
Three Dimensional Large Amplitude ShallowWater Wave

Tomoaki Hirakawa, Makoto Okamura
Interdisciplinary Graduate School of Engineering Science

Earth System Science Technology
Kyushu University

1. Introduction
Fluid phenomena around us often cannot be seen. Water waves are phenomena that commonly and clearly seen

in our ordinary life. And such water wave motion is an attractive subject offluid dynamics. Thorough umde1standing
ofthe phenomenon is not simple andmany works have been done on water wave.

Above all, three-dimensional interactions of solitary waves have been actively studied for the last several
decades. Although KoIteweg-de Vries $(KdV)$ equation has been known for solitary waves, intemtions of solitary
waves attracted much attention after a proposition ofMiles’ theo1y (1981) and a derivation ofapproximated equations
such as the Kadomtsev-Petviashvili (KP) equation (1970). An experiment of the reflection of solitary waves that
coresponds to the interaction of an incident wave and its reflected wave was first conducted by Perroud (1956). $A$

vertlcal reflecting wall was obliquely set in a water tank, so that an incident wave train generated along the tank can hit
the reflecting wall at an angle and interact with its own reflected wave. He foumd out that when an incident wave
rmpinges on the reflecting wall, the incident and the 1eflected waves strongly interact each other and the waveform of
the interacnng region resembles Mach reflection that was known as a phenomenon of compressible shock waves.
Although the accuracy of the experiment was not high because of a deficient wave generator, measurement
insmnents and the small water tank, the realization of Mach reflection in the interaction of solitary waves was
remarkable. After 20 years ofthe finding, Miles (1977) theoretically investigated reflections of solitary waves in the
case ofsmall amphtude shallow water waves $\epsilon<<1(\epsilon=a_{i}/d$ : $\epsilon=the$ nonlinear parameter, $a_{i}=$ the incident
wave amplitude, $d=$ the uniform water depth). He obtained the solution for the oblique inte1action between two
solitons and provided an asymptotic description of the diffiaction of a soliton at the $\infty mer$ of interaction angle
$-\sqrt{3\epsilon}<\psi<\sqrt{3\epsilon}$ . He predicted that the maximum mn up ofan incident wave becomes four times higher than the
incident wave amplitude. Tanaka’s numerical 1esult for $\epsilon=0.3$ shows better agreement with the prediction for
non-g1azing reflection than the prediction for strong resonant interaction. Stationary states were also not attained when
it was close to $\psi=\sqrt{3\epsilon}$ . Recently, Yeh, Li& Kodama (2010) have modified the interaction pa1ameter used inMiles’
theory. This modification affects some $res\Lambda ts$ when the intemtion angle becomes relatively large. Using a new
modified interaction parameter, the $Ies\iota Ut$ proposed by Tanaka agrees with that of Miles’ $ffi\infty Iy$ for non-g1azing
reflection better than that of the resonant interaction model. Li, Yeh & Kodama (2011) conducted experiments for
reflection of an obliquely incident solitary wave at a veltical wall in the laboratory wave tank in the cases of
$\in=0.076-0.367$ with $\psi=30^{o}$ and $20^{o}$ . This laboratory experiment presents results suppo ting Miles’
theoretical predictions, as well as good agreement with Tanaka’s numerical result

In this study, we extend weakly nonlinear interactions of shallow water waves to strong nonlinear cases with a
numerical scheme, such as the Newton method and the GaleIkm method, and calculate periodic steady state solutions.
A wave becomes a solitary wave in shallow water that is not periodic. Because such a non periodic wave is difficult to
be formed with periodic functions, we decide parameters so that a wave forms flat surface between adjacent wave
crests. When the nonlinear parameter $\epsilon$ is small, most ofour results well reproduce Miles’ theo1y. However, in rather
strong nonlinearity cases of $\epsilon>0.1$ , our oesMts do not agree well with Miles’ theo1y because the nonlinearity
parameter $\epsilon$ in this study is out ofMiles’ approximation ofweakdy nonlinearity $\epsilon$ く$<$ $1.$ This tendency is natural and
already $repoIt\propto 1$ by other researchers.

