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Abstract

This note is based on an on-going joint work with Prof. Sakajo (Kyoto Univ)

and Prof. Matsumoto (Kyoto Univ). Revisiting Kolmogorov’s statistical laws

(appearing in so-called Kolmogorov’s Theory of 1941) and Onsager’s conjecture

(1949), we make an assessment of their mathematical relevance from the view

point of stochastic processes. Then we need to examine the exact meaning of

Kolmogorov’s fundamental hypothesis, so that we introduce a “new energy dis-

sipation rate which is inspired by the K\’arm\’an-Howarth-Monin relation. Our

mathematical strategy viewing turbulence may not be a conventional one: we

don’t assume any fluid equations describing the turbulence at first, but we re-

gard turbulence as an infinite dimensional probability measure on an ensemble

of appropriate time-dependent vector fields on the flat torus $\mathbb{T}^{3}$ , which describes

(a part of) Kolmogorov’s statistical laws. We then consider necessary prop-

erties of the ensemble in which the desired probability should be constructed.

Now we have a speculation that a family of incompressible Euler flows could

be our candidate, according to a number of mathematical results on the Eu-

ler flows, e.g., Constantin-E-Titi (1994), Duchon-Robert (2000), Eyink (2003),

De Lellis-Sz\’ekelyhidi (2012), Isett (2012), Buckmaster (2013), Buckmaster- De

Lelis-Sz\’ekelyhidi (2014). This speculation could lead us to $a$ (pseudo) Gibbs

measure on the ensemble.
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1 Description of Fluid flows

Mathematically, fluid flow in a domain of $\mathbb{R}^{3}$ is described by a time-dependent

vector field on the domain. Of course it is natural to ask ourselves what equation

governs the fluid when we know the background of the fluid clearly. For the time

being, we do not care about the governing equation of the fluid however.

The three adjectives:homogeneous, isotropic, steady that quantify turbulence do

not represent the attribute of the single vector fields but do the one of an ensemble of

vector fields. That is, these three properties are understood to be a statistical attribute

of turbulence. Then we prepare some concepts and notation from probability.

For simplicity, we suppose that the fluid flows in a $3D$-cube with periodic boundary

condition. Hence, our domain is the flat torus $\mathbb{T}^{3}.$

(i) $\Omega$ $:=C(\mathbb{T}^{3}\cross[0, T];\mathbb{R}^{3})$ , the time-dependent vector field over $3D$-cube with

periodic boundary condition. $*1$

(ii) $\mathfrak{B}$ : the Borel algebra of $\Omega$ with the maximum topology.

(iii) $P$ : the probability measure defined over $\mathfrak{B}.$

Therefore, the triplet $(\Omega, \mathfrak{B}, P)$ is a probability space, and we can safely say that the

statistical law of the fluids is determined by the support of $P$ ; the peculiarity of the

set of flows which appear with probability 1.

The ultimate goal of mathematics is to construct a probability measure on $\Omega$ which

gives us the statistical laws we expect for turbulence. But it seems that we have. $a$

long way to go. Now, supposing we have such a probability measure $P$ on $\Omega$ , we

proceed further.

We define a family of random variables $\{V_{x,t}\}_{(x,t)\in \mathbb{T}^{3}\cross[0,T]}$ , each of which is consid-

ered to be apparatus observing vector fields:

$V_{x,t}$ : $\Omega$ $arrow$ $T_{x}\mathbb{T}^{3}\cong \mathbb{R}^{3}$

$w$ $w$

$u \mapsto u(x, t)=:V_{x,t}(u)$

This is just an evaluation map (or a projection) defined on $\Omega$ which gives us the

$*1$ We may assume that the vector field is also periodic in time variable $t;\Omega=C(\mathbb{T}^{4})$
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direction of the vector field at space-time $(x, t);V_{x,t}$ observes the direction of the

vector field at $(x, t)$ .

Using the family $\{V_{x,t}\}_{(x,t)\in T^{3}\cross[0,T]}$ , we can express the three basic property of

turbulence as follows:

$\bullet$ Homogeneity: for any $x,$
$y\in \mathbb{T}^{3},$

$\mathbb{E}[V_{x,t}]=\mathbb{E}[V_{y,t}].$

More strongly, for any $f,$ $9\in C\cap L^{\infty}(\mathbb{R}^{3})$ , (we can take $f$ and $g$ from wider class

function spaces, if the random variables have better integrability conditions)

there exists $F_{f,g}\in C(\mathbb{R}^{3})$ such that

$\mathbb{E}[f(V_{x,t})g(V_{y,t})]=F_{f,g}(x-y)$ .

That is, the quantity in the left hand side (the two-point correlation) is irrele-

vant to the choice of the origin.

$\bullet$ Isotropy: for any $f,$ $g\in C\cap L^{\infty}(\mathbb{R}^{3})$ (as we wrote above, we can reduce the

conditions on $f$ and $g$ , if the random variables have better integrability con-

ditions), there exists $G_{f,g}\in C([O, \infty))$ with the property of $G_{f,g}(0)=0$ such

that
$\mathbb{E}[f(V_{x,t})g(V_{y,t})]=G_{f,g}(|x-y$

$\bullet$ Steadiness: for any $t,$ $s\in[0, T],$

$\mathbb{E}[V_{x,t}].=\mathbb{E}[V_{x,s}].$

More strongly, for any $f,$ $g\in C\cap L^{\infty}(\mathbb{R}^{3})$ , (we can take $f$ and $g$ from wider class

function spaces, if the random variables have better integrability conditions)

there exists $H_{f,g}\in C(\mathbb{R})$ such that

$\mathbb{E}[f(V_{x,t})_{9}(V_{x,s})]=H_{f,g}(t-s)$ .

