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Abstract
Ascending behaviour of individual fishes in 1-D open channels is considered as a transport
phenomenon govemed by a continuous time stochastic process model. A stochastic control problem is
formulated that determines the drift of the model based on a minimization principle of physiological
energy consumption of the fish during migration. The problem ultimately reduces to solving a
Hamilton-Jacobi-Bellman equation goveming the optimal ascending velocity, which is a nonlinear and
nonconservative parabolic partial differential equation. Mathematical and numerical analyses on the
equation are performed for comprehending behaviour of its solutions. Some numerical issues
encountered in solving the equation are also discussed.

Key words: Ascending behaviour, stochastic differential equation, stochastic control problem, energy
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1. introduction
Ascending behaviour of fishes in open channels, such as rivers, agricultural drainage canals, and
fishways, is a complicated transport phenomenon. Assessment of ascending behaviour of individual
fishes is one of the most crucial hydro-environmental research topics because of the urgent need to
establish an effective framework for improving and preserving aquatic ecological systems where
fishes play central roles. One example is designing a fishway passaging upstream and downstream
water bodies of a physical barrier, such as dams and headworks (Katopodis and Williams, 2012).
Another example is assessment of ecological functions of surface water systems serving as passages
and habitals for fishes, such as stream networks (Cote et al., 2009) and surface agricultural drainage
systems (Unami et al., 2010).

Ascending behaviour of fishes is subject to inherent disturbances due to our limited knowledge
and environmental and ecological stochasticity. Mathematical models serve as effective means for
simulating hydraulic processes in surface water bodies, which provide basic hydraulic information for
considering migration of fishes. Although a large number of researches discussed the hydraulic
processes, far less number of researches focused on migration of fishes, mainly due to difficulties to
find their reasonable mathematical expressions (Liao, 2007; Willis, 2011). It has been suggested that
stochastic process models are effective for comprehending migration of fishes, in which the
stochasticity embedded in the dynamics is considered (Fujihara and Akimoto, 2010). Although these
models are effective for assessing the ascending behaviour of fishes, they assume that the hydraulic
processes determine the behaviour without considering biological and ecological feedbacks, such as
the physiological energy consumption of fishes during the migration (Brodersen et al., 2008). One
possible way to develop a more reasonable model for ascending behaviour of fishes considering
hydraulics, biology, and ecology in a feedback manner is to formulate the problem in the context of
optimal control based on the stochastic differential equation (SDE) ($\emptyset$ksendal, 2007); however, such a
model has not been presented so far.
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The purpose of this paper is to present a stochastic process model for ascending behaviour of
fishes, in which the hydraulic, ecological, biological effects involved in the dynamics are considered in
a feedback manner based on a stochastic control theory. Lagrangian movement of individual fish is
considered as a controlled Markov process subject to shallow water flows. A stochastic control
problem is then formulated for determining the optimal ascending strategy that harmonizes the two
conflicting objectives: minimization of the total physiological energy consumption and maximization
ofthe profit gained when reaching the upstream area.

2. Stochastic process model
This paper focuses exclusively on 1-D problems. The domain of water flows is the 1-D open channel
$\Omega=(0,L)$ with its lengh $L(>0)$ and water depth $h(>0)$ . The flow velocity of water in the

channel is denoted by $V$ , which is assumed to be unidirectional and its positive direction is same with

that of the $x$ abscissa defined along the channel $(V>0)$ . The upstream- and downstream- ends of

the channel are $x=0$ and $x=L$ , respectively. The position of individual fish at the time $t$ is
denoted by $X_{t}$ , which is a continuous time stochastic process. Inspiring from the stochastic process
model for Lagrangian movement of solute particles (Yoshioka and Unami, 2013), the SDE goveming
$X_{l}$ is proposed as

$M_{t}=(V-u)dJ+\sqrt{2D}dB$, (1)

where $B$, is the 1-D standard Brownian motion ($\emptyset$ksendal, 2007), $u$ is the ascending speed of fish

where its positive direction is taken same with that of $-x$ , and $D(>0)$ is the dispersivity that

modulates the magnitude of the stochasticity involved in the dynamics, which should be related with
turbulent intensity of the flow. The ascending velocity $u$ is the control variable of the model, which
is assumed to be constrained in the admissible set