2. Formulation of the problem
2.1 Fundamental equation for water waves

We consider fiee surface gravity waves on an inviscid, incompressible fluid of uniform depth and also
$i_{IT}$otationd flow is assu ned. $d$ is anuniform depth, $\phi$ is velocity potential, $z=\eta(x,y, t)$ is surface displacement,
$\chi,$ $y$ are honzontal coordinates and $z$ is ve1tical coordinate. Fumdamental equations for water waves are written as
follows

$\Delta\phi=0$ in $z\leq\eta(x,y, t)$ (2.1)
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$\phi_{t}+\frac{1}{2}\nabla\phi\cdot\nabla\phi+gz=0$ on $z=\eta(x, y, t)$ (22)

$\frac{D}{Dt}(\frac{P}{\rho})=(\frac{\partial}{\partial r}+\nabla\phi\cdot\nabla)[\phi_{t}+\frac{1}{2}\nabla\phi\cdot\nabla\phi+gz]=0$ on $z=\eta(x,y, t)$ (2.3)

$\phi_{Z}=0$ as $z=-d$ (2.4)

where $g$ is the gravitational acceleration. Equation (2.3) is a Lagrange derivative ofBemoulli’s equation (22). In
stead of equation (2.3), equation of Lagrange derivative of a fimction $F(x,y,z, t)=z-\eta(x,y, t)=0$ on the
free surface $z=\eta(x,y, t)$ can be used for the boundary condition:

$\frac{DF}{Dt}=(\frac{\partial}{\partial t}+\nabla\phi\cdot\nabla)F=0$ on $z=\eta(x,y, t)$ (2.5)

However, this equation includes the fiee surface displacement $\eta(x,y, t)$ as an unknow1L for this reason, we must
reduce $\eta by\propto|$uation ($22)$. In this point because equation (2.3) is a $f_{0I}m$ aheady $\eta$ is reduced, (2.3) is useful.
2.2 Formulation for $numeI^{\cdot}$ical calculation
We nornalize vanables as follows.

$(x^{*},y^{*},z^{*}, H^{*})=(Kx, Ky, Kz, KH)$ , $t^{*}=\omega t,$ $\Phi^{*}=\frac{K^{2}}{\omega}\phi,$ $G= \frac{K}{\omega^{2}}g$ , (2.5)

where $K$ is a wave number, $\omega$ is a frequency ofan incident water wave. In order to calculate a steady progressive
wave, we consider moving coordinate,

$T=px^{*}-t^{*}, Y=qy^{*}, Z=z^{*}$ , (2.6)

Here, $p=\sin\theta,$ $q=\cos\theta$ . When a wave number vector ofsolitary wave $(k_{\chi/}k_{y})$ , we have lelations:
$k_{x}=K\sin\theta,$ $k_{y}=K\cos\theta$ , tane $=k_{x}/k_{y},$

Interactions pattem for solitary waves in $T$ and $Y$ -axis can be treated as period of $2\pi$ . Use equation (2.6) and
substitute as

$\Phi(Y, Z, T)=\Phi^{*}(x^{*},y^{*},z^{*}, H^{*}) , H(Y, T)=H(x^{*},y^{*}, t^{*})$ ,

Using derived nondimensional variables, we change the form ofthe fundamental equation for waterwaves as follows.
$p^{2}\Phi_{TT}+q^{2}\Phi_{YY}+\Phi_{ZZ}=0$ for $Z\leq H(Y, T)$ , (2.7)

$P(Y_{t}Z_{r}T)=- \Phi_{T}+\frac{1}{2}(p^{2}\Phi_{T}^{2}+q^{2}\Phi_{Y}^{2}+\Phi_{Z}^{2})+GZ=0$

(2.8)
on $Z=H(Y, T)$ ,

$Q(Y,Z, T)=\Phi_{TT}+p^{2}\Phi_{T}(-2\Phi_{TT}+p^{2}\Phi_{T}\Phi_{TT}+q^{2}\Phi_{Y}\Phi_{YT}+\Phi_{Z}\Phi_{ZT})$

$+q^{2}\Phi_{Y}(-2\Phi_{YT}+p^{2}\Phi_{T}\Phi_{YT}+q^{2}\Phi_{Y}\Phi_{YY}+\Phi_{Z}\Phi_{YZ})$