That is, the quantity in the left hand side is irrelevant to the choice of the

origin.

Here, $\mathbb{E}[\cdot]$ represents the operation taking expectation of the random variable appear-

ing in the square brackets with respect to $P$ . Precisely, for “nice” function $f$ defined
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on $\mathbb{R}^{3},$

$\mathbb{E}[f(V_{x,t})]:=\int_{\Omega}f(V_{x,t}(u))P(\mathfrak{D}u)$

$= \int_{\mathbb{R}^{3}}f(v)P_{V_{x,t}}(dv)$ .

If $P_{V_{x,t}}$ is absolute continuous with respect to the Lebesgue measure $\mathcal{L}^{3}$ , i.e., there

exists an integrable function $p(v;x, t)$ such that $\frac{P_{V_{x,t}}(dv)}{\mathcal{L}^{3}(dv)}=p(v;x, t)$ , then we have:

$\int_{R^{3}}f(v)P_{V_{x,t}}(dv)=\int_{\mathbb{R}^{3}}f(v)p(v;x, t)\mathcal{L}^{3}(dv)$

Here, we should note that $v$ denotes the independent variable, while $(x, t)$ is just a

label for random variables. $*2P$ is a measure on the infinite dimensional space $\Omega$ , and

$P_{V_{x,t}}$ is the distribution of the random variable $V_{x,t}$ defined on $\mathbb{R}^{3}$ . In what follows,

we also use the following symbol $\langle\cdot\rangle$ for simplisity to denote the expectation, which

is frequently used in physics literatures: $*3$

$\langle f(u(x, t))\rangle:=\mathbb{E}[f(V_{x,t})].$

2 Kolmogorov‘s and Onsager‘s conjectures

Two well-known statements on turbulence are Kolmogorov’ conjecture and On-

sager’s one. In this section, we consider some relations between these two conjectures.

In Kolmogorov’s famous theory so-called K41 which was developed in a series of his

papers $\cdot$ [13, 14, 15], the incompressible Navier-Stokes equations are employed as the

governing equations of the fluid:

$\{\begin{array}{l}\frac{\partial u}{\partial t}+u\cdot\nabla u=\nu\triangle u-\nabla p+f,\nabla\cdot u= O.\end{array}$ (2.1)

Here, $\nu>0$ is a constant denoting the kinematical viscosity and $f$ an external force.

A candidate for the turbulent vector fields over $\mathbb{T}^{3}\cross[0, T](T\gg 1)$ is the velocity fields

$*2$ In the sequel, we may simply denote the Lebesgue measure $\mathcal{L}^{d}(dx)$ by $dx$ , etc, for any dimension
$d.$

$*3$ Of course, this is a conventional and useful way to denote the expectation. But it seems

appropriate to introduce random variables and describe the mathematical concept and quantity

by using the random variables.
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$u$ solving the incompressible Navier-Stokes equations (2.1) with very small $\nu>0$ . In

Kolmogorov theory K41, the following assumption of non-vanishing energy dissipation

rate (dissipation anomaly) is fundamental:

$\langle\epsilon\rangle :=\lim_{\nuarrow}\inf_{0}\nu\langle\Vert\nabla u\Vert^{2}\rangle>0$ , (2.2)

where*4

$\Vert\nabla u\Vert^{2}=\int_{\mathbb{T}^{3}}\sum_{1\leq i,j\leq 3}(\frac{\partial u_{i}}{\partial x_{j}})^{2}dx.$

Instead of (2.2), we may declare that the dissipation anomaly assumed in K41 is:

$\langle\epsilon\rangle :=\lim_{\nuarrow}\inf_{0}\nu\langle\frac{1}{T}\int_{0}^{T}\Vert\nabla u(t)\Vert^{2}dt\rangle>0$ . (2.3)

We cannot find the explicit formulae either (2.2) or (2.3) in the series of papers

[13, 14, 15] however. This speculation is based on what properties of turbulence we

expect for our theory; local or global homogeneity, steadiness, etc. $*5$

Under the hypothesis of (2.2) or (2.3), Kolmogorov derived several statistical laws

of turbulence. According to Kolmogorov theory K41, we introduce the p-th order

structure function $S_{p}$ for $p\in \mathbb{N}$ :

$S_{p}[u](x, t) := \mathbb{E}([(V_{x+h,t}(u)-V_{x,t}(u))\cdot\frac{h}{|h|}]^{p})$

(2.4)

$= \langle[(u(x+h, t)-u(x, t))\cdot\frac{h}{|h|}]^{p}\rangle.$

So-called K41 theory, by a kind of similarity assumption in $h$ together with homo-

geneity and steadiness of turbulence, tells us that for any $p\in \mathbb{N}$ there exists a constant

$C_{p}$ such that $|h|\ll 1$ yields

$S_{p}[u](x, t)=C_{p}(\langle\epsilon\rangle|h|)^{p/3}$ (2.5)

for any $(x, t)\in \mathbb{T}^{3}\cross[0, T]^{*6}$ This is Kolmogorov’s conjecture.

$*4$ We use the fact that $\nabla\cdot u=0.$

$*5$ Kolmogorov reformulated the definition of $\langle\nu\rangle$ in [16] answering Landau’s criticism. In this

note, we do not discuss his theory of so-called K62 developed in that paper.
$*6$ When $p=3$ , we have $C_{3}=- \frac{4}{5}$ . This is known as Kolmogorov’s four fifth law.