$U=\{u\Vert u|\leq u_{M}\}$ (2)

for a positive constant $u_{M}$ that can be naively taken as the maximum swimming speed of fishes, but

would actually vary in both space and time depending on hydraulic and biological conditions. In this
paper, $u_{M}$ is assumed to be constant for the sake of brevity and is referred to as the maximum

swimming speed. The coefficients $V$ and $D$ are assumed not to involve the control variable $u.$

The generator $A$ of the coupled stochastic process $Y_{l}=(t,X_{t})$ conditioned on $Y_{s}=(s,x)$ is given

by ($\emptyset$ksendal, 2007)

$AY= \frac{\partial y}{\partial s}+(V-u)\frac{\partial y}{\ }+D \frac{\partial^{2}y}{\partial x^{2}}$ (3)

for a sufficiently regular function $y=y(s,x)$ .

3. Stochastic control problem
3.1 Hamilton-Jacobi-Bellman equation
A stochastic control problem is formulated in order to determine the ascending velocity $u$ . Literatures
indicate that fishes minimize physiological energy consumption during migration depending on local
hydraulic conditions (Brodersen et al., 2008). Assuming that the fish strategically ascends the open
channel $\Omega$ toward the upstream boundary $x=0$ based on a physiological energy consumption

minimization principle, in which the value function $J^{u}$ to be maximized is proposed as

$J^{u}(s,x)= E^{S,X}[\int_{S}^{\overline{T}}(-\frac{1}{2}u^{2})dt+G(\overline{T},Y_{\overline{T}})]$ with $\overline{T}=\min(T,\tau^{s.x})$ (4)

where $E^{s,x}[\cdot]$ represents the expectation conditioned on $Y_{s}=(s,x)$ , $T$ is the terminal time, $\tau^{s,x}$ is

the first exit time of the process $Y_{t}$ from the spatio-temporal domain $–=\Omega\cross(-\infty,T)$ , and $G(\geq 0)$

is the profit specified on the boundary $\partial\Xi$ of . The profit $G$ is specified on the boundary $\partial$ as
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3.2 Ascending condition
The ascending condition of the fish is defined so that passage efficiency of the channel $\Omega$ can be
analytically assessed with the present model. The ascending condition in this paper is given by

$V_{g}=V-u<0$ in $\Omega$ , (14)

which means that the ground velocity $V_{g}$ of the fish with the optimal ascending velocity $u$ is

negative (is directed toward the upstream) everywhere in the channel $\Omega.$ $Eq.(14)$ is rewritten with
Eq.(9) as

$V_{g}=V-u=V+ \chi\frac{\partial\Phi}{\ }+(1- \chi)u_{M}s\Psi(\frac{\partial\Phi}{\ })$ in $\Omega$ . (15)
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According to Eq.(14), fishes do not ascend the channel if $V-u_{M}>0$ in $\Omega$ . Such a trivial condition

is out ofthe interest ofthis paper and the condition $V-u_{M}\leq 0$ is assumed to be satisfied in $\Omega.$

4. Mathematical analysis on the HJBE
Mathematical analysis on the HJBE(13) is performed. The HJBE(13) is non-dimensionalized for the
sake ofbrevity ofthe analysis. Eqs.(12) and (13) are non-dimensionalized as

$(1+w) \frac{d\phi}{dy}+\frac{1}{p}\frac{d^{2}\phi}{dy^{2}}-\frac{1-\chi}{2}w_{M}^{2}=0$ (16)

and

$w= \frac{\chi}{2}\frac{d\emptyset}{dy}+(1-\chi)w_{M}sgn(\frac{d\emptyset}{dy})$ , (17)

respectively, using the non-dimensional variables

$y= \frac{x}{L},$ $\emptyset=\frac{\Phi}{VL},$ $w_{M}= \frac{u_{M}}{V},$ $p= \frac{VL}{D}$ , and $P_{0}= \frac{P}{VL}$ . (18)

The following two cases $w_{M}$ are considered in this paper, which are

Case (a): $w_{M}=+\infty$ ( $u_{M}=\dashv\infty$ : unbounded case)

and
Case (b): $0<w_{M}<+\infty$ ( $0<u_{M}<+\infty$ : bounded case).