$+\Phi_{Z}(-2\Phi_{ZT}+p^{2}\Phi_{T}\Phi_{ZT}+q^{2}\Phi_{Y}\Phi_{YZ}+\Phi_{Z}\Phi_{ZZ}+G)=0$ on $Z$
(2.9)

$=H(Y, T)$ ,

$\Phi_{Z}=0$ on $Z=-d$ , (2.10)
We introduce the wave steepness

$WS= \frac{1}{2}[H(0,0)-H(\pi, O)]$ (2.11)

which is halfofthe difference between the peak $H(0,0)$ and the trough $H(\pi, 0)$ .
Assuming the velocity potential $\Phi$ as periodic

$\Phi(Y,Z, T)=\sum_{k=0}^{N}\sum_{j=1}^{N}X(Z)\cos(kY)$ sinCT) , (2.12)

andwe have a truncated series as follows:

$\Phi(Y_{\fbox{Error::0x0000}}Z,T)=\sum_{k\not\subset 0}^{N}\sum_{j=1}^{N}A_{k_{j}’}[\cosh(\alpha_{kj}Z)+\sinh(a_{kj}Z)\tanh(a_{kj}d)]\cos(kY)\sin(jT)$ ,

(2.13)

$\alpha_{kj}=\sqrt{p^{2}j^{2}+q^{2}k^{2}}.$

3. Numerical scheme
At firs, we numerically calculate the free surface displacement by applying Newton’s method to the dynanuc

boundary $\infty$ndition (2.8). The recurrent formula forNewton’s method to calculate the surface displacement $H$ is
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$H_{n+1}=H_{n}- \frac{dZ}{dP(Y,H_{n\prime}T)}P(Y, H_{n}, T)$ , (3.1)

Next we use Galerkm’s method to obtain the independent relations for unknowns $A_{kj}$ :

$F_{lm}(A_{lm/}G)= \int_{0}^{\pi}dY\int_{0}^{\pi}dTQ(Y, H(\mathcal{A}_{lm}, G), T)\cos(lY)\sin(mT)=0$ , (3.2)

(3.2) can $k$ conside1ed as $M$-point Fourier transfonn. Because when $l+m$ is odd, (3.2) is t1ivial, the number of
independent 1elatlons (32) is $M(M+1)/2$ . Another independent relation is expressed as

$W(A_{kj}, G)=2WS-[H(0,0,\cdot \mathcal{A}_{kj}, G)-H(\pi, 0,\cdot \mathcal{A}_{kj}, G)]=0$ , (33)

which is a different expression ofthe wave steepness (2.11). Finally, we can obtain a sufficient number ofindependent
relations and we can solve the nonlinear equations (3.2) and (3.3). Here, the third order approximation for short-crested
wave calculated by Hsu $et$. al. (1979) is used as the imtial solution of iteration. We stop the iteration ifthe difference
between unknowns before and after iteration is smaller than $10^{-10}$ . The number of expansion terms of a solution
$N(N+1)/2$ is set as $N=30$ . The sampling point for fflerkin’s method (two-dimensional $Fo\iota mer$ transform) is
set as $2^{}.$

4. Result
We calculated numerical solutions for various incident amplitudes, depths $d$ and angles of

incident waves $\theta$ by changing initial conditions such as wave steepness $WS$, an initial depths and
angles of wave components $\theta_{i}$ . Note that wave components with an angle of $\theta_{i}$ not always form an
incident wave with the same angle and we can evaluate the angle of an incident wave only from
resulting waveforms. An incident wave amplitude is also evaluated from a result as;

$a_{i}=H (\begin{array}{ll}\pi \pi\overline{2}^{1}\overline{2} \end{array})-H(\frac{\pi}{2}\prime 0)$ , (4.1)

because ofthe symmetric condition. And we define the $a_{M}$ as the center ofthe interacting region ofwave profle as;

$a_{M}=H(0,0)-H( \frac{\pi}{2},0)$ , (42)

that is the same as the definition of wave steepness. Therefore, we define the ratio $a$ of the 1naximum wave
amplitude to an incident wave amplitude as;