Homogeneity and steadiness yield that $C_{p}$ is independent of $(x, t)$ . When $p=2$ , this ex-
pression is the “dual” of well-known energy-cascade relation in the Fourier space. We do not

consider the energy-cascade issue in this note, while the property is supposed to be connected

to the smoothness of the vector fields.
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On the other hand, Onsager [19] considers the incompressible Euler equations as

the governing equations of turbulence:

$\{\begin{array}{l}\frac{\partial u}{\partial t}+u\cdot\nabla u=-\nabla p,\nabla\cdot u=0,\end{array}$ (2.6)

and he claims that the sample space of turbulent flows $\Omega$ consists of weak solutions

(in the sense of distributions) of (2.6) which do not conserve their $L^{2}$-norms. Such

solutions are recently called dissipative weak solutions. $*7$

Onsager conjectures in [19] that if the H\"older continuous solution $u$ of (2.6) is

dissipative, then its H\"older exponent is less than 1/3:

$|(u(x+h,t)-u(x, t)) \cdot\frac{h}{|h|}|<\sim|h|^{\alpha}, 0<\alpha\leq 1/3$ . (2.7)

In other words, if $u$ satisfies

$|(u(x+h, t)-u(x, t)) \cdot\frac{h}{|h|}|\sim<|h|^{\alpha}, \alpha>1/3$ , (2.8)

then $u$ conserves its $L^{2}$ norm:

$\int_{\mathbb{T}^{3}}|u(x, t)|^{2}dx=\int_{T^{3}}|u(x, 0)|^{2}dx, t\in[O, T]$ . (2.9)

It is worthwhile noting here that Onsager’s conjecture is a statement for each sample

flow (vector field) belonging to $\Omega$ in contrast with Kolmogorov’s one which is a set of

statistical laws of sample space $\Omega.$

Mathematically, Onsager’s conjecture concerns the relation between the smoothness

of the solution $u$ of (2.6) and the conservation of (kinetic) energy (2.9). Such a

problem has been known for solutions in Besov spaces (see, e.g., [3, 4]), and recently

the problem have been studying for solutions in H\"older spaces, so that the H\"older

exponent to ensure the energy conservation is getting closer and closer to 1/3 as

Onsager’s conjecture says (see, e.g. [5, 10, 2, 1

$*7$ We do not put any external forces in the equation. Even for the case, we know that there

exist solutions of (2.6) such that they do not conserve their $L^{2}$-norms, see, e.g., [20, 21] and

[5, 10, 2, 1].
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Now looking back on two conjectures, we summarize here that, aside the problem

of identifying $\Omega^{*8}$ Kolmogorov’s conjecture is the one on the modulus of continuity

for $\mathbb{E}[|V_{x,t}-V_{y,t}|]$ and Onsager’s is on that for $|u(x, t)-u(y, t)|$ with $u\in\Omega.$

Observing Kolmogorov’s conjecture and Onsager’s from the point of view above,

these two are not independent of each other; they are related through the concept of

stochastic processes. Here we introduce another random variable: for any unit vector

$\hat{r}$ in $\mathbb{R}^{3}$ , we define:

$X_{\hat{r},s}^{x}t(u):=V_{x+s\hat{r},t}(u)\cdot\hat{r}=u(x+s\hat{r}, t)\cdot\hat{r}, s>0.$

Regarding this as a function of $s\in[0$ , 1$]$ for each fixed point $(x, t)$ , we study the

stochastic process $\{X_{\hat{r},s}^{x,t}\}_{s\in[0,1]}$ on $(\Omega, \mathfrak{B}, P)$ , so that we know from (2.5) that for any

even number $p\in \mathbb{N}$

$\mathbb{E}[|X_{\hat{r}_{\rangle}s+r}^{x,t}-X_{\hat{r},s}^{x,t}|^{p}]<\sim|r|^{p/3}$ (2.10)

Now we recall Kolmogorov-\v{C}entsov Theorem (see, e.g., [11]):

Theorem 1 (Kolmogorov- $\check{C}$entsov). Suppose that $X=\{X_{t}|0\leq t\leq T\}$ is a

stochastic process on a probability space, say, $(\Omega, \mathfrak{B}, P)$ , and assume that, for some

positive constants, $\alpha,$
$\beta$ and $C$ , we have:

$\mathbb{E}[|X_{t}-X_{s}|^{\alpha}]\leq C|t-s|^{1+\beta}, 0\leq s, t\leq T.$

Then there exists a continuous modification $\tilde{X}=\{\tilde{X}_{t}|0\leq t\leq T\}$ of $X$ , which is

locally H\"older continuous with some exponent $\gamma$ ; precisely we have, for every $\gamma\in$

$(0, \beta/\alpha)$ ,

$P[ \omega\in\Omega|0<t\frac{s}{t}s<h(\omega)s,\in[0,T]up\frac{|\tilde{X}_{t}(\omega)-\tilde{X}_{s}(\omega)|}{|t-s|\gamma}\leq\delta]=1,$

where $h(\omega)$ is an almost surely positive random variable and $\delta>0$ is an appropriate

constant.

This theorem tells us that the modulus of continuity of a stochastic process in the

mean yields the H\"older continuity of each sample path of in $\Omega$ . We apply this theorem

to our process $\{X_{\hat{r},s}^{x_{\rangle}t}\}_{s\in[0,1]}$ ; if we have (2.10) for any even number $p\in \mathbb{N}$ (which is

$*8$ From another perspective, we may say that Kolmogorov’s theory K41 is also based on (2.6) as

Onsager’s mentioned in [19].
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obtained from (2.5)), then there exists a H\"older continuous modification $\tilde{X}_{\hat{r}_{)}}^{x,t}$ of $X_{\hat{r}}^{x,t}$

with its H\"older exponent $\gamma\in(0,1/3)$ :

$|(u(x+h, t)-u(x,t)) \cdot\frac{h}{|h|}|<\sim|h|^{\alpha}, 0<\alpha\leqq 1/3$ . (2.11)

