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On the Thin Film Approximation
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1 Introduction

In this paper, we consider a two-dimensional motion of liquid film of a viscous and in-
compressible fluid flowing down an inclined plane under the influence of the gravity and
the surface tension on the interface. The motion is mathematically formulated as a free
boundary problem for the incompressible Navier-Stokes equations. We assume that the
domain Q(t) occupied by the liquid at time ¢ > 0, the liquid surface I'(t), and the rigid
plane ¥ are of the forms

Qt) = {(z,y) e R?* | 0 < y < ho +n(z,1)},
L(t) = {(z,y) € R? | y = ho + n(z, 1)},
T = {(z,y) €e R* y =0},

where hg is the mean thickness of the liquid film and 7(z,t) is the amplitude of the liquid
surface. Here we choose a coordinate system (z,y) so that x axis is down and y axis is
normal to the plane.  The motion of the liquid is described by the velocity u = (u,v)T

Figure 1: Sketch of a thin liquid film flowing down an inclined plane

and the pressure p satisfying the Navier—Stokes equations

(L1) p(us+ (u-V)u) =V-P+pg(sina, —cosa)” in Q(t), t >0,
' V-u=0 in Q(¢), t>0,



where P = —pI + 2uD is the stress tensor, D = (Du + (Du)T) is the deformation
tensor, I is the unit matrix, p is a constant density of the liquid, g is the acceleration
of the gravity, « is the angle of inclination, and p is the shear viscosity coefficient. The
dynamical and kinematic conditions on the liquid surface are

(1.2) { Pn=-pn+oHn on I(t), t>0,

m+ug, —v=0 on I'(t), t>0,

where n is the unit outward normal vector to the liquid surface, that is, n = ﬁ(—nz, DT,

Do is a constant atmospheric pressure, o is the surface tension coefficient, and H is the

twice mean curvature of the liquid surface, that is, H = (—'71——) . The boundary con-
vV 4n2/ g

dition on the rigid plane is the non-slip condition

(1.3) u=0 on %, t>0

These equations have a laminar steady solution of the form
(1.4) n=0, u=(pgsina/2u)(2hoy —y*), v=0, p=po— pgcosaly— ho),

which is called the Nusselt flat film solution. Throughout this paper, we assume that
the flow is downward ly-periodic or approaches asymptotically this flat film solution at
spacially infinity.

Concerning the instability of this laminar flow, there are vast research literatures in
the physical and the engineering point of view. The first investigation of the wave motion
of thin film including the effect of the surface tension was provided by Kapitza [10].
Particularly, he considered the case where liquid film flows down a vertical wall, that is,
the case o = Z. Yih [21] first formulated the linear stability problem of the laminar flow
of liquid film flowing down an inclined plane as an eigenvalue problem for the complex
phase velocity, more specifically, the Orr-Sommerfeld problem although he neglected the
effect of the surface tension. Benjamin [3] took into account the effect of the surface
tension and showed that the critical Reynolds number R. is given by R, = %cota by
expanding the normal mode solution in powers of y. (In his original paper, the critical
Reynolds number was given by R, = %cot a. This difference comes from the definition
of the Reynolds number, that is, Benjamin used the average speed of the Nusselt flat
film solution whereas we use the speed of the solution on the liquid surface as in Benney
[4].) Later, Yih [22] showed the same condition by expanding normal mode solution in
powers of the aspect ratio of the film which will be denoted by ¢ in this article. An
approach taking into account the nonlinearity was first given by Mei [12] and Benney [4].
While Mei considered the gravity waves, Benney considered the capillary-gravity waves
and he recovered Benjamin’s and Yih’s linear stability theories. Using the mean thickness
of the liquid hg, the characteristic scale of the streamwise direction Iy, and the typical
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amplitude of the liquid surface ag, Benney introduced two non-dimensional parameters §
and € defined by
s ho ag
= — £ = —
lo’ ho’

respectively, and derived the following single nonlinear evolution equation

(1.5) e =A(L+ en)nz + 6(B(1 + en)nae + €C(1 + en)n?)
+ 6% (D(1 + en)aez + €E(L + en)nenee + €2F (1 + em)n?)
+ 8 (G + en)aaer + €H (1 + €N)TuNaze + €1(1 + en)n2,
+e2J(1 + en)nine. + K (1 + en)nt) + O(5%)

by the method of perturbation expansion of the solution (u, v, p) with respect to § under
the thin film regime § <« 1. Here, A, B,..., K are polynomials in 1 + ¢7. Thereafter,
several authors have followed the Benney’s approach. Here, we note that if the Weber
number W satisfies the condition W = O(1), the effect of the surface tension does not
appear until the term of O(63) in the above equation. Since Benney considered the case
W = O(1) and calculated the terms up to O(4?), the effect of the surface tension was
omitted in his stability analysis. Consequently, his results showed that linearly unstable
waves grow more rapidly in the nonlinear range. Nakaya [13] computed the terms up to
0O(6®) and showed that the surface tension has a stabilization effect in the development
of the monochromatic waves. On the other hand, Gjevik [7] incorporated the effect
of the surface tension into the equation by assuming the condition W = O(§2) and
investigated the growth of an initially unstable periodic surface perturbation and its
nonlinear interaction with the higher harmonics. Their results imply that the surface
tension plays an important role in investigating the stability of surface waves, which
have already been pointed out by Kapitza {10]. We remark that the condition W =
O(672) holds for many kinds of fluid such as water and alcohol at normal temperature.
Moreover, several authors extended the Benney’s results to the three-dimensional case.
Roskes [16] calculated the terms up to O(6%) and investigated the interactions between
two-dimensional and three-dimensional weakly nonlinear waves on liquid film under the
condition W = O(1), which implies that he did not consider the effect of the surface
tension. Atherton and Homsy [1] and Lin and Krishna [11] calculated the terms up to
O(6) and O(6?), respectively, under the condition W = O(672), namely, they took the
effect of surface tension in the equation in three-dimensional case. Furthermore, while
they considered the case where R = O(1), Topper and Kawahara [19] derived approximate
equations under the conditions W = O(6~2) and R = O(4). More details or a list of useful
references about the thin film approximation can be found in [5, 6, 9, 15].

