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1 Introduction

We consider the Navier-Stokes equations in $\mathbb{R}^{2}$ :

(N-S) $\{\begin{array}{l}\partial_{t}u-\Delta u+u\cdot\nabla u+\nabla p=0 in\mathbb{R}^{2}\cross(0, \infty) ,divu=0 in\mathbb{R}^{2}\cross(0, \infty) ,u 0)=u_{0} in \mathbb{R}^{2},\end{array}$

where $u=u(x, t)=(u^{1}(x,t), u^{2}(x, t))$ and $p=p(x, t)$ denote the unknown
velocity vector and the pressure of the fluid at $(x, t)\in \mathbb{R}^{2}\cross(0, \infty)$ , respec-
tively, while $u_{0}=u_{0}(x)=(u_{0}^{1}(x), u_{0}^{2}(x))$ denotes the given initial velocity.

In two dimensional case, it is well-known that the unique global solution
$u$ in the class $L^{\infty}(0, \infty;L^{2}(\mathbb{R}^{2}))$ of (N-S) which satisfy the following integral
equation:

(IE) $u(t)=e^{-tA}u_{0}- \int_{0}^{t}\nabla\cdot e^{-(t-s)A}P(u\otimes u)(s)ds,$ $t>0,$

where $A=-\triangle$ is the Laplacian on $\mathbb{R}^{2},$ $\{e^{-tA}\}_{t\geq 0}$ denotes the heat semigroup,
$P=(P_{jk})_{j,k=1}^{2}$ is the Fujita-Kato bounded projection onto the solenoidal
vector fields and $u\otimes u=(u_{j}u_{k})_{j,k=1}^{2}.$
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The decay problem has been one of main interests in mathematical fluid

mechanics. Especially, the algebraic time decay is investigated by, for in-

stance, Schonbek [20, 21, 22, 23], Kajikiya and Miyakawa [11], Wiegner [27].

Indeed, under the moment condition on the initial data $u_{0}$ :

(1.1) $\int_{\mathbb{R}^{n}}(1+|x|)|u_{0}(x)|dx<\infty,$

there exists a weak solution $u(t)$ to the Navier-Stokes equations with the

upper bound:

(1.2) $\Vert u(t)\Vert_{2}\leq C(1+t)^{-\frac{n+2}{4}}, t\geq 0.$

See also [4, 5, 6, 8, 15, 16, 2]. Here we note that $(1+t)^{-(n+2)/4}$ of the

energy decay is known as the critical rate for general initial data. More

precisely, Carpio [3], Fujigaki and Miyakawa [7], Miyakawa and Schonbek
[19] showed (1.2) by the asymptotic expansion with the heat kernel function
$(4\pi t)^{-n/2}\exp(-|x|^{2}/4t)$ , under (1.1), where the leading terms were definitely

described. Furthermore, assuming not only (1.1) but also

(1.3) $|u_{0}(x)|\leq C(1+|x|)^{-n-1}$ and $\int|x|^{m}|u_{0}(x)|dx<\infty,$

more specific space-time behaviors, especially, higher order asymptotic ex-

pansion were proved. See also [25, 24, 17, 18, 10, 1, 9, 13, 12]. Here rises a

natural question that whether or not, the moment condition (1.1) on the ini-

tial data is essential to control the space-time behavior of the Navier-Stokes
flow, more precisely, is necessary to determine the leading order term of the

solution of (IE).
In this article, our aim is to derive the space-time asymptotics using the

heat kernel function without any moment condition on the initial data like

(1.1), i.e., no restriction of the decay at spatial infinity on $u_{0}$ . Alternatively,

we introduce the following profile of initial data:

(1.4) $u_{0}(x_{1}, x_{2})=(a^{1}(x_{1})\varphi^{1}(x_{2}), a^{2}(x_{1})\varphi^{2}(x_{2}))$ .