This is almost the same statement as (2.7) that Onsager states in [19]. $*9$

Nevertheless there arises a problem here: The governing equation of the fluid flow

is supposed to be the incompressible Navier-Stokes equation (2.1) in Kolmogorov

theory K41, and to be the incompressible Euler equation (2.6) in Onsager’s paper

[19]. In order to exclude this inconsistency, we once put aside the issue of model

equations generating the turbulent flows. As we mentioned in \S 1, we just begin with

the family of continuous (but non-smooth) time-dependent vector fields $\Omega$ , and seek

out a probability measure $P$ giving us the desired statistical laws of turbulence. In

the course of the study, we shall shed light on the support of the desired probability

measure. However, to proceed the scenario, we find that the conventional definition

of the energy dissipation rate $\langle\epsilon\rangle$ defined by (2.2) or (2.3) is inconvenient, since it

contains the viscous coefficient $\nu>0$ which is presumed to be from Navier-Stokes

equations (2.1). Accordingly, we need to introduce a new energy dissipation rate

which should be considered to be equivalent to the conventional one. In the next

section, we consider this problem.

Remark (Historical Contingency). According to [11], Kolmogorov proved Theorem 1

in 1933 which state just there exists a continuous modification”, and later \v{C}entsov

added the statement about H\"older continuity to it in 1956. While Kolmogorov’s

turbulence theory K41 was developed in the series of papers $[$13, 14, $i5]$ published in

19411iterary and Onsager’s conjecture was a statement declared in several lines in

[19] without proof, Eyink-Sreenivasan [8] reports that Onsager’s private, handwritten

notes of the $1940s$ contain similar results to Kolmogorov’s four- fifth law and the

statement of Onsager’s conjecture with “proof” $($see footnote $*12)$ .

$*9$ We just put $\alpha=p$ and $\beta=E3-1$ in Theorem 1.

For the case of Brownian motion, we can take $\alpha=n$ and $\beta=\frac{n}{2}-1$ for any $n\in N$ in Theorem

1, so that we have $\gamma\in(0,1/2)$ . Actually, it is well-known that the H\"older exponent of sample

paths of Brownian motion is strictly less than 1/2 almost surely, and that we need a $\log\log$

correction term at the right end of $(0,1/2)$ (the law of Iterated logarithm).

In this sense, Theorem 1 gives us the best possible H\"older exponent of the sample path. As

to our process $X_{\hat{r}}^{x,t}$ , it is not clear whether 1/3 is the best possible exponent or not, however.

Onsager conjectures that the H\"older exponent does not exceed 1/3.
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3 Energy dissipation rate of vector fields

We would hke to define a quantity which is consistent with the conventional energy

dissipation rate (2.2) or (2.3) for $\Omega$ $:=C(\mathbb{T}^{3}\cross[0, T];\mathbb{R}^{3})$ without any governing

equations.

Now we recall the following K\’arm\’an-Howarth-Monin relation for a family of solu-

tions of (2.1): defining $\delta_{\xi}u$ $:=u(x+\xi, t)-u(x, t)$ , we have that there exists $\eta>0$

such that
$\langle\epsilon\rangle=-\frac{1}{4}div_{\xi}\langle|\delta_{\xi}u|^{2}\delta_{\xi}u\rangle$ (3.1)

for $\eta<|\xi|\ll 1$ . This $\langle\epsilon\rangle$ is independent of $(x, t)$ , provided that the fluid flows sub-

jected to (2.1) forms a steady and homogeneous emsamble. The constant $\eta>0$ is

called the Kolmogorov dissipation length (or the Kolmogorov scale) which is consid-

ered to be related to the (resolution limit of the fluid model under consideration. $*10$

It is said that this relation is due to Monin, who proved (3.1) for a family of solutions

of the incompressible Navier-Stokes equations (2.1) under the assumption of homo-

geneity and steadiness without isotropy. For the derivation and the origin of the name

of this relation, see, e.g., [9].

Fortunately, $v$ does not appear in the right hand side of (3.1). So, taking the

Kolmogorov scale infinitely small, $*11$ we broadly define our local energy dissipation

rate for each $u\in\Omega$ by

$\epsilon[u](x, t) :=-\frac{1}{4}div_{\xi}(|\delta_{\xi}u(x, t)|^{2}\delta_{\xi}u(x, t))|_{\xi=0}$

(3.2)

$=- \frac{1}{4}div_{\xi}(|\triangle_{\xi}V_{x,t}[u]|^{2}\triangle_{\xi}V_{x,t}[u])|_{\xi=0},$

where

$\triangle_{\xi}V_{x,t}[u]:=V_{x+\xi,t}[u]-V_{x,t}[u]=u(x+\xi, t)-u(x, t)=:\delta_{\xi}u(x, t)$ .

Thus, this $\epsilon[\cdot](x, t)$ is also a random variable on $\Omega.$

$*10$ Nevertheless, in Duchon-Robert [6], we can find the following expression

$\langle\epsilon\rangle:=-\frac{1}{4}div_{\xi}\langle|\delta_{\xi}u|^{2}\delta_{\xi}u\rangle|_{\xi=0}.$

$*11$ Mathematics is free!
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According to Onsager’s conjecture, the support of desired probability measure is

supposed to be on a set of Holder continuous vector fields with their H\"older expo-

nents being less than 1/3. Hence, we cannot directly evaluate our new local energy

dissipation rate $\epsilon[\cdot](x, t)$ defined by (3.2). Accordingly, we propose here two ways of

evaluating it as follows:

- We can compute (3.2) in the sense of distributions. Let $\varphi_{\epsilon}(\epsilon>0)$ be a family

of non negative, radially symmetric functions in $C_{0}^{\infty}(\mathbb{T}^{3})=:\mathcal{D}(\mathbb{T}^{3})$ such that

we have $\varphi_{\epsilon}arrow\delta_{0}(\epsilon\downarrow 0)$ in $\mathcal{D}’(\mathbb{T}^{3})$ ( $=the$ dual space of $\mathcal{D}(\mathbb{T}^{3})$ ). We define

$\epsilon[u](x, t) :=\frac{1}{4}\lim_{\epsilonarrow 0}\int_{\mathbb{R}^{3}}|\delta_{\xi}u|^{2}\delta_{\xi}u\cdot\nabla\varphi_{\epsilon}(\xi)\mathcal{L}^{3}(d\xi)$ . (3.3)

- We employ the method of integral mean, so that

$\epsilon[u](x, t) :=-\frac{1}{4}\lim_{rarrow 0}\frac{1}{\mathcal{L}^{3}(B(0;r))}\int_{|\xi|=r}|\delta_{\xi}u|^{2}\delta_{\xi}u\cdot\frac{\xi}{|\xi|}\mathcal{H}^{2}(d\xi)$

(3.4)

$=- \frac{3}{4}\lim_{rarrow 0}\frac{1}{4\pi r}\int_{|\hat{\omega}|=1}|\delta_{r\hat{\omega}}u|^{2}\delta_{r\hat{\omega}}u\cdot\hat{\omega}\mathcal{H}^{2}(d\hat{\omega})$ .

We should note that if $u$ is sufficiently smooth, we have

$\int_{B(0;r)}div_{\xi}(|\delta_{\xi}u|^{2}\delta_{\xi}u)\mathcal{L}^{3}(d\xi)=\int_{|\xi|=r}|\delta_{\xi}u|^{2}\delta_{\xi}u\cdot\frac{\xi}{|\xi|}\mathcal{H}^{2}(d\xi)$ .

Since our vector field $u\in\Omega$ is continuous, the integrals appearing in both (3.3) and

(3.4) are all well-defined. We expect that each limit appearing in (3.3) and (3.4) exists

in a certain sense (even in the sense of ditributions), not necessary point wise, so that

taking the integral of $\epsilon[u](x, t)$ over a space-time domain or making the duality pairing

of it with some nice functions will give us a quantity which would be consistent with

the original energy dissipation rate (2.2) or (2.3).

We have just proposed two ways of evaluating $\epsilon[u](x, t)$ defined by (3.2), which will

give rise to a question: Do these two evaluations (3.3) and (3.4) coincide? Under

appropriate conditions, It must be:

$\frac{1}{4}\lim_{\epsilonarrow 0}\int_{\mathbb{R}^{3}}|\delta_{\xi}u|^{2}\delta_{\xi}u\cdot\nabla\varphi_{\epsilon}(\xi)\mathcal{L}^{3}(d\xi)$

(3.5)

$=- \frac{3}{4}\lim_{rarrow 0}\frac{1}{4\pi r}\int_{|\hat{\omega}|=1}|\delta_{r\omega^{-}}u|^{2}\delta_{r\hat{\omega}}u\cdot\hat{\omega}\mathcal{H}^{2}(d\hat{\omega})$ .
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This relation is pointed out by Duchon-Robert [6] and they prove the equality for a

class of weak solutions to (2.6), putting aside the existence problem of such solutions.

4 incompressible Euler flows and dissipation anomaly

Duchon-Robert [6] proves the following: if $u\in L^{3}(\mathbb{T}^{3}\cross(0, T))$ is a weak solution of

the incompressible Euler equations (2.6), then we have the limit in the left hand side

of (3.5), i.e.,

$D[u](x, t):= \frac{1}{4}\lim_{\epsilonarrow 0}\int_{\mathbb{R}^{3}}|\delta_{\xi}u|^{2}\delta_{\xi}u\cdot\nabla\varphi_{\epsilon}(\xi)\mathcal{L}^{3}(d\xi)$

(4.1)

$=: \lim_{\epsilonarrow 0}D_{\epsilon}[u](x, t)$ ,

exists in the sense of distributions (in the simple topology of $\mathcal{D}’(\mathbb{T}^{3}\cross[0,$ $T$ and we

have the following equality: $*12$

$D[u]=- \frac{\partial}{\partial t}(\frac{|u|^{2}}{2})-div(u(\frac{|u|^{2}}{2}+p))$ . (4.2)

These means that (1) $D[u]$ is a manifestation of $\epsilon[u]$ defined by (3.3) in $\mathcal{D}’(\mathbb{T}^{3}\cross[0,$ $T$

(2) $D[u]$ is determined independently of the choice of $\varphi_{\epsilon};(3)D[u]$ is the defect term

for the energy conservation law (2.9).

Furthermore, Duchon-Robert [6] shows that (3.5) holds true as long as the limit in

$*12$ Taking the convolution of $u$ with $\varphi_{\epsilon}$ seems to work as a low pass filter for $u$ . The convolution

of “nice function” $f$ and $\varphi_{\in}$ will be denoted by $f^{\epsilon}$ , i.e., $f^{\epsilon}=\varphi_{\epsilon}*f$ for an appropriate $f.$

Putting $u=(u_{1}, u_{2}, u_{3})$ and $\partial_{i}=\frac{\partial}{\partial x_{i}}(i=1,2,3)$ , we have, by $\nabla\cdot u=\partial_{i}u_{i}=0$ , that

$D_{\epsilon}[u]= \frac{1}{2}E_{\epsilon}[u]-\frac{1}{4}\partial_{i}(u_{i}u_{j}u_{j})^{\epsilon}+\frac{1}{4}u_{i}\partial_{i}(u_{j}u_{j})^{\epsilon}$

where
$E_{\epsilon}[u]:=u_{j}\partial_{i}(u_{i}u_{j})^{\epsilon}-u_{i}u_{j}\partial_{j}(ui)^{\epsilon}.$

Here, we have used Einstein summation convention.