$\alpha=\frac{a_{M}}{a_{i}}=\frac{H(0,0)-H(\frac{\pi}{2}\prime 0)}{H(\frac{\pi}{2}J\frac{\pi}{2})-H(\frac{\pi}{2}\prime 0)}=\frac{WS}{H(\frac{\pi}{2}\prime\frac{\pi}{2})-H(\frac{\pi}{2}\prime 0)}$ , (4.3)

4.1 Weakly nonlinear cases
In this section, we discuss weakly nonlinear interactions. Asymptotic solutions of weakly

nonlinear interactions are described by Miles’ theory. 4.1, 4.2 and 4.3 show comparisons between
Miles’ theory and numerical results in cases of $d=0.050,$ $d=0.070$ and $d=0.090$ and the
dependence of $\alpha$ respect to $\theta_{i}$ . Because of our symmetric assumption of a solution, a solution can not
be found for $\kappa<1.$

(a) (b)

$\alpha$

0.9 1 1.11.21.3141.51.61.7 85 80 75 70 65

$\kappa \theta_{i}$
FIGURE 4.1. (a) lbe ratio $\alpha=a_{M}/a_{i}$ ve1sus $\kappa$ , (b) lbe 1atio $\alpha$ vetsus the angle ofwave components $\theta_{i}$ when $d=0.050$
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Most of our results are well 1eproduced by Miles’ theory. However, some large and small discrepancies existed. We
will study on this cause furthermo1e and compare it with harmonic resonance conditions Figure 42 shows wave a
profile and a contour for $\kappa=1.0$ and depths $d=0.050.$
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FIGURE4.2. Waveprofiles and contours for $\kappa=1.0$ and depths (a) $d=0.050$

When $\kappa=1.0$ , interactions of two solitary waves are strong and an interaction region extend in $Y$

direction. An interaction of two solitary waves is the same phenomena as reflection of an incident
solitary wave so that Figure 4.2 implies a stem extends in perpendicular to the reflecting wall.
4.2 Harmonic resonance

In many conditions, unexpected rough waves and bad convergence appear. They seem sporadic and
unavoidable problems. Most ofinteracting wave profiles that do not agree with that ofMiles’ theory, are
contaminated by smaller wave components. Those contaminations occur sporadically and make it
difficult for solutions to converge smoothly.

In order to investigated those deviations we sought regions enclosed with black frames (a) and
(b) in Figure 4.3 which is in the case of fixed water depth $d=0.050$ and $0.025<\epsilon<0.050.$

Figure 4.4 shows enlarged figures ofblack frames (o) and (b) in Figure 4.3.

$\alpha$

$80 75 70 65$
$\theta_{i}$

FIGURE 4.3. The ratio $\alpha=a_{M}/a_{i}$ versus frame angle $\theta_{i}$ (in degroes), when $d=0.050,.$
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(a)

$\alpha$

76.8 76.6 76.4 76.2 76 75.8 70.6 70.4 70.2 70 69.8 69.6 69.4

$\theta_{i} \theta_{i}$
FIGURF 44. The ratio $a=a_{M}/a_{i}$ versus the wave components angle $\theta_{i}$ (in degrees), when $d=0.050.(a)$ and (b) are

enlarged figures offiames (a), (b) in FIGURE 4.3

Figure 4.4 shows we obtained solutions in pairs in most ofwave $\infty$mponents angles $\theta_{i}$ . At ffist we checked
difference between two wave profiles for several fixed wave components angle $\theta_{i}.$
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(b-3)
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30
$2510_{3\fbox{Error::0x0000}}$

$H_{1510_{3}^{-3}}^{20\cdot 10}$

10

$-50.10_{-3}・50.\cdot 10001Q_{4}^{0}$

FlGuRE4.5. Thewaveprofile of$(a);d=0.050,$ $\theta_{i}=76.8,(b);d=0.05,$ $\theta_{i}=75.8,$

$(c);d=0.09, \theta_{i}=71.6,(d);d=0.09, \theta_{i}=70.8.$

In the next place, we check absolute values ofdifferences between each modes $|\delta A_{kj_{i}\theta_{i}}|$ ofthose pairs; $(a-1)-$

(a-2), $(a-3)-(aA),$ $(b-1)-(b-2)$ and $(b-3)-(bA)$ in Figure 4.5. $\delta A_{kj,\theta_{i}}$ is defined as;