In two dimensional case, since the solenoidal condition $divu_{0}=0$ is much

stringent, we see that $a^{1}$ and $\varphi^{2}$ are necessarily differentiable and that $u_{0}$ has

a representation with the stream function $a^{1}(x_{1})\varphi^{2}(x_{2})$ . Hence this structure

enables us to determine the leading order terms of asymptotic expansion
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without any moment condition on initial data, not just to derive a rapid
time decay. Of course, it is natural that under restriction on initial data at
spatial infinity one can obtain rapid energy decay and also pointwise esti-
mates at spatial infinity of the flow. Fhrthermore, we discuss the necessary
and sufficient condition on the initial data which causes the critical rate
$(1+t)^{-1}$ of the energy decay, like Miyakawa and Schonbek [19].

Finally, we discuss the condition on the initial data for the second order
asymptotic expansion of the solution of (IE) with the aid of weighted Hardy
spaces.

2 Result

Before stating our results, we introduce the following notations. Let $C_{0\sigma}^{\infty}(\mathbb{R}^{2})$

denotes the set of all $C^{\infty}$-solenoidal vectors $\phi$ with compact support $\ln \mathbb{R}^{2},$

:

i.e., $div\phi=0$ in $\mathbb{R}^{2}.$
$L_{\sigma}^{r}(\mathbb{R}^{2})$ is the closure of $C_{0,\sigma}^{\infty}(\mathbb{R}^{2})$ with respect to the

$L^{r}$-norm $\Vert\cdot\Vert_{r},$ $1<r<\infty$ . ) is the duality pairing between $L^{r}(\mathbb{R}^{2})$ and
$L^{r’}(\mathbb{R}^{2})$ , where $1/r+1/r’=1,$ $1\leq r\leq\infty.$ $L^{r}(\mathbb{R}^{2})$ and $W^{m,r}(\mathbb{R}^{2})$ denote
the usual (vector-valued) $L^{r}$-Lebesgue space and $L^{r}$-Sobolev space over $\mathbb{R}^{2},$

respectively. Moreover $H^{m}(\mathbb{R}^{2})$ stands for $W^{m,2}(\mathbb{R}^{2})$ . $\mathscr{S}(\mathbb{R}^{2})$ denotes set
of all of the Schwartz functions. $\mathscr{S}’(\mathbb{R}^{2})$ denotes the set of all tempered
distributions.

To state our theorem, we introduce the explicit representation of the
projection operator $P$ : $L^{r}(\mathbb{R}^{2})arrow L_{\sigma}^{r}(\mathbb{R}^{2})$ . By the Fourier transform, we
have

$P_{jk}( \xi)=\delta_{jk}+\frac{i\xi_{j}i\xi_{k}}{|\xi|^{2}}$ for $j,$ $k=1$ , 2, $(i=\sqrt{-1})$ .

Therefore, putting $F_{\ell}=(F_{\ell,j,k})_{j,k=1}^{2}=\partial_{\ell}e^{-tA}P$ , we have

$\hat{F}_{\ell,j,k}(\xi, t)=i\xi_{\ell}e^{-t|\xi|^{2}}\delta_{jk}+\frac{i\xi_{\ell}i\xi_{j}i\xi_{k}}{|\xi|^{2}}e^{-t|\xi|^{2}}=i\xi_{\ell}e^{-t|\xi|^{2}}\delta_{jk}+i\xi_{\ell}i\xi_{j}i\xi_{k}\int_{t}^{\infty}e^{-s|\xi|^{2}}ds,$

for $\ell=1$ , 2 since $| \xi|^{-2}=\int_{0}^{\infty}e^{-s|\epsilon|^{2}}ds$ . Hence we obtain

$F_{\ell,j,k}(x, t)= \partial_{\ell}E_{t}(x)\delta_{jk}+\int_{t}^{\infty}\partial_{\ell}\partial_{j}\partial_{k}E_{s}(x)ds for\ell,j, k=1, 2$ ,

where $E_{t}(x)$ is the heat kernel:

$E_{t}(x)=(4 \pi t)^{-1}\exp(-\frac{|x|^{2}}{4t})$ .
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Furthermore, we have the following estimate:

(2.1) $\Vert\partial_{tj)}^{m}\partial_{x}^{\alpha}F_{\ell,k}(\cdot, t)\Vert_{q}\leq C_{q}t^{-(3+|\alpha|+2m)/2+1/q}, t>0, 1\leq q\leq\infty,$

for all $m=0$ , 1, . . . and all multi-indeces $\alpha.$

We note that the integral equation (IE) is rewritten with $F_{\ell}$ as follows:

$(IE^{*})$ $u(t)=e^{-tA}u_{0}-()$

Now our theorem read:

Theorem 2.1. (i) Let $u_{0}\in L_{\sigma}^{2}(\mathbb{R}^{2})\cap L^{1}(\mathbb{R}^{2})$ with the following form:

$u_{0}(x_{1}, x_{2})=(a^{1}(x_{1})\varphi^{1}(x_{2}), a^{2}(x_{1})\varphi^{2}(x_{2}))$ .