On the other hand, the equality obtained by taking convolution of both sides of (2.6) with

$\varphi_{\epsilon}$ yields that $E_{\epsilon}$ is twice as much as the right hand side of (4.2). Consequently, we have

$\lim_{\epsilonarrow 0}E_{\epsilon}=2\lim_{\epsilonarrow 0}D_{\epsilon}$ in $\mathcal{D}’(\mathbb{T}^{3}\cross[0, T])$ .

According to Eyink-Sreenivasan [8], one can find such arguments above in Onsager’s private,

handwritten notes of the $1940s$ to obtain (4.2) with (4.1). It is easy to imagine that (4.1) and

(4.2) lead to Onsager’s conjecture.
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the right hand side of (3.5) exists in appropriate topology, so that we have:

-
$\frac{4}{3}D[u]=\lim_{rarrow 0}\frac{1}{4\pi r}\int_{|\hat{\omega}|=1}|\delta_{r\omega}-u|^{2}\delta_{r\hat{\omega}}u\cdot\hat{\omega}\mathcal{H}^{2}(d\hat{\omega})$ . (4.3)

Duchon-Robert [6] claims that if the defect $D[u]$ is positive, then (4.3) is the manifes-

tation of the four-thirds law of the isotropic turbulence owing to K\’arm\’an-Howarth-

Monin:

$- \frac{4}{3}\langle\epsilon\rangle|\xi|=\langle|\delta_{\xi}u|^{2}\delta_{\xi}u\cdot\frac{\xi}{|\xi|}\rangle, 0<|\xi|\ll 1$

where $\langle\epsilon\rangle$ is defined by (2.3), while the right hand side of (4.3) is the spherical mean

of $|\delta_{\xi}u|^{2}\delta_{\xi}u\cdot\not\in \mathfrak{s}$ . We should note that (4.3) is proved without any assumption on

homogeneity, isotropy, or steadiness of solutions; Duchon-Robert [6] only assume that

$u\in L^{3}(\mathbb{T}^{3}\cross(0, T))$ is a weak solution of (2.6).

Eyink [7] shows a similar result to Duchon-Robert [6]: He proves that the following

equality holds true as long as the limit of the right hand side exists in an appropriate

topology:

$\frac{1}{4}\lim_{\epsilonarrow 0}\int_{\mathbb{R}^{3}}|\delta_{\xi}u|^{2}\delta_{\xi}u\cdot\nabla\varphi_{\epsilon}(\xi)\mathcal{L}^{3}(d\xi)$

(4.4)

$=- \frac{5}{4}\lim_{rarrow 0}\frac{1}{4\pi r}\int_{|\hat{\omega}|=1}[\delta_{r\hat{\omega}}u\cdot\hat{\omega}]^{3}\mathcal{H}^{2}(d\hat{\omega})$ .

Here, $D[u]$ in the left hand side is the same one in (4.1). Thus (4.4) in disguise is

$- \frac{4}{5}D[u]=\lim_{rarrow 0}\frac{1}{4\pi r}\int_{|\hat{\omega}|=1}[\delta_{r\hat{\omega}}u\cdot\hat{\omega}]^{3}\mathcal{H}^{2}(d\hat{\omega})$ , (4.5)

which corresponds to the Kolmogorov’s conjecture (2.5) with $p=3$ as known as the

Kolmogorov four fifth law:

$- \frac{4}{5}\langle\epsilon\rangle|\xi|=\langle[\delta_{\xi}u\cdot\frac{\xi}{|\xi|}]^{3}\rangle, 0<|\xi|\ll 1.$

Eyink [7] regards (4.5) as the manifestation of the celebrated, Kolmogorov’s four fifth

law as well as Duchon-Robert [6] does, provided that we have $D[u]>0.$

These results above due to Duchon-Robert [6] and Eyink [7] are proved without

the assumption of homogeneity, isotropy, and steadiness for weak solutions of (2.6).

Nevertheless, their results seem strongly to suggest that a set of weak solutions of
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(2.6) with $D[u]>0$ could be the support of the desired probability measure $P$ on $\Omega.$

Now, there arise two questions: Do we have

(1) the existence of dissipative weak solutions of (2.6) with $D[u]>0$?

(2) the existence of the limits in the right hand side of both (4.3) and (4.5)?

Recently, a great progress on the problem (1) has been made by De Lellis-Sz\’ekelyhidi

(2012), Isett (2012), Buckmaster (2013), Buckmaster- De Lelis-Sz\’ekelyhidi (2014) (see

[5, 10, 2, 1 in which H\"older continuous weak solutions of (2.6) with obeying any

given continuous behavior of $L^{2}$ norm have been constructed. $*13$ Hence, we have

infinitely many weak solutions with both $D[u]>0$ and $D[u]<0.$

The problem (2) concerns the H\"older exponent of those solutions constructed in

[5, 10, 2, 1]. It seems apparent from the structure of the integrands in the right hand

side of (4.3) and (4.5) that, if the H\"older exponent is bigger than 1/3, then we see

$D[u]=0$ : We have thus proved Onsager’s conjecture in disguise. For the existence of

(dissipative) weak solutions with H\"older exponent being 1/3, Buckmaster-De Lelis-

Sz\’ekelyhidi [2] has succeeded in proving, for any $\epsilon>0$ , the existence of compactly

supported solutions in $L^{1}([0, T];o^{1/3-\epsilon}(\mathbb{T}^{3}))$ to (2.6). But it is not enough to insist

the existence of negative limits in the right hand side of both (4.3) and (4.5).