Many approximate equations are obtained from (1.5). For example, by neglecting the



terms of O(6% + €2), we obtain the Burgers equation
N = =21, — denng + 6 B(1) Ny

with B(1) = —1% (% cot o — R), from which we can recover the Benjamin’s critical Reynolds
number R, = 2cota. By neglecting the terms of O(6° + €6 + £2), we obtain the KdV—
Burgers equation

ne = —2n, — denn, + 53(1)77m + 52D(1)77$xx7

which was named by Johnson [8]. Here, D(1) = -2 — 2ZR* + 2£Rcota. Moreover, by
neglecting the terms of O(6* + €8 + €2), we obtain the so-called generalized Kuramoto—
Sivashinsky equation or Kawahara equation (or more simply KdV-KS equation)

N = —2n, — denn, + 5B(1)7’M + 62D(1)77zm + 530(1)7hzzm

with G(1) = —2Wesca — IR — BRcot? a + 18904R2 cot o — 12L882R3. Therefore, the
effect of the surface tension, namely, the Weber number W first appear in the coefficient
of the fourth order derivative term in the case W = O(1). Now, our purpose is to give a
mathematically rigorous justification of these thin film approximations by establishing the
error estimate between the solution of Navier—Stokes equations (1.1)—(1.3) and those of
the above approximate equations. In order to carry out the justification, the most difficult
task is to derive a uniform estimate for the solution of the Navier—-Stokes equations with
respect to 4 in the thin film regime § <« 1. In this paper, we will focus on deriving a
uniform estimate of the solution with respect to § when the Reynolds number, the angle
of inclination, and the initial date are sufficiently small under the condition R = O(1)
and O(1) < W < O(672). In the future research, we will give a mathematically rigorous

justification of the thin film approximations.

Concerning a mathematical analysis of the problem, Teramoto [17] showed that the
initial value problem to the Navier-Stokes equations (1.1)-(1.3) has a unique solution
globally in time under the assumption that the Reynolds number and the initial data are
sufficiently small. Furthermore, Nishida, Teramoto, and Win [14] showed the exponential
stability of the laminar flow under the assumption that the angle of inclination is suffi-
ciently small in addition to the assumption in [17]. We follow basically the techniques
used in the paper [14] and introduce a new energy function to obtain the uniform estimate.

The plan of this paper is as follows. In Section 2, we rewrite the problem in a non-
dimensional form and transform the problem in a time dependent domain to a problem
in a time independent domain by using an appropriate diffcomorphism. Then, we give
our main theorem in this paper. In Section 3, we carry out energy estimates to the
transformed equations, which are key estimates to derive a uniform boundedness of the
solution in §. Finally, we derive a uniform estimate of the solution in Section 4.
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Notation. Weput Q@ = Gx(0,1) and ' = Gx{y = 1}, where G is the flat torus T = R/Z
or R. For a Banach space X, we denote by || - ||x the norms in X. For 1 < p < oo, we
put lullz> = [ullzey, lull = Nullza, [uls = -, )o@y, and fulo = fulza. We denote
by (-,-)a and (-,-)r the inner products of L*(Q2) and L*(T), respectively. For s > 0, we
denote by H*(Q)) and H*(I') the L? Sobolev spaces of order s on € and T', respectively.
The norms of these spaces are denoted by || - || and | - |,. For a function u = u(z,y) on
(), a Fourier multiplier P(D,) (D, = —i0;) is defined by

Z P(n)im,(y)e*™™ in the case G =T,
(P(Dz)u)(z,y) = { "F*

/ P(¢)a(¢ ,y)e?méede in the case G = R,

R

where 4, (y) = fol u(z, y)e~2""™ dz is the Fourier coefficient and 4(¢, y) = [ u(z, y)e >™**dz
is the Fourier transform in z. We put Vs = (60:,0,)T, As = Vs - Vs, and Dif =
{(68;)°@f |1+ j = k}. For operators A and B, we denote by [A, B] = AB — BA the
commutator. We put

qvmw=—/fmau

f < g means that there exists a non-essential positive constant C such that f < Cg holds.

2 Reformulation of the problem and main result

We first rewrite (1.1)—(1.3) in a non-dimensional form. We will consider fluctuations
on the stationary laminar flow given by (1.4), so that we rescale the independent and
dependent variables by

Tr = lo.’l‘/, Y= hoy,, = tot,,
n=am, u=U(@ +ev), v=eVpv, p=po+ePop,

where Uy = pgh2sin a/2u, Vo = (ho/lo)Uo, to = lo/Us, &' = 2y’ — y%, and Py = pghosin .
Putting these into (1.1)—(1.3) and dropping the prime sign in the notation, we obtain
(2.1)

1
§uf + (U +eud) - Vo)ud + (uf - V5)U + —;—Vap -2 =0 in 0.(t), t>0,
Vs-ub=0 in Q(t), t>0,