4.1 Case (a): unbounded case $(w_{M}=+\infty)$

This is an idealized case where the admissible set $U$ is identified with the 1-D space. $\mathbb{R}$ although it
has been indicated that there certainly exists an upper bound of the maximum swimming speed for
each fish (Iosilveskii and Weihs, 2008). In this case, Eqs.(16) and (17) reduce to

$(1+ \frac{1}{2}\frac{d\emptyset}{dy})\frac{d\emptyset}{dy}+\frac{1}{p}\frac{d^{2}\emptyset}{dy^{2}}=0$ . (19)

Assuming that Eq.(19) has a classical solution, application of the variable transformation

$\psi=e$

理

(20)

to it leads to

$\frac{d\psi}{dy}+\frac{1}{p}\frac{d^{2}\psi}{dy^{2}}=0$ , (21)

which is analytically solvable. The model is therefore tractable in this case. If $P_{0}\neq 2$ , the solution to

Eq.(21) is analytically derived with the transformed boundary conditions

$\psi(0)=e^{\frac{pP_{0}}{2}}$ and $\psi(1)=1$ (22)

as

$\psi=\frac{1-e^{p(\frac{P_{0}}{2}1)}+(e^{\frac{pP_{0}}{2}}-1)e^{-py}}{1-e^{-p}}$

. (23)

By Eqs.(20) and $(23\rangle, the$ solution $to Eq.(19)$ is derived as

$\emptyset=\frac{2}{p}\ln[\frac{\iota-e^{p(\frac{P_{0}}{2}-1)_{+(e^{\frac{pP_{0}}{2}}-1)e^{-py}}}}{1-e^{-p}})$ (24)
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with its gradient

$\frac{d\emptyset}{dy}=\frac{2(e^{\frac{pP_{0}}{2}}-1)}{(e^{F(\frac{P_{0}}{2}1)}-1)e^{\mathscr{O}}-(e^{\frac{pP_{0}}{2}}-1)}$ . (25)

The steady solution for $P_{0}=2$ is derived with the application of the L’Hospital’s rule to Eq.(24),

which is given by
$\emptyset=2-2y$ (26)

with its gradient

$\frac{d\phi}{dy}=-2$ . (27)

For $p>>1$ and $P_{0}>2$ , the maximum absolute value ofthe gradient $\frac{d\emptyset}{dy}$ is evaluated as

$| \frac{d\emptyset}{dy}|_{y=I}=-\frac{d\emptyset}{dy}|_{y=I}=o(e^{P(\frac{P_{0}}{2}1)})$ , (28)

indicating that there exists a boundary layer near $y=1$ with the width of $o(e^{-p(\frac{P_{0}}{2}I)})$ . Figures $1(a)$

and $1(b)$ show profiles of the solution (25) for different values of $p$ , showing that there certainly

exists one sharp boundary layer in each solution profile. According to Eq.(14), the optimal ground
velocity $V_{g}$ in the present case diverges near $y=1$ as $p$ increases.

o.o 0.5 1.0 o.o 0.5 $\iota.\mathfrak{o}$

$Di\infty Ioe$ $Di\Phi ICG$

Figure 1: Steady solutions in Eq.(24) with (a) $p=10$ and (b) $p=100$ for the boundary values $P_{0}=0.1$ and

$P_{0}=1,2\ldots,10$ . The solutions are normalized with $P_{0}.$

By Eq.(25), the solution (24) satisfies the ascending condition

$1-w. =1+ \frac{d\emptyset}{dy}<0$ (29)

if

$P_{0}> \frac{2}{p}\ln(\frac{1+e^{p}}{2})$ . (30)

Eq.(30) is satisfied if
$P_{0}\geq 2$ , (31)

which does not depend on the parameter $p$ . The right-hand side of Eq.(30) is a non-increasing

function of $p.$ $Eq.(30)$ therefore states that the ascending condition is more relaxed as $p$ decreases
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(or equivalently as $D$ increases), indicating that the increase of turbulence would enhance the
ascending behaviour of fishes. Eq.(31) is rewritten in a non-dimensional form as

$P\geq 27\mathcal{I}$ , (32)

showing that the fishes ascend the channel $\Omega$ if the profit gained when reaching the upstream-end
$y=0$ is sufficiently large for fixed $V$ and $L.$

4.2 Case (b): bounded case $(w_{M}=+\infty)$

In this case, Eqs.(12) and (13) reduce to

$(1+ \frac{1}{2}\frac{d\emptyset}{dy}I\frac{d\emptyset}{dy}+\frac{1}{p}\frac{d^{2}\emptyset}{dy^{2}}=0$ (33)

if $\chi=1$ and to

$\frac{d\phi}{dy}+w_{M}|\frac{d\phi}{dy}|+\frac{1}{p}\frac{d^{2}\phi}{dy^{2}}-\frac{1}{2}w_{M}^{2}=0$ (34)

if $\chi=0$ . Straightforward calculations show that the condition $\chi=1$ is satisfied over $\Omega$ if
$P_{0}\leq 2\leq w_{M}$ . (35)