$\delta A_{kj,\theta_{i}}=A_{kj,\theta_{i}}-A_{kj,\theta_{i}}$ (4.5)
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$\theta_{i}=70.60^{o}$

$|\delta A_{kj,\theta_{i}}|$

$2010^{4}31560|0^{4}478.00(000|1||1|0^{4}0^{4}0^{4}0^{-4}0^{4}0^{4}|_{f}-$

$c_{5arrow}$

$j$ TO $arrow c/_{0}’$

FIGURE 46. The absolue value ofa diffenence coefficient $|A_{kj,\theta_{i}}|$ fiom $(k,j)=(0,1)$ to $(k,j)=(12,13)$

(i) $\theta_{j}=75.90^{o}$ (ii) $\theta_{i}=76.20^{o}$

(iii) $\theta_{i}=76.50^{o}$ (iv) $\theta_{i}=76.79^{o}$

FIGURE 4.7. The absolute value ofa dffienenoe coefficient $|A_{kj,\theta_{t}}|$ from $(k,j)=(0_{z}1)$ to $(k_{\Delta}j)=$ $(12,13)$ :

(i) $\theta_{i}=75.90^{o}$ , (\"u) $\theta_{i}=76.20^{o},$ $(\fbox{Error::0x0000})\theta_{i}=76.50^{o}$ , (iv) $\theta_{i}=76.79^{o}.$
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(i) $\theta_{i}=69.40^{o}$ (ii) $\theta_{i}=69.80^{o}$

(iii) $\theta_{i}=70.20^{o}$ (iv) $\theta_{i}=70.59^{o}$

FIGURE4.8. The absolute value ofa diffenence coefficient $|A_{kj,\theta_{i}}|$ fiom $(k,j)=(0,1)$ to $(k,j)=$ $(12,13)$ :
(1) $\theta_{i}=69.40^{o}$ , (ii) $\theta_{i}=69.80^{o}$ , (iii) $\theta_{i}=70.20^{o}$ , (iv) $\theta_{i}=70.59^{O}.$

(a) (b)

76.8 76.6 76.4 76.2 76 75.8 70.6 70.4 70.2 70 69.8 69.6 69.4

$\theta_{j} \theta_{i}$
FIGURE 4.9. The value of a diffenence coefficient $A_{kj,\theta_{i}}.$ $(a)$ , (b) coresspond to enlarged figure of frames (a) , (b)

in FIGURE 4.3.
We make it clear weather those rough waves instabihties are occurred by an effect of a

harmonic resonance or not. The harmonic resonance of three dimensional interactions of water
waves for finite depth and weakly nonlinearity cases is known to exist (Ioualalen 1996) if
interactions ofwaves satisfy

$a_{kj}\tanh(\alpha_{kj}d)=j^{2}tanh(d)$ (4.6)

where solutions form are written as

$\Phi(Y,Z,T)=\sum_{k=0}^{N}\sum_{j=1}^{N}A_{kj}[\cosh(a_{kj}Z)+\sinh(\alpha_{kj}Z)\tanh(\alpha_{kj}d)]\cos(kY)\sin 0T)$ , $\alpha_{kj}=\sqrt{p^{Z}j^{2}+q^{2}k^{2}}$

Because equation (4.6) is only dependent on $d,$ $k,$ $j$ and $\theta$ , when water depth $d$ is given, we can
make a table that shows harmonic resonance angle $\theta_{HR}$ . TABLE 4.1 shows harmonic resonance angles
$\theta_{HR}$ when $d=0.050$
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$k$ $\Gamma^{-1}$ 2 3 4 5 6 7 8 9 IO 11 12 13 14
3 $\Re).0$

4 883
5

$\mathfrak{A})0-$

86.5
6 $-$ 890 84.2
7 900 87.8

$81^{-}.6$

8893 863 $-$ 7&6
9 90.0 883 84.5 $75J$

IO 894 872 82.5 717
II $\mathfrak{A}J.0$ 88. $7$ 858 80. $3$ 676
I2 895 87.7 842 77.8