Then the strong solution $u(t)$ of (N-S) satisfies

(2.2) $\lim_{tarrow\infty}t^{3/2-1/q}\Vert u_{1}(t)+\frac{1}{\lambda_{*}}\partial_{2}E_{t}(\cdot)\int a^{1}(y_{1})\varphi^{2}(y_{2})dy$

$+ \sum_{\ell,k=1}^{2}F_{\ell,1,k}(\cdot, t)\int_{0}^{\infty}\int(u_{l}u_{k})(y,s)dyd_{\mathcal{S}}\Vert_{q}=0,$

and

(23) $\lim_{tarrow\infty}t^{3/2-1/q}\Vert u_{2}(t)-\frac{1}{\lambda_{*}}\partial_{1}E_{t}(\cdot)\int a^{1}(y_{1})\varphi^{2}(y_{2})dy$

$+ \sum_{\ell,k=1}^{2}F_{\ell,2,k}(\cdot, t)\int_{0}^{\infty}\int(u\ell u_{k})(y, s)dyd_{\mathcal{S}}\Vert_{q}=0,$

for $1\leq q\leq 2$ . Here $\lambda_{*}\in \mathbb{R}$ is characterized as follows:

(2.4) $\lambda_{*}=\frac{-(a^{1},\partial_{1}\phi)}{(a^{2},\phi)}$ , $or$ $\lambda_{*}=\frac{(\varphi^{2},\partial_{2}\psi)}{(\varphi^{1},\psi)},$

with some $\phi,$ $\psi\in C_{0}^{\infty}(\mathbb{R})$ so that $(a^{2}, \phi)\neq 0$ and $(\varphi^{1}, \psi)\neq 0.$

(ii) Furthermore, it holds that

$\lim_{tarrow\infty}t^{3/2-1/q}\Vert u(t)\Vert_{q}=0,$
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if and only if
(2.5)

$\int_{-\infty}^{\infty}a^{1}(y_{1})dy_{1}\int_{-\infty}^{\infty}\varphi^{2}(y_{2})dy_{2}=0$ and $\int_{0}^{\infty}\int(u_{\ell}u_{k})(y, s)dyd_{\mathcal{S}}=c\delta_{\ell k}$

for some constant $c>0.$

(iii) On the other hand, we have

$\lim\inf t^{3/2-1/q}\Vert u(t)\Vert_{q}tarrow\infty>0,$

if and only if (2.5) does not hold.

Remark 2.1. (i) The characterization of $\lambda_{*}\neq 0$ is well-defined. Indeed, $\lambda_{*}$

is independent of the choice of $\phi,$ $\psi\in C_{0}^{\infty}(\mathbb{R})$ . See also Lemma 3.1 below.
(ii) Under our assumption on $u_{0}$ , the solenoidal condition in weak sense

yields the differentiability of $a^{1}$ and $\varphi^{2}$ . See, Lemma 3.1 below.
(iii) If $u_{0}$ satisfies (1.1), then by Fujigaki-Miyakawa [7] we also have the

expression:

(2.6) $\lim_{tarrow\infty}t^{3/2-1/q}\Vert u_{j}(t)+\sum_{k}\partial_{k}E_{t}$
$\int y_{k}u_{0,j}(y)dy$

$+ \sum_{\ell,k=1}^{2}F_{\ell,j_{)}k}(\cdot, t)\int_{0}^{\infty}\int(u_{\ell}u_{k})(y, s) dyds\Vert_{q}=0.$

By virtue of the profile of initial data as in Theorem 2.1 and by Lemma 3.1
below, it is easy to see that