We end with this section with the following significant remark:

Remark (Dissipation anomaly). As we considered in the end of \S 3, the defect $D[u]$

itself will not give us a physical quantity. It must be something like:

$\int_{0}^{T}\int_{T^{3}}D[u](x, t)dxdt>0$ or $\mathbb{E}[D[u](x, t)]>0,$

because the turbulence is a property of vector fields belonging to the ensemble

$(\Omega, \mathfrak{B}, P)$ . Hence, $D[u](x, t)$ may change sign over $\mathbb{T}^{3}\cross[0, T]$ , so that it does not

seem appropriate to state $D[u]>0$ when we refer to dissipative weak solutions of

(2.6).

5 Energy dissipation rate and dissipation anomaly revisited

A weak solution of the incompressible Euler equation (2.6) is called dissipative, if its

kinetic energy is not conserved. Physically, dissipation of the kinetic energy usually

$*13$ It is a surprise, isn’t it?
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means the
$\langle$

loss” of it. Thus, recalling (4.2) and Remark stated at the end of the

previous section, we also assume

$\int_{0}^{T}\int_{T^{3}}D[u](x, t)dxdt>0$ , (5.1)

when we say that $u$ is dissipative on $\mathbb{T}^{3}\cross[0, T]^{*14}$

We will discuss the relation between our defect $D[u]$ defined by (3.3) for (2.6) and

the conventional definition of the energy dissipation rate defined by (2.3) for (2.1)

with $f\equiv 0.$

Let $u^{\nu}$ be a Leray-Hopf weak solution of (2.1) with $f\equiv 0$ ; in the sequel, we always

assume $f\equiv 0$ for simplicity. For $u^{\nu}$ , we can define the defect term $D_{NS}[u^{\nu}]$ as we did

for a Euler flow in $footnote*12$ ; we have

$2D_{NS}[u^{\nu}]=-\partial_{t}|u^{\nu}|^{2}-div(u^{\nu}(|u^{\nu}|^{2}+2p))+\nu\triangle|u^{\nu}|^{2}-2\nu|\nabla u^{\nu}|^{2}$

Supposing that $u$ is a velocity field of (2.6) belonging to $L^{3}(\mathbb{T}^{3}\cross(0, T))$ such that we

have
$\lim_{\nu\downarrow 0}\Vert u^{\nu}-u\Vert_{L^{3}(T^{3}x(0,T))}=0$ , (5.2)

we can easily show that

$\lim_{\nu\downarrow 0}(D_{NS}[u^{\nu}]+\nu|\nabla u^{\nu}|^{2})=D[u]$ in $\mathcal{D}’(\mathbb{T}^{3}\cross[0,T$

Therefore, since Leray-Hopf solution $u^{\nu}$ satisfies $D[u^{\nu}]\geq 0$ (see [6]), if $D[u]$ is a

measure on $\mathbb{T}^{3}\cross[0, T]$ (roughly speaking $D[u]>0$), then we have

$\lim_{v\downarrow}\sup_{0}\int_{0}^{T}\int_{T^{3}}D_{NS}[u^{\nu}]dxdt>0$ or $\lim_{\nu\downarrow}\sup_{0}\nu\int_{0}^{T}\Vert\nabla u^{\nu}(t)\Vert^{2}dt>0.$

Furthermore, if $\{u^{\nu}\}_{\nu>0}$ is a family of smooth solutions of (2.1), $*15$ we obtain

$\lim_{\nu\downarrow}\sup_{0}\nu\int_{0}^{T}\Vert\nabla u^{\nu}(t)\Vert^{2}dt>0$ . (5.3)

Conversely, under the assumption of (5.2), if there exists a family of smooth solutions

of (2.1) satisfying (5.3), then the limit function $u$ solves (2.6) and satisfies (5.1).

$*14$ Since the defect $D[u]$ defined by (4.1) is generally a distribution (not necessary a function), we
may understand the integral in (5.1) as the duality pair of $D[u]$ and the constant function 1.

$*15$ Then, $D_{NS}[u^{\nu}]=0.$
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Thus, the question we must concern is the validity of (5.2), and we do not know

whether we can construct a dissipative weak solution of (2.6) from a family of solutions

of (2.1) or not.

Here we mention the result of Kato [12]. This paper considers the initial boundary

value problem for (2.1) and (2.6) on a bounded domain in $\mathbb{R}^{3}$ , and study the conver-

gence of a sequence of solutions $\{u^{v}\}_{\nu>0}$ of (2.1) as $\nu\downarrow 0$ under the assumption that

(2.6) has a classical solution $u$ which conserves its $L^{2}$ norm. He proved that

$\lim_{\nu\downarrow}\sup_{0}\nu\int_{0}^{T}\Vert\nabla u^{\nu}(t)\Vert^{2}dt=0$

if and only if
$\lim\sup\Vert u^{\nu}(t)-u(t)\Vert_{L^{2}}=$ O.
$\nu\downarrow 0t\in[0,T]$

6 Local $part\dot{\ovalbox{\tt\small REJECT}}t\dot{\ovalbox{\tt\small REJECT}}on$ function of turbulent fields

This section will be very sketchy. For more details, please refer to [17, 18].