Similarly, the condition $\chi=0$ is satisfied over the domain $\Omega$ if

$1<w_{M}<2$ and $2< \frac{w_{M}^{2}}{2(w_{M}-1)}<P_{0}$ . (36)

Application of an elliptic maximum principle to Eq.(34) leads to $\frac{d\emptyset}{dy}<0$ in $\Omega$ , which reduces

Eq.(34) to

$(1-w_{M}) \frac{d\phi}{dy}+\frac{1}{p}\frac{d^{2}\phi}{dy^{2}}=\frac{1}{2}w_{M}^{2}$ . (37)

Bq.(37) has the analytical solution

$\emptyset=P_{0}+\frac{w_{M}^{2}}{2(w_{M}-1)}y-(P_{0}+\frac{w_{M}^{2}}{2(w_{M}-1)})\frac{e^{p(w_{M}-1)y}-1}{e^{p(w_{M}-1)}-1}$ (38)

with its gradient

$\frac{d\emptyset}{dy}=\frac{w_{M}^{2}}{2(w_{M}-1)}-p((w_{M}-1)P_{0}+\frac{w_{M}^{2}}{2})\frac{e^{p(w_{M}-1)y}}{e^{p(w_{M}-1)}-1}<0$ , (39)

showing that the solution (38) satisfies the ascending condition if $w_{M}>1$ , namely if the maximum

swimming speed $u_{M}>1$ is larger than the flow velocity $V$ . Although not presented in this paper, it

has been numerically confirmed that the solution $\phi$ satisfies the ascending condition if both $P_{0}>2$

and $w_{M}>2$ are satisfied. Maximum absolute value ofthe gradient $\frac{d\emptyset}{dy}$ is evaluated as

$| \frac{d\emptyset}{dy}|_{y=1}=-\frac{d\emptyset}{dy}|_{y=1}=O(p)(p>>1)$ , (40)

indicating that there exists a boundary layer near $y=1$ for sufficiently large $p$ , but which is less

sharp compared with that in the unbounded case where the layer has exponential width. Figures 2(a)

and 2(b) show the solutions to the HJBE in the bounded case with $w_{M}=1.5$ for different values of.
$p$ . Similarly, Figures 3(a) and 3(b) show the solutions with $w_{M}=2.5$ . Figures 2 and 3 show that

there exists one sharp boundary layer in each solution profile but is not apparently sharper than that in
the corresponding unbounded case subject to the same values of $p$ and $P_{0}$ in Figure 1. Figures 2

and 3 show that the boundary layer becomes sharper as $w_{M}$ increases.
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o.o $\mathfrak{o}.5$ 1.0 $0.\mathfrak{o}$ 0.5 1.0
$Dis\infty nc\epsilon Dis\alpha nc.$

Figure2: Steady solutions in the bounded case for $w_{M}=1.5$ with (a) $p=10$ and (b) $p=100$ for the

boundary values $P_{\mathfrak{o}}=0.1$ and $P_{0}=1,2\ldots,10$ . The solutions are normalized with $P_{0}.$

o.o 0.5 1.0 $\mathfrak{o}.\mathfrak{o}$ 0.5 1.0
$Dis\alpha nc. DiS\mathfrak{g}nCe$

Figure 3: Steady solutions in the bounded case for $w_{M}=2.5$ with (a) $p=10$ and (b) $p=100$ for the

boundary values $P_{0}=0.1$ and $P_{0}=1,2\ldots,10$ . The solutions are normalized with $P_{\mathfrak{o}}.$

If the two parameters $P_{0}$ and $w_{M}$ satisfy neither Eqs.(35) nor (36), then there may exist at least
one point $\sigma\in\Omega$ serving as the interface of the sub-domain with $\chi=0$ and that with $\chi=1.$

Numerical simulations for a variety of the parameter values $(P_{0},p)$ suggest that there exists at most

one $\sigma$ for each solution profile with fixed $(P_{0},p)$ . It has also been numerically checked that the

solution is such that $\chi=1$ in $(0,\sigma)$ and $\chi=0$ in $(\sigma,1)$ if $w_{M}>2$ , and $\chi=0$ in $(o,\sigma)$ and

$\chi=1$ in $(\sigma,1)$ if $w_{M}<2$ . No analytical expression of $\sigma$ has been derived so far.