(Ds(eu? + U) — epI)n®
1 0*W €Mz
(2.2) =1 - en + = 3
tan o sina (1 + (e0m,)?)?
M + (1—(sn)2+eu)nx—v=0 on I'.(t), t>0,

)n5 on [.(t),t>0,
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(2.3) w’'=0 on I, t>0,

where ¢ = (u,0v)T, U = (4,07, @ = 2y — y?, Dsf = %{V,;(fT) + (Vg(_fT))T},
nd = (—e61,,1)T, R = pUpho/p is the Reynolds number, and W = o/pgh{ is the Weber
number. In this scaling, the liquid domain Q.(t) and the liquid surface I'(t) are of the

forms
Q:(t) ={(z,y) eR? | 0 < y < 1 +en(a, 1)},
{ Ff(t) = {(m,y) € R? I y=1 +E17(:L‘,t)}.
Next, we transform the problem in the moving domain Q.(t) to a problem in the fixed
domain Q by using an appropriate diffeomorphism @ : Q@ — €, (t) defined by

®(z,y,t) = (z,y(1 + £ii(z, 4, 1)),

where 7 is an extension of 77 to . We need to choose the extension 7 carefully and in this
paper we adopt the following extension. For ¢ € H*(T"), we define its extension qg to O by

&n i .
E mne th G="T
55(.% y) = { neL 1+ (on(1 - y)y)4e e ,

¢(§) Tiéx . _
/]R 1+ (6¢(1 - y)y)4e2 d¢ in the case G = R.

As usual, this extension operator has a regularizing effect so that e H s+3 (). However,
if we use such a regularizing property, then we need to pay the cost of a power of 4.

Moreover, in this extension, 9, corresponds to 63;.

The solenoidal condition on the velocity field is destroyed in general by the transfor-
mation. To keep the condition, following Beale [2], we also change the dependent variables
and introduce new unknown functions (u/,v’,p’) defined in {2 by

wW=Juod), vV=vod—yei(uo®), p=pod,

where J = 1 + £(y7}),, is the Jacobian of the diffeomorphism &.
Combining the above transformations and dropping the prime sign in the notation,
we transform (2.1)—(2.3) to

oul + (U - Vs)ud + (u® - V5)U

2 1 .
(2.4) +ﬁ(1 + A4)Vsp — P—{{62ufw + (I +A)ud,} =f in Q,¢>0,
Uy + vy, =0 in Q,t>0,
6%y + uy — (2 +b3)n = hy on T,t>0,
2
(25) p— 5’Uy - ! n + ) Wn:cz = h2 on F, t> O,

tan o sin o
N +ne—v=hs on T, t>0,
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(2.6) u=v=0 on X, t>0.

Here, A3 = byEy,, A4 is a symmetric matrix, and b, bs, f, hy, ha, hg are collections of
nonlinear terms. Particularly, hs = €2nn,. For details, see [20]. In the following, we will
consider the initial value problem to (2.4)—(2.6) under the initial conditions

(2.7) Neo=m on T, (u,v)T|im0= (uo,v0)T in Q.
Here we denote b3 and h; determined from the initial data by bgo) and hgo), respectively.
Now, we are ready to state our main result in this paper.

Theorem 2.1. (Uniform estimate) There exist positive constants Ry and ag such that
the following statement holds: Let m be an integer satisfying m > 2, 0 < Ry < Ry,
0<W; Wy, and 0 < a < og. There exist positive constants cg and T such that if
the initial data (mo,ug,vo) and the parameters §, €, R, and W satisfy the compatibility

conditions
Ugz + voy =0 in Q,
{ ugy + 0%vp, — (2 + b§°))no = h§°) on T,
Uy = Vg = 0 on 2,
and

(1(1 + 61D21)*ol> + |1 + | D2l (uo, v0) ™ | + 111 + | Del)* D (o, 6v0) |
+|(1 + | D2|)? D (uo, 6vo) | + *W{I(1 + 8] Da|)*m0sl2 + 62| (L + [ Dz|)*vosy [} < co,
311 + 81Dz ])*olm + (1 + | Dal)™ (uo, 8v0) ™ || + (1 + | Dz[)™ Ds (o, vo) |

k0<6,5S1, RlSRSRO) W1.<_WS5_2W27

then the initial value problem (2.4)—~(2.7) has a unique solution (n,u,v,p) on the time
interval [0, T/e] and the solution satisfies the estimate

(1 + 81 Da)*n()|7, + O Ime(t)7, + W11 + 81 Da)*ne (&)1, + 8% mea(t) 70 }
+[[(1+ 1 Do)™(1 + 81Da) Pul (07 + |1 + | Da ) g (B)II + 671 (1 + [ Del) ™z () 1*

+/0 {8na(7)|2, + 8](1 + 8| Da)) I ()2,

+ (8PW)8Inmaa(r) 2, + (W) {Blnaas (77 + || Dal2(r) 5.}

+IH(1 + |Dz.|)mD§(u076UO)T” + 52W{'(1 + 6|Dzl)2770x|m + ‘52”(1 + |Dz|)m"’0xy||} <M,
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+8)I(1 + | Dal)™ug (7)1 + 61|(L + |Da)™(1 + 8] Do) Vsug (1) |7 + 8| (1 + | Dz )™ Vsuy (7)1*

+ 4+ (1 + [De)™(1 + 81 Deyug, ()2 + 81|(1 + | Da )0 Moo (7)1
+ 871 + | D)™ + 8| D) Vsp(T)|I? + 81l (1 + | Do )™ Vape (1) |*}dr < C
for 0 < t < T/e with a constant C = C(Ry, W1, Wy, a, M) independent of §, €, R, and
W. Moreover, the following uniform estimate holds.
(28) 1Ol + 10+ D)™ u(0) 1 + 07w, ()]
+ 1L+ (D)™ o)l + 107 oy ()| < C©



for 0 <t < T/e. If, in addition, 0 < € < 4, then the solution can be extended for allt > 0
and the above estimates hold for t > 0.