Mathematical analysis on time-dependent vector fields is made by using mathemat-

ical concepts and objects defined on space-time: The arguments in \S 4 are developed

over space-time $\mathbb{T}^{3}\cross[0, T]$ , and Kato’s theory of vanishing viscosity for (2.1) in [12]

we introduced in the previous section consider the space-time norm of $\nabla u.$

We regard turbulence as an infinite dimensional probability measure on $\Omega=C(\mathbb{T}^{3}\cross$

$[0, T];\mathbb{R}^{3})$ , where $\mathbb{R}^{3}\cong T_{x}\mathbb{T}^{3}$ for $x\in \mathbb{T}^{3}$ . We employ $\epsilon[u](x, t)$ defined by (3.3) as our

local energy dissipation rate, so that for each dissipative weak solutions $u$ of (2.6)

there exists $D[u]$ defined by (4.1) in the sense of the distribution (at least) by means

of the theory of Duchon-Robert [6]. The set of dissipative weak solutions of (2.6)

would be included in the support of the desired probability measure $P.$

Supposing that the sample space of turbulent flows is the set of dissipative weak

solutions of (2.6), we proceed further. We divide $\mathbb{T}^{3}\cross[0, T]$ into small space-time

cubes

$(x+ \square )\cross[t-\frac{\triangle t}{2}, t+\frac{\triangle t}{2}], (x, t)\in \mathbb{T}^{3}\cross[0, T],$

and introduce the virtual energy dissipation rate as follows:

$\epsilon_{x,t}[u]:=\frac{1}{|\square \cross\Delta t|}\int_{t-\Delta t/2}^{t+\triangle t/2}ds\int_{x+\square }D[u](y, s)dy.$
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Here we introduce the concept of MFU, which is an abbreviation for Minimal Flow

Unit, to clarify the meaning of $4D$ small cubes: Taking large $N\in \mathbb{N}$ , we divide

$\mathbb{T}^{3}\cross[0, T]$ into small $N$ equal space-time cubes so that the vector fields still have the

nature of turbulent flows on each small $4D$ cube which is a translation of

$\square \cross[-\frac{\Delta t}{2}, \frac{\Delta t}{2}],$

by appropriate $(x, t)\in \mathbb{T}^{3}\cross(0, T)$ such that we have

$\bigcup_{(x,t)\in MFU}\{(x+\square )\cross[t-\frac{\Delta t}{2}, t+\frac{\Delta t}{2}]\}=\mathbb{T}^{3}\cross(0,T)$

and for $(x, t)\neq(y, s)$

$\{(x+\square )\cross[t-\frac{\Delta t}{2},$ $t+ \frac{\triangle t}{2}]\}^{o}\cap\{(y+\square )\cross[s-\frac{\Delta t}{2},$ $s+ \frac{\Delta t}{2}]\}^{o}=\emptyset$ (6.1)

In well developed turbulent flows we may say that the vector field on each cube

determined by as if rolling a “dice” independently. Precisely, we prepare an N-

independent $\mathbb{R}^{3}$-valued random variables which are assigned to each MFU, and as-

sume that they are independently, identically distributed (abbreviated to i.i. $d.$ ). For

simplicity, we discretize the value of the random variables, and cut off the high veloc-

ity region. This is a kind of coarse graining procedure, so that we obtain a discretized

model of turbulent vector fields.

Then, we can apply Shannon-McMillan’s $theorem^{*16}$ (see, e.g., [22]) to our situation

to get a “statistical mechanics” by giving the expectation value of the local energy

dissipation rate:

$\overline{\epsilon}=\mathbb{E}[\epsilon(x, t)]=\mathbb{E}[\frac{1}{|\square \cross\Delta t|}\int_{t-\Delta t/2}^{t+\triangle t/2}ds\int_{x+\square }D[v](y, s)dy]$

This value should be $positive^{*17}$ and is independent of $(x, t)$ which labels each MFU,

and is considered to be an intensive variable to identify the ensemble of turbulent

flows. Principle of maximal entropy determines the distribution law of $N$ random

$*16$ A refinement of the law of large numbers.
$*17$ This means that the local energy dissipation rate is “statistically positive.
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variables assigned to each MFU, so that the distribution of each discretized random

variable should be something like that $e^{-\beta\epsilon_{x,t}}/Z_{x,t}(\beta)$ with some constant $\beta$ which is

designed to give us $\overline{\epsilon}=\mathbb{E}[\epsilon(x, t)]$ . Here $Z_{x,t}( \beta)=\sum_{(x,t)\in MFU}e^{-\beta\epsilon_{x,t}}$
is the partition

function of our discretized model.

Boldly taking the continuous limit of our “statistical mechanics” above, we could

obtain the following local partition function on each MFU:

$Z_{\beta}^{x,t} := \int_{\Omega}\exp[\frac{-\beta}{|\square \cross\triangle t|}\int_{t-\triangle t/2}^{t+\Delta t/2}ds\int_{x+\square }D[v](y, s)dy]\mathfrak{D}v$ , (6.2)

where $\mathfrak{D}v$ is the infinite dimensional “flat measure”’ on $\Omega$ (mathematically meaning-

less). Unfortunately, the meaning of $\beta$ is not clear now, which corresponds to the

inverse temperature of a standard model of statistical mechanics.

In order to construct the desired probability measure $P$ on $\Omega$ , we need a global

partition function $Z_{\beta}$ . The top term of a suitable approximation of $Z_{\beta}$ may become

$Z_{\beta} \sim\prod_{(x,t)\in MFU}\exp[\frac{-\beta}{|\square \cross\triangle t|}\int_{t-\triangle t/2}^{t+\Delta t/2}ds\int_{x+\square }D[v](y, s)dy]$ (6.3)

$= \exp[\frac{-N\beta}{|\mathbb{T}\cross[0,T]|}\int_{0}^{T}ds\int_{\mathbb{T}^{3}}D[v](y, \mathcal{S})dy]$ (6.4)

Here, we recall that $N$ denotes the number of MFUs. Watching at (6.4), one may feel

that $N$ would play a role of the volume parameter. It is just a speculation.
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