Under the other conditions in the bounded case, analytical solution to the HJBE is not available.
In addition, regularity of the solution to the HJBE in such cases is not a trivial issue and
comprehending its mathematical properties requires the use of an appropriate mathematics. In this
paper, a regularization method for the HJBE is presented for smoothness of its solution, which is later
implemented into a numerical method. Firstly, the function $h_{K}=h_{K}(a)$ is defined as

$h_{K}=\{\begin{array}{l}a(|a|\leq K)Ksy1(a)(|a|>K)\end{array}$ (41)

with its gradient

$\frac{\partial h_{K}}{\partial a}=\{_{0}^{1}(|a|>K)(|a|\leq K)$ (42)

where $K(>0)$ is a positive, bounded constant. Eqs.(41) and (42) show that $h_{K}$ and $\frac{\partial h_{K}}{\partial a}$ are

bounded. Secondly, the characteristics function $\chi$ is regularized as
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$\chi_{\epsilon}=H_{\epsilon}(\frac{d\emptyset}{dy}+w_{M})-H_{\epsilon}(\frac{d\phi}{dy}-w_{M})$ , (43)

where $\epsilon$ is a sufficiently small positive constant and $H_{\epsilon}$ represents the regularized Heaviside
function

$H_{\epsilon}(a)= \frac{1}{2}(1+\tanh(\frac{a}{\epsilon}))$ (44)

whose partial derivative $\frac{\partial H_{\epsilon}}{\partial a}$ is bounded as

$(0<) \frac{\partial H_{\epsilon}}{\partial a}=\frac{1}{\epsilon\cosh^{2}(\frac{a}{\epsilon})}$

. (45)

By Eq.(45), the conditions

$|a \chi_{\epsilon}|,|a\frac{\partial\chi_{\epsilon}}{\partial a}|<+\infty$ (46)

are derived. Thirdly, define the function $f$ as

$f=(1+w_{\epsilon})a- \frac{1-\chi_{\epsilon}}{2}w_{M}^{2}$ (47)

with the regularized $w$ given by

$w_{\epsilon}= \frac{1}{2}\chi_{s}h_{K}-(1-\chi_{\epsilon})w_{M}$ , (48)

which is bounded because

$|w_{\epsilon}|=| \frac{1}{2}\chi_{\epsilon}h_{K}-(1-\chi_{\epsilon})w_{M}|\leq\frac{1}{2}|h_{K}|+w_{M}<$十力．(49)

The partial derivative $\frac{\partial w_{\epsilon}}{\partial a}$ is expressed as

$\frac{\partial w_{\epsilon}}{\partial a}=\frac{\partial}{\partial a}(\frac{1}{2}\chi_{\epsilon}h_{K}-(1-\chi_{\epsilon})w_{M})=\frac{1}{2}(\frac{\partial\chi_{\epsilon}}{\partial a}h_{K}+\chi_{\epsilon}\frac{\partial h_{K}}{\partial a})+\frac{\partial\chi_{\epsilon}}{\partial a}w_{M}$ , (50)

which leads to

$|a \frac{\partial w_{\epsilon}}{\partial a}|=|\frac{1}{2}(a\frac{\partial\chi_{s}}{\partial a}h_{K}+\chi_{\epsilon}a\frac{\partial h_{K}}{\partial a})+a\frac{\partial\chi_{\epsilon}}{\partial a}w_{M}|\leq\frac{1}{2}|a\frac{\partial\chi_{\epsilon}}{\partial a}||h_{K}|+\frac{1}{2}|a\chi_{\epsilon}||\frac{\partial h_{K}}{\partial a}|+w_{M}|a\frac{\partial\chi_{\epsilon}}{\partial a}|<+\infty$ . (51)

Eqs.(49), (50), and (51) lead to.