Remark 2.1. In the case € ~ 1, this theorem gives a uniform boundedness of the solution
only for a short time interval [0, 7). However, this is essential and we cannot extend this
uniform estimate for all ¢ > 0 in general, because by (1.5) we see that the limiting equation
for n as § = 0 becomes a nonlinear hyperbolic conservation law of the form

m + 2(1 +en)’n, =0,

whose solution will have a singularity in finite time in general.

3 Energy estimates
We recall two fundamental inequalities which have a key role in this paper.
Lemma 3.1. (Korn’s inequality) There ezists a constant K independent of § such that

for any 0 < 6 <1 and u = (u,v)? satisfying

up +v, =0 in Q,
u=v=0 on X

we have
//n(dzui +ul + 6%02 + 6%0])dady < K //n (26%u2 + (uy + 0%v)* + 262v§)dzdy.

Remark 3.1. Teramoto and Tomoeda [18] proved that the best constant of K is 3. Note
that in the case of § = 1, this inequality is well-known.

Lemma 3.2. (Trace theorem) For 0 < 6 < 1, we have
[£18 4 BIDe 11§ S WFIP + Sl el + 1Al

Remark 3.2. This trace theorem is also well-known in the case of § = 1.

We omit the proofs of the above lemmas because we only have to modify slightly the
proofs in the case of § = 1.

The following proposition is a slight modification of the energy estimate obtained in
[14].
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Proposition 3.3. There exists a positive constant Rqy such that if 0 < R < Ry, then the
solution (n,u,v,p) of (2.4)~(2.6) satisfies

6d [ a2y 2 W 52
6y 2 dt{u P+ 2 (tanalnlo Vindz) b + gl Vel
< f(hﬂg + [bamlf) + ﬁ(hlau)I‘ - ﬁ(hz,&’)r
2,1 2w

D - = 76h F7 d )
REma ~ g e Shalr + (B, w)a

where K is the constant in Korn’s inequality and

- bauyy
(3.2) F=f- RA4V5p+ R( 0 )
Proof. Note that Lemma 3.1 implies
(3.3) IVsu|1? < Klllu’l|?,

where |||u®|[|? = 2||duz||® + |luy + 6%v.||2 + 2||6vy||2. Taking the inner product of u® with
the first equation in (2.4), we have

6d Jm

(3.4) =—||u’||* + (u, Gydv)a + (2V5p Asul vl = (Fy,ud)q.

R

Using the second equation in (2.4) and integration by parts in z and y, we see that

(2Vsp — Asu’ ud)q
= 2(p, 6v)r — (262uM + 62'vmy + Uyy, U)o — (63vu + 20uyy + dugy, 6v)q
= 2(p, 6v)r + 2||6u. || + (6%vz + uy, uy)a — (820, + uy, u)r
+2[|6v, |1 = 2(8vy, dv)r + (6% + uy, 6%v5)a
= [l’[lI* + 2(p — buy, dv)r — (8*vs + uy, Wr-

By (2.5) and integration by parts in z, the boundary terms in the right-hand side of the
above equality are calculated as

1 W
. - = - 1:176 r — h 2 h ,6
(3.5) 2(p — by, 6v)r 2(tanan ez, 60 + 1 = ha))r + 2(ha, 0)r
d 5 W, .
= Ja{tanah?lo a'na:'o} +2(h2,51))r
1 52W
2= = =1z, Sha)r

and —(0%v; +uy, u)r = —((2+b3)n, u)r — (h1, u)r. Moreover, by the Cauchy-Schwarz and
Poincaré’s inequalities we see that |(u, &,dv)a| < 2[u|||év]| < [[wf]]? < [ud|? < [Vsul|?
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and that 2|(n,u)r| < Znlolluyll < mErlluwl? + 4 I3 Here, we used the inequality
lu(, Do = |u(-,1) = u(;,0)]o € |lu,]| thanks to the boundary condition (2.6). In the
following, we use frequently this type of inequality without any comment. Thus we can
rewrite (3.4) as

6d (s, 2( 1 0, EW s
2o+ & (gl + soglnek) |+ sl Vol

4K 2
<1V’ + - (Inl6 + lesnlo) + E(hlau)I‘ = (e, 6v)r

+ 2 1 B FEAwY
R tanan sin o

ez, 0h3)r + (F1, u5)97

where we used Korn’s inequality (3.3). Therefore, taking Ro sufficiently small so that
4KRy < 1, for 0 < R < Ry we obtain the desired energy estimate. [

Note that we can take the tangential and time derivatives of the boundary conditions.