$\int y_{1}a^{1}(y_{1})\varphi^{1}(y_{2})dy=0,$ $\int y_{2}a^{1}(y_{1})\varphi^{1}(y_{2})dy=\frac{1}{\lambda_{*}}\int a^{1}(y_{1})\varphi^{2}(y_{2})dy,$

$\int y_{1}a^{2}(y_{1})\varphi^{2}(y_{2})dy=-\frac{1}{\lambda_{*}}\int a^{1}(y_{1})\varphi^{2}(y_{2})dy,$ $\int y_{2}a^{2}(y_{1})\varphi^{2}(y_{2})dy=0.$

Hence the leading terms from the linear part as in (2.6) may correspond to
our leading terms if $u_{0}$ satisfy both our assumption as in Theorem 2.1 and
(1.1).

(iv) For the optimal decay, the necessary and sufficient condition (2.5) is
a generalization of that of Miyakawa and Schonbek [19]. Indeed, as is men-
tioned above, if $u_{0}$ satisfies the moment condition (1.1), (2.5) must coincide
with that of [19]. Especially, if

$\int_{0}^{\infty}\int(u_{l}u_{k})dyds=c\delta_{\ell k}$ and $\int a^{1}dy_{1}\int\varphi^{2}dy_{2}\neq 0$
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with some $c\in \mathbb{R}$ , then by cancellation of the contribution from the nonlinear
term, we may not expect that the flow is asymptotically symmetric in $\mathbb{R}^{2}.$

(v) In higher dimensional case $n\geq 3$ , consider

$u_{0}(x)=(a^{1}(x_{1})\varphi^{1}(x_{2})\eta(x_{3}, \ldots, x_{n}), a^{2}(x_{1})\varphi^{2}(x_{2})\eta(x_{3}, \ldots, x_{n}), 0, \ldots, 0)$ .

Then we obtain that all properties of Theorem 2.1 still hold for strong solu-
tions with replacing $t^{3/2-1/q}$ by $t^{1/2+n(1-1/q)/2}$ and replacing $\int a^{1}dy_{1}\int\varphi^{2}dy_{2}$

by $\int a^{1}dy_{1}\int\varphi^{2}dy_{2}\int\eta dy_{3}\ldots dy_{n}.$

As is mentioned in Remark 2.1, if we assume (1.1) in addition to the
assumption as in Theorem 2.1 then we obtain the first order asymptotic
expansion which corresponds with (2.6). Moreover, under such a situation,

we expect the second order expansion for the Stokes flow. On the other hand,

for the asymptotic expansion of the nonlinear term we need rapid decay of

weighted estimates for the solution of (IE). Recently, Tsutsui [26] investigated
the specific weighted estimate of the solution in the weighted Hardy spaces
$\mathcal{H}^{p}(w)$ . So introducing the estimate obtained in [26], by slight modification
of (1.1) in terms of weighted Hardy space $\mathcal{H}^{1}(w)$ with a weight $w$ we obtain

the second order asymptotic expansion of the solution of (IE). Here,

$\mathcal{H}^{1}(w)=\{f\in \mathscr{S}’(\mathbb{R}^{2});\int_{\mathbb{R}^{2}}\sup_{\lambda>0}|(\Phi_{\lambda}*f)(x)|w(x)dx<\infty\},$

with some $\Phi\in \mathscr{S}(\mathbb{R}^{2})$ with $\int_{\mathbb{R}^{2}}\Phi(x)dx=1$ , where $\Phi_{\lambda}(x)=\lambda^{-2}\Phi(x/\lambda)$ .
Then we have the following theorem:

Theorem 2.2. Let $u_{0}\in L_{\sigma}^{2}(\mathbb{R}^{2})\cap.L^{1}(\mathbb{R}^{2})$ with the form:
$u_{0}(x_{1}, x_{2})=(a^{1}(x_{1})\varphi^{1}(x_{2}), a^{2}(x_{2})\varphi^{2}(x_{2}))$

and satisfy (1.1). (i) Then we have (2.2) and (2.3) for all $1\leq q\leq\infty.$

(ii) Furthermore, for every $0<\epsilon<1/2$ let $u_{0}\in \mathcal{H}^{1}(w)$ with $w(x)=|x|^{1-\epsilon}$

and let $\Vert u_{0}\Vert_{2}+\Vert u_{0}\Vert_{\mathcal{H}^{1}(w)}$ be sufficiently small. Then the strong solution $u(t)$

satisfies

(2.7) $\lim_{tarrow\infty}t^{2-1/q}\Vert u_{1}(t)+\frac{1}{\lambda_{*}}$ $\sum(-1)^{|\alpha|}(\partial_{x}^{\alpha}\partial_{2}E_{t})(\cdot)\int y^{\alpha}a^{1}(y_{1})\varphi^{2}(y_{2})dy$

$0\leq|\alpha|\leq 1$

$+ \sum_{\ell,k=1}^{2}\sum_{|\beta|\leq 1}(-1)^{|\beta|}(\partial_{x}^{\beta}F_{\ell,1,k})(\cdot, t)\int_{0}^{\infty}\int y^{\beta}(u_{\ell}u_{k})(y_{\mathcal{S}})dyds\Vert_{q}=0$
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and

(2.8) $\lim_{tarrow\infty}t^{2-1/q}\Vert u_{2}(t)-\frac{1}{\lambda_{*}}\sum_{0\leq|\alpha|\leq 1}(-1)^{|\alpha|}(\partial_{x}^{\alpha}\partial_{1}E_{t})(\cdot)\int y^{\alpha}a^{1}(y_{1})\varphi^{2}(y_{2})dy$

$+ \sum_{\ell,k=1}^{2}\sum_{|\beta|\leq 1}(-1)^{|\beta|}(\partial_{x}^{\beta}F_{\ell,2,k})(\cdot, t)\int_{0}^{\infty}\int y^{\beta}(u_{\ell}u_{k})(y, s)dyds\Vert_{q}=0$

for all $1\leq q\leq\infty$ , where $\lambda_{*}\in \mathbb{R}$ is determined by (2.4).

Remark 2.2. (i) Under (1.1) we have the rapid decay estimate for the strong

solution obtained by Miyakawa [15]. Then we can extend the range of $q$ up

to $\infty.$

(ii) Fujigaki and Miyakawa [7] and Miyakawa [15] showed higher order
asymptotic expansion assuming pointwise estimates on the initial data as in

(1.3). Of course, they simultaneously obtained the precise pointwise esti-

mate for the solution in space and time. However, as for the second order

asymptotic expansion we need no pointwise estimate on $u_{0}$ as in (1.3).

3 Outline of proof

The following lemmata for the Stokes flow are essential role to prove our
theorems.

Lemma 3.1. Let $u_{0}\in L_{\sigma}^{2}(\mathbb{R}^{2})\cap L^{1}(\mathbb{R}^{2})$ with the following form:

$u_{0}(x_{1}, x_{2})=(a^{1}(x_{1})\varphi^{1}(x_{2}), a^{2}(x_{1})\varphi^{2}(x_{2}))$ .

Tんen it holds $t$ん at $a^{1},$ $\varphi^{2}\in H^{1}(\mathbb{R})\cap W^{1,1}(\mathbb{R})$ and that $u_{0}$ is expressed as:
(3.1)

$u_{0}(x_{1}, x_{2})= \frac{1}{\lambda_{*}}(-a^{1}(x_{1})\partial_{2}\varphi^{2}(x_{2}), \partial_{1}a^{1}(x_{1})\varphi^{2}(x_{2}))$ for $a.e.$ $(x_{1}, x_{2})\in \mathbb{R}^{2}$

where $\lambda_{*}\in \mathbb{R}$ is characterized as:

(2.4) $\lambda_{*}=\frac{-(a^{1},\partial_{1}\phi)}{(a^{2},\phi)}$ , $or$ $\lambda_{*}=\frac{(\varphi^{2},\ \psi)}{(\varphi^{1},\psi)},$

with some $\phi,$ $\psi\in C_{0}^{\infty}(\mathbb{R})$ so that $(a^{2}, \phi)\neq 0$ and $(\varphi^{1}, \psi)\neq 0.$
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Proof. Since $u_{0}\in L_{\sigma}^{2}(\mathbb{R}^{2})$ , i.e., $divu_{0}=0$ , we have $i\xi_{1}\hat{a}^{1}(\xi_{1})\hat{\varphi}^{1}(\xi_{2})+i\xi_{2}\hat{a}^{2}(\xi_{1})\varphi^{2}(\xi_{2})=$

