. Therefore, we define the ratio @ of the maximum wave
amplitude to an incident wave amplitude as;

o _ H(0,0) - H (7,0) ) ws )
“ H(z.7)-4(z0) H(z33)-#(3.9)
4.1 Weakly nonlinear cases

In this section, we discuss weakly nonlinear interactions. Asymptotic solutions of weakly
nonlinear interactions are described by Miles’ theory. 4.1, 4.2 and 4.3 show comparisons between
Miles’ theory and numerical results in cases of d = 0.050, d = 0.070 and d = 0.090 and the
dependence of @ respect to 8;. Because of our symmetric assumption of a solution, a solution can not
be found for x < 1.
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FIGURE4.1. (a) Theratio & = a,/a; versus k,(b) Theratio @ versus the angle of wave components 6; when d = 0.050



Most of our results are well reproduced by Miles’ theory. However, some large and small discrepancies existed. We
will study on this cause furthermore and compare it with harmonic resonance conditions Figure 4.2 shows wave a

profile and a contour for k = 1.0 and depths d = 0.050.
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When x = 1.0, interactions of two solitary waves are strong and an interaction region extend in Y
direction. An interaction of two solitary waves is the same phenomena as reflection of an incident
solitary wave so that Figure 4.2 implies a stem extends in perpendicular to the reflecting wall.
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FIGURE4.2. Wave profiles and contours for ¥ = 1.0 and depths (@) d = 0.050

4.2 Harmonic resonance

In many conditions, unexpected rough waves and bad convergence appear. They seem sporadic and
unavoidable problems. Most of interacting wave profiles that do not agree with that of Miles’ theory, are
contaminated by smaller wave components. Those contaminations occur sporadically and make it

difficult for solutions to converge smoothly.

In order to investigated those deviations we sought regions enclosed with black frames (a) and
(b) in Figure 4.3 which is in the case of fixed water depth d = 0.050 and 0.025 < € < 0.050.

Figure 4.4 shows enlarged figures of black frames (a) and (b) in Figure 4.3.
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FIGURE4.4. Theratio & = a,/a; versus the wave components angle 6; (in degrees), when d

0.050. (a) and (b) are

enlarged figures of frames (a), (5) in FIGURE 4.3
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obtained solutions in pairs in most of wave components angles 8;. At first, we checked

between two wave profiles for several fixed wave components angle 6;.
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FIGURE 4.5. The wave profile of (a); d = 0.050, 6; = 76.8,(b);d = 0.05, 6; = 75.8,
(©); d = 0.09, §; = 71.6,(d); d = 0.09, ; = 70.8.

n the next place, we check absolute values of differences between each modes [5Ay;,g,| of those pairs; (a-1)-
(@-2), (@-3)Ha4), (b-1)- (b-2) and (b-3)-(b4) in Figure 4.5. 04, 7.8, is defined as;

0Akje; = Akjo; — Akjo; @5)

0, = 76.80° 0, = 75.80°
|04y ¢
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4010
3.0-10™*
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FIGURE 4.6. The absolute value of a diffenence coefficient |4y 6, from (k, j) = (0,1) o (k, j) = (12,13)
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FIGURE 4.9. The value of a diffenence coefficient 4, j.0,- (@), (b) coresspond to enlarged figure of frames (a), (b)

in FIGURE 4.3.

We make it clear weather those rough waves instabilities are occurred by an effect of a
harmonic resonance or not. The harmonic resonance of three-dimensional interactions of water
waves for finite depth and weakly nonlinearity cases is known to exist (Toualalen 1996) if
interactions of waves satisfy

akjtanh(ak,-d) = j%tanh(d) 4.6)

where solutions form are written as

N N
o(Y.2,T) = Z Z Ayjlcosh(ay;Z) + sinh(ay;Z)tanh(ay;d)]cos(kY)sin(T), ay; = ’pzj2 + q2k?
k=0 j=1
Because equation (4.6) is only dependent on d, k, j and 8, when water depth d is given, we can
make a table that shows harmonic resonance angle 8. TABLE 4.1 shows harmonic resonance angles
eHR when d = 0.050
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10
11
12
13
14
15
16

883
89.0
893
894
895

896

89.6

86.5

878

883

887

889

89.0

872

877

881

883

87.1

7 8 9
753 - -
- 717 -
80.3 - 676
- 778 -
825 - 751
- 805 -
83.8 - 784
- 822 -

632

722

76.1

TABLE 4.1. Harmonic resonance angles 8 (in degrees) when d = 0.050. Harmonic resonance angles 8y

when (k,j) = (6,4),(7.5),(8,6) and (9,7) are written in bold

We couldn't find good agreement between hammonic resonance angles 6z and the angle where those

discrepancies occur. Harmonic resonance angles 84, when (k,j) = (6,4),(7.5),(8,6) and (9,7) are 842, 81.6, 78.6
and 75.3. Accordingly, angles of frames (a) and (b) in Figure 4.3 were no agreement with harmonic resonance angles. Because
harmonic resonance angles are based on linear theory, nonlinearity might have effected on those angles.
43 Strong nonlinear cases

In this section, we discuss rather strong nonlinear interactions. In the case of rather large ¢,

results are unstable and solutions become more difficult to converge than weakly nonlinear cases.
Bad convergences sporadically occur with changing conditions and often result in rough wave
interaction profiles. Following figures show numerical results corresponding to € = 0.2,0.3.
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FIGURE4.11. Theratio @ = a,,/a; versus the interaction parameter k when € = 0.30.



In the case of rather large €, numerical results do not agree with Miles’ theory because
nonlinearity parameter ¢ is out of Miles’ approximation of weakly nonlinearity € « 1.

Figure 4.10 and 4.11 differs depending on water depths d. However, even if the depth d is
different, results should show the same result when € are the same because the ratio d/2m of the
depth d to the wavelength 2w, which associated with solitary of waves, is set sufficiently small to be
assumed the wavelength as infinity for waves in all cases, such a small change in depths d should
not affect to the solutions. ‘

For various conditions excluding the critical cases around k = 1 and Mach reflection region
k > 1, there are cases that results shows rough waves or become unstable and do not converge
enough which prevented us to obtain favorable data in succession. Those deviations are larger than
those occur in weakly nonlinear cases.
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FIGURE4.12. Wave profiles and contours for K(‘-—‘) 1.0 and depths(a) € = 0.2 and(b) € = 0.3.
5. Conclusion ,

The scheme used in this research was successful to obtain solutions for three-dimensional large amplitude
shallow water wave of € up to 0.5. When € is small, most of our numerical results show good agreement with Miles’
theory. However, some discrepancies exist and we observed wave profiles became rough and difficult to
convergence in those cases. They occur sporadically and we couldn't avoid such rough waves of
solutions by reducing steps in calculations of the Newton method. And as € increases, a starts decreasing
and differences between the numerical results and Miles® theory increase and resulting wave profiles tend to be
contaminated when ¥ is closeto 1.

Existence of harmonic resonances has been known for periodic solutions of weakly nonlinear shallow water
waves. Because the solutions used in this study are periodic, the solutions also have possibility to show harmonic
resonances. Angles of frames (a) and (b) in Figure 4.3 were no agreement with harmonic resonance angles. Because harmonic
resonance angles are based on linear theory, nonlinearity might have effected on those angles.
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