Applying 8,, 82, and &, to (2.4)—(2.6) and using the above proposition, we obtain

2 2, 2 2 5W 5|2
36) st & (s dinl+ asined) | + gregel Vel

4K
< —P:-(5lnzio + 8|(bsm)als) + §5(h1muz)r - §5(h2m5vx)r
1 W

2 é
ﬁé( Nz — Sin—anxwwa (Shgx)p + 5(F1za uz)ﬂ>

d 2 1 W
sl 2+ = 4|y 12 4y 12 3 2
d{ Il + 2 (il + Sttt ) | + g IV

2
(53mzx|0 + 53|(b3n)zzlo) —és(hlzxa u:cx)I‘ - —63(h2zzy 67-)1::0)1"

R R
1 W
T zzzmah TT 63 Fzza 5 ’
tana " sina " sa)r + 0" (Flaz, Uzo)a

+

tan o

(3.7)

N o=

'R_

+ =6%(

&) o

2 1 2w
52 8112 el 2 2 52 :02 5 612
llueg ll* + R —tana6 melo + Tna [Mezlo ) ¢ + ——4KR | Vsug|l

—
w
[0.¢]

S—

N =
& e
——

4K 1 2

~R~(5lmlo + 6|(bsm)els) + §5(h1t,ut)r - §5(h2t7 6u)r
2 1 §2W

+ —P:é(tan am sm Thaz, Ohat)r

1
=8((batuyy )1, ut)a-

+6(frul)a — §5((A4V6P)t,ut)n tR

2
For later use, we will compute _ﬁé (O (A4V5p) o Okul)q for nonnegative integer k. Ap-
plying 88; to the first equation in (2.4), we have

2 2
(39) 5211,“ = _ﬁ (I =+ A4)V5pt — §5A4tV5p + 0 F3,



where

1
(3.10) Fy=—(U-Vu® — (u® - V5)U + -ﬁ(azugx + (I + As)uzy) + f.

Moreover, we can rewrite (2.4) as

2

(3.11) =

AyVsp = —6Asul + AsF,

where As = A4(I + Ay)~!. Note that As is a symmetric matrix due to the symmetry of
A,. Applying 60%6; to the above equation, we have

%56:(A4V5p)t = —62A565’U.ft - 528:(14&“?) - 62[6:, A5]’Ufft + 68:(A5F3)t

This together with (3.9) yields

(3.12)

2 1d
—§5(3f(A4Vap)t,3fuf)n =54

1
+8(0;{50A5w; — (AsFs)e}, Oui)a + 8(Gr, Bpus ),

6% (As0%ul, O*ul)q

where

" 2 2 1 5
(3.13) G = [0F, As)S — E(I + Ay)Vspy — §A4tV6P + F3 o+ 55[65, Astug.
Particularly, in the case of k = 0, we have

2 1d 1
-ﬁ5((A4VaP)t, ul)q = 5352(145"25,“?)9 + 5(§5A5tuf — (AsF3)y, uf)o.

By substituting this into (3.8), we get

1d 2

4K 1 2
< —R—(5|7h|g + 6|(b3m)eld) + §5(h1t) Up)r — ﬁ5(hzz, ove)r

1
tana

62w 1
2 2 A 2 2 85112
6 Intlo + sina6 |7’t:t|0)} + —4KR6|IV5‘U.t ”

2 1 52W s
+ Ed(tan aTh - sinam”’ Shae)r + 6(F3, u))q,
where
1 1
(3.15) F=f+ R ((bﬂayy)t> + —2-5/15:'!1;s — (AsF3):.

Note that I — As is positive definite for small solutions.
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The lowest order energy obtained in (3.1) is not appropriate in order to get the uniform
estimate in &, which is our goal in this paper. We thereby need to modify the lowest energy
estimate. Now it follows from the first and second equations in (2.4) that

2
—"5Uyy = f17

- l(5(6271z + Uy)y — R

2
52’1),3 + ﬂ&zvx + ﬁpy R

where
2
(3.16) f= <f - §A4V5p) - €

Taking the inner product of v with the above equation, we obtain

6d
2dt

Thus using the second equatlon in (2.4) and integration by parts in z, we have

(317) mé?ﬂ o+ 2 (p — vy, 0)e + 54Tl + 28 P
= E(épab U’)Q + E(auwya 6U)Q + (f].; 5’(})9
Lemma 3.4. The following inequality holds.
1 1 26°W (6°W)? 1
5 2 2 2 52 2 5216 p, ||
R( Pz U)o+ 35 3R (tan2a6 n2lo + tanasina6 [Mzz]o + sin? o l’?mz'g) + R Hay Pzl
< Il + I2 + 137

where 5

Il = —-ﬁ(éay"lpz, (2 + b3)7’])g,

2
L= —E(éay‘lpz, —6%0,(, 1) + hy 4 8, (uyy — 26p2))0,

1
I3 = §(254|uwzlg + 26%| hoa [§ + 352“3;2]935;,“2)
Proof. By the first equation in (2.5) and (2.6), we see that
(3.18)
2 2 2 .
R(Jpzau)ﬂ = —_(8 6Pz7uy) R(a 5pz7uy(': 1) + 8y uyy)ﬂ
= -—-—(8—16;095, (2 +b3)n — 6%vg (-, 1) + ha + 20;16;% + a;l(uyy —20p:))a
= _ﬁ52“ay— poll® + I+ L.
On the other hand, it follows from the second equations in (2.4) and (2.5) that
(3.19) p(z,y) = p(z,1) + (8, 'py) (2, y)

= —du,(z,1) +

2

W -1
e T e T ha + (0, 'py) (2, Y)-

2 2
52“ ”2 (pa 51}?4)9 + R((s Uz + Uy75 vz)ﬂ + 62”’“,1;”2 (p 6Uya6U)F = (flvév) .
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Thus applying JR‘%B; 18, to the above equation, we obtain

- 2
Y 11( = énz_éwénzzz)

Rz \tana sina

6 . -1 0 A
= E%_(ay lp:c)(x’y) + %{_(Jzuxx(l‘: 1) - 5h2z) - E%_(ay 2sz)($, y)