$63^{-}2$

13 $(X).0$ 889 86. $6$ 82. $5$ 75. $1$ 582
I4 - 89.6 88. $1$ 853 80. $5$ 722

$52^{-}.5$

15 $\Re]0$ 890 87. $1$ 838 784 69.$0$ 46.$0$ $-$

$16$
$89^{-}.6$

88. $3$ $-$ 86.$0$ 822 76. $1$ $-$ 655 382

TABLE 4.1. Harmomc resonance angles $\theta_{HR}$ (in degrees) when $d=0.050$ . Harmonic resonance angles $\theta_{HR}$

when $(k,j)=(6,4)$ , $(7_{\fbox{Error::0x0000}}5)$ , $(8,6)$ and $(9,7)$ are written $m$ bold

We couldn’t find good agreement between hamlonic resonance angles $\theta_{HR}$ and the angle where those
discrepancies occur. Harmonic resonance angles $\theta_{HR}$ when $(k,j)=(6,4)$ , $(7,5)$ , $(8,6)$ and $(9,7)$ are 84.2, 81.6, 78.6
and 753. Accordingly, angles of frames (a) and (b) in Figure 4.3 were no agreement wth hannonic resonance angles. Because
harmonic resonance angles are based on linear theory, $nonlineaI\rceil ty$ might have effected on those angles.

4.3 Strong nonlinear cases
In this section, we discuss rather strong nonlinear interactions. In the case of rather large $\epsilon,$

results are unstable and solutions become more difficult to converge than weakly nonlinear cases.
Bad convergences sporadically occur with changing conditions and often result in rough wave
interaction prol][les. Following figures show numerical results corresponding to $\epsilon=0.2$ , 0.3.

(X

$\kappa$

FIGURE 4.10. The tatio $a=a_{M}/a_{i}$ versus the interaction parameter $\kappa$ when $\epsilon=0.20.$

$\alpha$

$\kappa$

FIGURE 4.11. The ratio $\alpha=a_{M}/a_{i}$ versus the interachon parameter $\kappa$ when $\in=0.30.$
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In the case of rather large $\epsilon$ , numerical results do not agree with Miles’ theory because
nonlinearity parameter $\epsilon$ is out ofMiles’ approximation ofweakly nonlinearity $\epsilon<<1.$

Figure 4.10 and 4.11 differs depending on water depths $d$ . However, even if the depth $d$ is
different, results should show the same result when $\epsilon$ are the same because the ratio $d/2\pi$ of the
depth $d$ to the wavelength $2\pi$ , which associated with solitary ofwaves, is set sufficiently small to be
assumed the wavelength as infinity for waves in an cases, such a small change in depths $d$ should
not affect to the solutions.

For various conditions excluding the critical cases around $\kappa=1$ and Mach reflection region
$\kappa>1$ , there are cases that results shows rough waves or become unstable and do not converge
enough which prevented us to obtain favorable data in succession. Those deviations are larger than
those occur in weakly nonlinear cases.

$H$

$-15$ $-1$ $-05$
$0T$

05 1 15

(o)

012

01
$0$ os
006

$H$
0.04

002
$0$

002

$-15 -1 -05 0_{T}05 I 15$

(b)
FIGURE4.12. Wave profiles and contou1s for $\kappa=1.0$ and depths (a) $\epsilon=0.2$ and (b) $\epsilon=0.3.$

5. Conclusion
The scheme used in this 1esearch was successful to obtain solutions for three limensional large amplitude

shallow waterwave of $\epsilon$ up to 0.5. When $\in$ is small, most ofour numerical results show good agreement withMiles’
theory. However, some discrepancies exist and we observed wave profiles became rough and difficult to
convergence in those cases. They occur sporadically and we couldn’t avoid such rough waves of
solutions by reducing steps in calculations of the Newton method. And as $\epsilon$ increases, starts decreasing
and differences between the numerical results and Miles’ theory increase and resulting wave profiles tend to be
contaminated when $\kappa$ is close to 1.

Existence of hannonic resonances has been known for periodic solutions ofweakdy nonlinear shallow water
waves. Because the solutions used in this study are periodic, the solutions aso have possibility to show harmonic
resonances. Angles of fiames (a) and (b) in FiguIe 4.3 were no agreement with hartnonic resonance angles. Because harmonic
resonance angles are based on linear theory, nonlinearitymlghi have effected on those angles.
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