$0$ for all $\xi_{1},$ $\xi_{2}\in \mathbb{R}$ . Therefore there exists a constant $\lambda_{*}$ such that

(3.2) $\frac{i\xi_{1}\hat{a}^{1}(\xi_{1})}{\hat{a}^{2}(\xi_{1})}=\frac{-i\xi_{2}\hat{\varphi}^{2}(\xi_{2})}{\hat{\varphi}^{1}(\xi_{2})}\equiv\lambda_{*},$

for all $\xi_{1},$ $\xi_{2}\in \mathbb{R}$ . Hence (3.2) implies

(3.3) $\{\begin{array}{ll}\partial_{1}a^{1}(x_{1})=\lambda_{*}a^{2}(x_{1}) , a.e. x_{1},-\partial_{2}\varphi^{2}(x_{2})=\lambda_{*}\varphi^{1}(x_{2}) , a.e. x_{2}.\end{array}$

Since $a^{2},$ $\varphi^{1}\in L^{1}(\mathbb{R})\cap L^{2}(\mathbb{R})$ , it is easy to obtain $a^{1},$ $\varphi^{2}\in H^{1}(\mathbb{R})\cap W^{1,1}(\mathbb{R})$

and (3.1).
Now it remains to give an expression of $\lambda_{*}$ by the given data $a^{1},$ $a^{2},$ $\varphi^{1}$ and

$\varphi^{2}$ with the aid of test functions, and to show $\lambda_{*}\in \mathbb{R}$ and well-definedness
of $\lambda_{*}$ . Let $\phi,$ $\psi\in C_{0}^{\infty}(\mathbb{R})$ . Consider $\phi(x_{1})\psi(x_{2})$ as a smooth function on $\mathbb{R}^{2}.$

Then we have

$0=(u_{0}, \nabla(\phi\psi))$

$= \int_{\mathbb{R}^{2}}(a^{1}(x_{1})\varphi^{1}(x_{2})\cdot\partial_{1}\phi(x_{1})\psi(x_{2})+a^{2}(x_{1})\varphi^{2}(x_{2})\cdot\phi(x_{1})\partial_{2}\psi(x_{2}))dx_{1}dx_{2}$

$= \int_{\mathbb{R}}a^{1}(x_{1})\partial_{1}\phi(x_{1})dx_{1}\int_{\mathbb{R}}\varphi^{1}(x_{2})\psi(x_{2})dx_{2}+\int_{\mathbb{R}}a^{2}$ $dx_{1} \int_{\mathbb{R}}\varphi(x_{2})\partial_{2}\psi(x_{2})dx$

$=(a^{1}, \partial_{1}\phi)(\varphi^{1}, \psi)+(a^{2}, \phi)(\varphi^{2}, \partial_{2}\psi)$ .

Hence we obtain

(3.4) $\frac{-(a^{1},\partial_{1}\phi)}{(a^{2},\phi)}=\frac{(\varphi^{2},\partial_{2}\psi)}{(\varphi^{1},\psi)}$

for all $\phi,$ $\psi\in C_{0}^{\infty}(\mathbb{R})$ with $(a^{2}, \phi)\neq 0$ and $(\varphi^{1}, \psi)\neq 0$ . Therefore it is easy to
see that (3.4) implies the characterization of $\lambda_{*}$ is independent of the choice
of $\phi$ and $\psi.$ $\square$

Lemma 3.2. Let $u_{0}\in L_{\sigma}^{2}(\mathbb{R}^{2})\cap L^{1}(\mathbb{R}^{2})$ with the form:
$u_{0}(x_{1}, x_{2})=(a^{1}(x_{1})\varphi^{1}(x_{2}), a^{2}(x_{1})\varphi^{2}(x_{2}))$ .