Squaring both sides of the above equation and integrating the resulting equality on Q, we

have

1 1 26°W (<52W)2 3
A 52n. |2 2.2 2y 2] < 26210 p, |12 + I
3R (tan"’a ln$'°+ tanasinaé IMezlo + sin® o ol |o> - R6 Hay Pell” + I,

where we used integration by parts in z. This and (3.18) lead to the desired inequality.
O

This lemma together with (3.5) and (3.17) implies that

(3.20)

1d 2 2w 1 _
{10+ & (gl + gl )} + @l + 28117+ 5157 el

2dt sina
1 1 26°W (62W
( | ElO + ) 6{7715:&'0)
1 W

3R | II‘O
= - ok 23 h
+ R tanan sinan 3)r

tan o sin o

1
< _ﬁ(hi”v)f‘ + ﬁa(uxy»v)ﬂ + (fly )Q

+ 07 ML+ L+ Iy).
The first three terms in the right-hand side are estimated as
2 1 1 1,
— 5 (b2, V)r + =8(tays V) + (1, V) < Bl |12+ (267 hald + Blluy ) + RIS

and the first term in the right-hand side can be absorbed in the left-hand side of (3.20).
We proceed to estimate Ij, I, and I3. By (3.19) and integration by parts in z, I; is
rewritten as

(3.21) I——-Q-(Ja‘1 - bug(-,1) + L, _SW +hy + 0,1 (2 + b3)n)
: 1= 7R\ Ua tana|  sna e T 2T % Py . /e

= I+ Is,

where
2
L = (v = D)(=us(-,1) + ha) + 8,py, 6((2 + b3)n) )a,
1, 1 2w

(322) 15 = —ﬁ(tanan smann’ 5(b3n)z)l‘

Here we used identities (7, 7z)r = (Mzz, Mz)r = 0. We estimate I, I3, and I as follows.



Lemma 3.5. There exists a positive constant C independent of §, R, W, and a such that

the following estimates hold.

1 _ 1
11l < 58185 pell? + C{ g (6% I + [l + 6% e )
Ry P+ PP + 2+ 15207
1
sl < O (0 tazy|I? + 8 half + 6% [vazall” + 6 vz )

+ R i + ol + 11 )},

TARS m(52|7h|g + 62|(bsn)zlo)
tan? o
+ C{ R (0| uay |l + 88|l vasll® + 6%[lvyy I + [hal3)
+ Rtan® o8| + 64l + 1113},
where
b _ _ 1, b, 1
(3.23) fo= 50 <6ut + Toug + Uydv §5 um) RO+ b2)5p,, 55 f3

and fs = (f — 2AVsp) - er.

Proof We can easily estimate I3 and I, by using the second component of the first
equation in (2.4) so as to eliminate p,. As for I, by the first component of the first
equation in (2.4), we have

1 2 1 _ _ 1 ' 1
ﬁ (uyy — m(gpz> = 1 n b2 ((Sll/t + uéuz =+ Uy51) — §52um> - I—-I—-——b;fS

Substituting the above equation into I, we easily obtain the desired estimate. [l

Combining (3.20), (3.21), and Lemma 3.5, we obtain

dfo 0, 2( 1 2 W 1 512 4 Leig-1 2)
S{ooir+ 2 (gt + gt )} + 5 (1l + 591575
(52w)2

1 1 20°W
Ll s+ — 2N 6lel?
+3R<2tan2a In ,0+tano¢sina melo + sin o Meazls

< {3 (0 + tan? )8 Vsud | + 8 T
+ 67 Ry |2 + (1 + tan® )07 |ho|Z + 6|ha|3)
+R(8]|Vsull® + (1 + tan? 0)6]| Vsul||?
+ (1 + e )8 Y Al + 67 Sl + 6l )
202W
Rsina

(3.24)

[

5—1l(77zz7 6hs)r| + 5|(b377)$|g + 5-115)

1
6R tan? o
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where we used the second equation in (2.4) and (9, h3)r = (7,€2n?n;)r = 0. Here the
constant C; does not depend on &, R, W, nor a. This is the modified energy estimate. In
the left-hand side, we have a new term 4|9, 'p;||?, which plays an important role in this
paper.
In view of the energy estimates obtained in this section, we define an energy function
Ey, a dissipation function Fy, and a collection of the nonlinear terms Ny by

2w >

2
inaln"b.o

2 1
&Y _ 521,012 L < 2
325 Baln) = ol + 5 (s +

2 1 2w
20,6112 L 2 20, |2 52In. |2
# oIl + & (o + i) |

S

an

2( 1 W
+ﬂ2{54”uix“2 + E( 54‘77za:|(2)+ ; 64|77"11f23>}

tan o sin o

2/ 1 W
207 5,8 af Loy 2 OTW o 2
+ﬁ3{5 (I = As)uy, uz)a + R(tana(s Inelo + sinaé |77tz|o>},

] __l_ 512 l -1, |2
326)  Fuln,p) = o (Gl + 30105 5u1P)
(6°W)?