$| \frac{\partial f}{\partial a}|=|1+w_{\epsilon}+a\frac{\partial w_{\epsilon}}{\partial a}+\frac{1}{2}w_{M}^{2}\frac{\partial\chi_{\epsilon}}{\partial a}|<1+w_{\epsilon}|a\frac{\partial w_{\epsilon}}{\partial a}|+\frac{1}{2}w_{M}^{2}|\frac{\partial\chi_{\epsilon}}{\partial a}|<+\infty$ . (52)

By Eq.(52) and the Schauder’s fixed point theorem, the regularized HJBE, which is given by

$(1+w_{\epsilon}) \frac{d\emptyset}{dy}+\frac{1}{p}\frac{d^{2}\emptyset}{dy^{2}}-\frac{1-\chi_{\epsilon}}{2}w_{M}^{2}=0$ (53)

with a non-zero $\epsilon$ has a unique classical solution subject to the boundary conditions because it has
the bounded drift and source terms in the sense of Yamomoto and Oishi (2006). A numerical analogue
ofthe present regularization is used in the following section.

5. Numerical analysis on the HJBE
This section focuses on numerical simulation of a HJBE in a periodic open channel, which can be
regarded as a fishway having a longitudinally periodic structure. Numerical issues encountered when
solving the HJBE are also discussed. The channel $\Omega$ is assumed to be infinitely long and have a
longitudinally periodic structure with the period $l(>0)$ . One such example is a vertical slot fishway
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et al. 2015, in press). According to the computational results from a priori performed numerical
simulations, it has been indicated that a numerical counterpart of the regularization method presented
in Section 4.2 is crucial for solving the HJBE(60). If the CPGFEM without the regularization method
is used for solving Eq.(60), its numerical solutions involve spurious oscillations and/or unphysically
flatten profiles. It has been confirmed that the choice $K=0.2(\Delta y)^{-1}$ where $\Delta y$ represents the mesh
size gives reasonable numerical solutions for sufficiently fine meshes $(\Delta y<0.0025)$ .

Figures 4(a) through 4(c) show the numerical solutions in the 2-D phase space $(y,g)$ with
$p=5$ for different values of the non-dimensionalized maximum swimming speed $w_{M}$ . Similarly,
Figures 5(a) through 5(c) show the computed optimal ground velocity $V_{g}$ in the 2-D phase space
$(y,g)$ with $p=5$ for different values of $w_{M}$ . The computational results show that the ascending
condition is satisfied for sufficiently high values of the trend $g$ . The computational cases with lower
and higher values of $p$ have also been performed. The results with the lower values of $p(p=0.5$
and $p=1)$ are qualitatively same with those in Figures 4 and 5 except for that the numerical
solutions are much smoother. On the other hand, the numerical solutions for the high values of $p$

$(p\geq 10)$ exhibit longitudinal oscillations, which are considered to be numerical artifacts.

$y$ $y$ $y$

Figure 4: Steady solutions in the bounded case for $p=5$ and the trend $0.1\leq g\leq 10$ with (a) $w_{M}=5$ , (b)

$w_{M}=6$ , and (b) $w_{M}=7$ . The counters correspond to the ten-section lines ofthe maximum and minimum
values.

ア $y$ ア

Figure 5: The optimal ground speed in the bounded case for $p=2$ and the trend O. $1\leq g\leq 10$

with (a) $w_{M}=5$ , (b) $w_{M}=6$ , and (b) $w_{M}=7$ . The black lines correspond to the contour line for $V_{g}=0.$

6. Conclusions
A stochastic process model for analytical assessment of ascending behaviour of individual fishes was
proposed and basic properties of its solutions are investigated both from analytical and numerical point
of views. A regularized counterpart has also been presented and was applied to numerical simulation
of ascending behaviour of fishes in a longitudinally periodic channel. Although the presented
analytical solutions are for the dynamics under the simplified cases, they would serve as basics for
comprehending mathematical properties ofthe HJBE.

In this paper, the model was applied to the problems in 1-D open channels. Extension of the
model to the problems in locally 1-D open channel networks, which are connected graphs where
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hydraulic properties are appropriately distributed, is possible if intemal boundary conditions are
appropriately specified at junctions. Horizontally 2-D counterpart of the model has already been
proposed in Yoshioka et al. (2014b) where the flow field is computed with the 2-D shallow water
equations. Other problems not focused on in this paper involve migration of fish schools, which can be
at least partially solved with an altemative SDE based on an appropriate mean field approximation
technique. Migration with moving and resting regimes, which is a typical behaviour of fishes, was not
addressed as well. This research topic will be addressed with a regime-switching diffusion process
model that the authors recently developed, which is a continuous time SDE coupled with a
discrete-state Markov process $(Yin and Zhu, 2010;$ Yoshioka $et al., 2014a)$ .
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