Then for $1\leq q\leq\infty$ , it holds that

$\lim_{tarrow\infty}t^{3/2-1/q}\Vert e^{-tA}u_{0}-\frac{1}{\lambda_{*}}(-\partial_{2}E_{t}(\cdot), \partial_{1}E_{t}(\cdot))\int a^{1}(y_{1})\varphi^{2}(y_{2})dy\Vert_{q}=0,$

where $\lambda_{*}\in \mathbb{R}$ is determined by (2.4).
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Proof By Lemma 3.1, we note that

$u_{0}(x_{1}, x_{2})= \frac{1}{\lambda_{*}}(-a^{1}(x_{1})\partial_{2}\varphi^{2}(x_{2}), \partial_{1}a^{1}(x_{1})\varphi^{2}(x_{2}))$ for a.e. $(x_{1},x_{2})\in \mathbb{R}^{2}.$

Noting $\partial_{x_{j}}E_{t}(x-y)=-\partial_{y_{j}}E_{t}(x-y)$ , by integral by parts we have

$e^{-tA}[a^{1} \varphi^{1}](x)=\int_{\mathbb{R}^{2}}E_{t}(x-y)a^{1}(y_{1})\varphi^{1}(y_{2})$ 吻

(3.5) $=- \frac{1}{\lambda_{*}}\int_{\mathbb{R}^{2}}E_{t}(x-y)a^{1}(y_{1})\partial_{y_{2}}\varphi^{2}(y_{2})dy$

$=- \frac{1}{\lambda_{*}}\int_{\mathbb{R}^{2}}\partial_{x}2E_{t}(x-y)a^{1}(y_{1})\varphi^{2}(y_{2})dy.$

Hence we have

$e^{-tA}[a^{1} \varphi^{1}](x)+\frac{1}{\lambda_{*}}\ E_{t}(x) \int a^{1}(y_{1})\varphi^{2}(y_{2})dy$

$=- \frac{1}{\lambda_{*}}\int[\partial_{x_{2}}E_{t}(x-y)-\partial_{x}2E_{t}(x)]a^{1}(y_{1})\varphi^{2}(y_{2})dy$

Therefore, by change of variables $x’=x/\sqrt{t}$ and the generalized Minkovski
inequality for the integral, we obtain

$\Vert e^{-tA}[a^{1}\varphi^{1}]+\frac{1}{\lambda_{*}}\partial_{2}E_{t}(\cdot)\int a^{1}(y_{1})\varphi^{2}(y_{2})dy\Vert_{q}$

$\leq\frac{t^{-3/2+1/q}}{|\lambda_{*}|}\int\Vert\ E_{1}( \cdot-y/\sqrt{t})-\ E_{1}( \cdot)\Vert_{q}a^{1}(y_{1})\varphi^{2}(y_{2})dy.$

Here $\Vert\partial_{2}E_{1}(\cdot-y/\sqrt{t})-\partial_{2}E_{1}(\cdot)\Vert_{q}$ is bounded in $t$ and $y$ , and we have

$\lim_{tarrow\infty}\Vert\partial_{2}E_{1}(\cdot-y/\sqrt{t})-\partial_{2}E_{1}(\cdot)\Vert_{q}=0$ for fixed $y.$

By Lebesgue’s convergence theorem, we have

$\lim_{tarrow\infty}t^{3/2-1/q}\Vert e^{-tA}[a^{1}\varphi^{1}]+\frac{1}{\lambda_{*}}$の瓦 $\int a^{1}(y_{1})\varphi^{2}(y_{2})dy\Vert_{q}=0.$

Furthermore, by the same argument, we obtain

$\lim_{tarrow\infty}t^{3/2-1/q}\Vert e^{-tA}[a^{2}\varphi^{2}]-\frac{1}{\lambda_{*}}\partial_{1}E_{t}(\cdot)\int a^{1}(y_{1})\varphi^{2}(y_{2})dy\Vert_{q}=0.$

This completes the proof of Lemma 3.2. $\square$
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Since we have the asymptotic expansion of the Stokes flow with leading
order therms and $\Vert e^{-tA}u_{0}\Vert_{2}\leq t^{-\frac{n+2}{4}}$ for large $t>0$ , we may derive the first
order asymptotic expansion for the nonlinear terms according to Fujigaki and
Miyakawa [7]. Let