1 1 26°W
6 T z 6 o 2 6 TTT 2
+ 6R(2 tan? Inelo + tan asin ne<lo + sin® o 722210

+ s (BuOIVadl? + B8 |Vsul |2 + s8] Vo),
(3.27) No(Z) = 67 |2 + 67 thal2 + 8|haal? + 8|hasl?
+ 8| hafy + 6%(haelg + 6°|hacl + 6°|haaals
+ 82||Dy|2haz |2 + 62|| Dy hog |2 + 6| (hae, ue)r| + 6| (hat, Sue)r]
+ 6|(b3m)slg + 6 (bsm)acls + 81(b3m)el3 + |(n, (b3m)o)r]
+ 6®W{67"((Me, Sha + 8(bsn)e)r| + 8°|(Mesaes Shase)r| + 6] (Tazt, Shae)r|}
+ M AN+ 67 2 + 8l fiall?
+ 8|(Fiz, ud)al + 63| (Fize, ul,)al + 8| (F2, ul)al,

where Z = (n,u®, hy, hy, hs, bsn, f1, f2, Fi, F2) and we will determine the constants 3, s,
and 3 later. Note that the terms |(n, (b3n)z)r| and (6°W)&~|(nsz, 8(b3n):)r| come from
Is. Summarizing our energy estimates, we obtain the following proposition.

Proposition 3.6. Let W, is a positive constant. There exists a positive constant ag such
that if 0 < Ry < R < Ry, W; < W, and 0 < a < ay, then the solution (n,u,v,p) of
(2.4)—(2.6) satisfies

d

—Ey + Fy < CyNy,

ETRY + o < CalNp



where Ry is the constant in Proposition 3.3 and the constant C2(R1, W1, ) is independent
of §, R, and W.

Proof. Multiplying (3.6), (3.7), and (3.14) by B1, B2, and fs, respectively, and adding
these and (3.24), we see that

d
EZEQ +2F, <L+ C(N + NO),

where
4K 1+ tan?a 12K
L= F((IBI + 353)6|77z|g + 3253l77u\3) + {Cl( ‘—-'_R + R) + Tﬁg}dnvgui'ﬁ
+ G 53||V,;ufw|l2 + C1R(1 + tan? a)5||V5ufH2,

i
N = 6[(h1z7 uw)l"l + 5|(h217 51}2:)F| + 5‘(77:1:7 5h3z)r| + |((52W)51/2nzza:7 53/2h3z)F|
+ asl(hlzmuzz)l‘l + 63l(h2zza 5%;:)1“ + 63{(”;61:7 6h3xm)l‘\ + 5\(%7 6h3t)r| + 6_1‘-[5|-

Here we used |10 < |7z]o + ||tay|| + |h3)o, which comes from the second equation in (2.4),
the third equation in (2.5), and Poincaré’s inequality. Moreover, it is easy to see that for
any € > 0 there exists a constant C, > 0 such that N < eFy+ C.Ny. Therefore, if we take

(/311 /82a /83) so that

(3.28)
4K 1 4K w_
?(ﬁl +3fs) < 12R tan? o’ —-R—B2 < 3Rtanasina’

1+tan’a 12K B Cy Ba B3
el st 1 1 + tan?®
Cl( R +R> t R #<3KR' R “SKR CiR(1 + tan®e) < 8KR’

and if we choose ¢ > 0 sufficiently small, then we obtain L + CN < Fy + C.Ny. Here
ta’king (517/327163) as

By :=16KC), PBs:=16KCiR3(1+tan’a), f; := 16K{Ci(1+tan’a+R})+12K8s},
we see that (3.28) is equivalent to
48K (B, + 3Bs)tan’ @ < 1, 12K fB;tanasina < Wi.

Thus there exists a small constant oy which depends on W; such that (3.28) is fulfilled
and we obtain the desired energy inequality. O

Hereafter, m is an integer satisfying m > 2. We define a higher order energy and a
dissipation functions E,, and F,, and a collection of the nonlinear terms N, by

m m

(3:29) En =Y Eo(0fn,0fu’), Fn=_ Fo(n 0w’ 8p),

k=0 k=0
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(3.30) Nm=>_ No(&:Z) + > (6/(Gr, Oul)al + |(85n, 8 hs)rl).
k=0 k=1

Here, we note that 6|(Gy,8%ul)q| is the term appearing in (3.12) and that (n, hs)r =
0. Under an appropriate assumption of the solution, we have the following equivalence

uniformly in 4.

Em = |(1+4 8| Do|)?nlZ, + 8 Imel2, + +6*W{|(1 + 8| Dz|)?na 2, + 6%Imial? }
+6%|(1 + | D)™ + 821 (1 + | De )™ (1 + 8| Do )ul i + 6[[(1 + | Del) g |2
~ |nf3, + 6 {| (1=, )% + |1 + | D)™ (v, uz, we) 12}
+ 6*{|(Mazs M) 2 + (1 + | Dal)™ (V2 Usa, ve) 1P} + 6°1I(1 + | Da) ™ vier||?
+ 82W{|75 12, + 82| (Mo, Mea) 2, + 6% |M20al2,

Fry = 810l + (8°W) 811z 2, + (62W) 281000l + 0Nl (1 + | D)8, p ||
+ 811+ [ Del)™ul )l + 8|2 + [Da)™(1 + 8| De|) Vsug |* + 8| (1 + | Da|)™ Ve ||
= 5{|77z|12n + (1 + |D:c|)m(”y’uxvuxyvutyvay_lpz)”2}
+ 83| (1 + | Dg|)™ (Ve Vay, Viy, Uzz) Usay, Uta) ||
+ 0°||(1 + | Dz]) ™ (Vazs Vzay, Via, Uzza)[|* + §I(1 + | D)) ™ vzza 1?
+ (6*W)8 Mzl + (62W)8|saa -

Applying 8% to (2.4)—(2.6), using Proposition 3.6, and adding the resulting inequalities
for 0 < k < m, we obtain a higher order energy estimate

(3.31) %%+ms@m.