$w(t)=(w_{1}(t),$ $w_{2}(t))=- \int_{0}$

オ

$\nabla\cdot e^{-(t-s)A}P(u\otimes u)(s)ds$

(3.6)
$=(- \sum_{\ell,k=1}^{2}\int_{0}^{t}F_{\ell,j,k}(t-s)*(u_{\ell}u_{k})(s)ds)_{j=1,2}$

Lemma 3.3 (Fujigaki and Miyakawa [7]). Let $u_{0}$ satisfy the assumption of
Theorem 2.1. Then we have

$\lim_{tarrow\infty}t^{3/2-1/q}\Vert w_{j}(t)+\sum_{\ell,k=1}^{2}F_{\ell,j,k}(\cdot, t)\int_{0}^{\infty}\int(u_{\ell}u_{k})(y, s)dyds\Vert_{q}=0$

for all $1\leq q\leq 2$ and $j=1$ , 2.

Finally, we consider the second order asymptotic expansion for nonlinear
term under the first order moment condition in terms of the weighted Hardy
space. For this purpose we introduce the following theorem proved by Tsutsui
[26]:

Theorem 3.1 (Tsutsui [26]). Let $n\geq 2,$ $1\leq p<\infty,$ $-n/p<\alpha<n(1-$

$1/p)+1$ and $w(x)=|x|^{\alpha p}$ . Then there exists $\delta>0$ such that for any $u_{0}\in$

$L^{n}\cap \mathcal{H}^{p}(w)$ with $\Vert u_{0}\Vert_{n}+\Vert u_{0}\Vert_{\mathcal{H}^{p}(w)}<\delta$ and $divu_{0}=0$ , we can construct a
solution $u\in L^{\infty}(0, \infty;L^{n}\cap \mathcal{H}^{p}(w))\cap C([0, \infty);L^{n}\cap \mathcal{H}^{p}(w))\cap C^{\infty}((0, \infty)\cross \mathbb{R}^{n})$

of $(IE)$ satisfying

$\lim_{tarrow 0}\Vert u(t)-u_{0}\Vert_{n}=\lim_{tarrow 0}\Vert u(t)-u_{0}\Vert_{\mathcal{H}^{p}(w)}=0,$ $\sup_{t>0}t^{1/2}\Vert\nabla u(t)\Vert_{\mathcal{H}^{q}(w)}<\infty.$

Moreover, for $q\in\lceil p,$ $\infty$ ) and $\beta\in(-n/q, n(1-1/q)+1)$ with $\beta\leq\alpha$ , the
solution $u$ satisfies the following property:

$\Vert u(t)\Vert_{\mathcal{H}^{q}(\sigma)}\leq Ct^{-\frac{n}{2}(1/p-1/q)-\frac{\alpha-\beta}{2}\delta}$

for all $t>0$ with $\sigma(x)=|x|^{\beta q}.$
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Here we put $p=1\alpha=1-\epsilon,$ $q=2$ and $\beta=1/2$ in Theorem 3.1 in case
of $n=2$ . Let $u_{0}\in L_{\sigma}^{2}(\mathbb{R}^{2})\cap \mathcal{H}^{1}(w)$ with $w(x)=|x|^{1-\epsilon}$ and $\Vert u_{0}\Vert_{2}+\Vert u_{0}\Vert_{\mathcal{H}^{1}(w)}$

is sufficiently small. Then we obtain a unique strong solution $u(t)$ with the
following estimate

(3.7) $\int_{\mathbb{R}^{2}}|y||u(y, t)|^{2}dy\leq Ct^{-3/2+\epsilon}$ for $t>0,$

since $L_{loc}^{1}(\mathbb{R}^{2})\cap \mathcal{H}^{2}(\sigma)\mapsto L^{2}(\sigma)$ with $\sigma(x)=|x|$ , where $L^{2}(\sigma)=\{u\in$

$L_{loc}^{1}( \mathbb{R}^{2});\int|u(x)|^{2}\sigma(x)dx<\infty\}.$

By virtue of (3.7), we obtain the second order expansion of the nonlinear
Duhamel term according Fujigaki and Miyakawa [7].
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