We modify the energy and the dissipation functions E,, and F,, defined by (3.29) as

(3.32) Em = Epn+ (1 + |Da)™ul? + || (1 + | Dal)™uy 1%,
(3.33) Fro = Fpy + 8|(1+ 8| D4 ) 3ms 2, + (62W)282|| D, |2n]%,
+67H(1 4 |Da))™(1 + 8|1 D, |)Vspl2 + 8|1 + | Dal)™ Vspe||*-

We also introduce another energy function D,, by

(3.34) Drm =|(1+ 8| Dal)nl7, + (1 + [Dz))™u’||* + (1 + | Dal)™ Dsu’||?
+ (1 + [ Da)"Diul||? + 62W{|(1 + 8| Da)?na7, + 8%[1(1 + | De) vy 17},
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which does not include any time derivatives. Moreover, we have the following equivalence



uniformly in 4.
D = [nl%, + (1 + |DZ|)m(u7uyvuyy)”2
+8%{|nalm + 11 + [ D)™ (v, vy, Uz, tay, vy 1}
+ 54{|77zw[$n @+ D)™ (ve, Vay, um)Hz}
+ 8°{|Mazalm + 11 + | Dal)™vze |}
+ 8" W {1zl + 6 |mas 7, + 6*Mazolr, + E%II(L + | Dal) vy |°}-

4 Proof of the main theorem

We will prove the following proposition.

Proposition 4.1. Let m be an integer satisfying m > 2, 0 < Ry < Rp, 0 < W; < Wy,
and 0 < & < ag, where Ry and oy are constants in Propositions 8.3 and 3.6. There exist
positive constants ¢, Cs, Cg, and C; such that if the solution (n,u,v,p) of (2.4)~(2.6)
and the parameters §, €, R, and W satisfy

E,()<e;, 0<é8,e<1, Ry<R<Ry W;<W<62W,,

then we have
(4.1) Ey(t) < CrE5(0)e%%,  En(t) + / t Fo(7)dT < C7Ep(0) exp(Cs E2(0)e + Cyet)
Moreover, if ¢ < 6, then we have :

Bo(t) < C1Ea(0), Bm(t) + /0 o (r)dr < CrE(0) exp(Cs Ea(0)).

In order to prove the above proposition, we prepare the following lemmas.

Lemma 4.2. Under the same assumptions of Proposition 4.1, for any € > 0 there exists
a positive constants C, such that the following estimate holds.

Nm < CFm + Cg (Ezﬁm + FZEm +¢£ EzEm).
Moreover, if € < 8, then we have
Nm S EFm + CE(EZFm + FgEm).

Lemma 4.3. Under the same assumptions of Proposition 4.1, the following estimates
hold.

(4.2) E. < Ep,,
(43) FmsFm+F2Ema
(4.4) 187 £11* < D2Dm,

(4.5) 11+ |Da])"Vepll* < (1 + D2)* Dy
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These lemmas are proved in [20].

Proof of Proposition 4.1. Combining (3.31), Lemma 4.2, and (4.2) and (4.3) in Lemma
4.3 and taking € and ¢, sufficiently small, we have

d
om
for a positive constant Cs independent of §. Note that if ¢ < 4, then we can drop the
term CseE,(t) from the above inequality. Now, let us consider the case where m = 2.

(4.6) (t) + Fr(t) < Cs(F3(t) + €) En(t)

By taking ¢, sufficiently small, we have
d -
aEz(t) + Fy(t) < CecEs(t)

for a positive constant Cg independent of 4. Thus, Gronwall’s inequality yields
i
(4.7) Es(¢) +/ exp (Cee(t — 7)) Fa(r)dT < E,(0)eCeet.
0

Particularly, we have fot Fy(r)dr < E5(0)eCeet. By this, (4.6), and Gronwall’s inequality,
we see that

E.(t) +/0 ﬁ'm(T)dT < E.(0) exp (C’E,/[; (ﬁ’g(r) + E)dT)
< E,(0) exp (C5E2(0)ec°“ + Cset).

This together with (4.7) and (4.2) in Lemma 4.3 gives the desired estimates in Proposition
4.1. The proof is complete. [J

Proof of Theorem 2.1. Since the existence theorem of the solution locally in time is now
classical, for example see (17, 14], it is sufficient to give a priori estimate of the solution.
The first equation in (2.4) leads to

8*|0%uf|l® < 1105ul|1® + | V5050l |* + || As05l |2 + | Vs0;pl1* + (107 FII*.

Thus, by (4.4) and (4.5) in Lemma 4.3, we have 6%||0*ul||> < (1 + D;)2D,,. By this,
the third equation in (2.5), and the definitions of E,, and D,, (see (3.29) and (3.34)), we
obtain

(4.8) En(0) < Cs(1 + D5(0))*D(0)

for a positive constant Cs independent of 4. Thus considering the case of m = 2 in the
above inequality, taking D(0) and T sufficiently small so that 2C7Cs(1+ D2(0))2D2(0) <
c; and e%7T < 2, and using the first inequality in (4.1) in Proposition 4.1, we see that
the solution satisfies

Eyt)<c¢  for 0<t<T/e.



Thus, using the second inequality in (4.1) in Proposition 4.1 together with (4.8), we obtain

(4.9) Bo(t) + / E(ndr<C,

where the constant C' depends on Ry, W1, Wa, @, and M but not on 4, ¢, R, nor W. By the
first equation in (2.4), we easily obtain 671||(1+|Dz|)™(1 + 8| Dg|Juyy||* < Frn. Therefore,
we obtain the desired estimate in Theorem 2.1. Moreover, in view of the explicit form of
E.,, using the second equation in (2.4) and Poincaré’s inequality, we easily obtain (2.8).

The proof is complete. [
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