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1 Introduction

This paper is a survey of the paper [11] on large-time behavior of solutions to a system of
viscous conservation laws over one-dimensional half space $\mathbb{R}_{+}:=(0,\infty)$ ,

$U_{t}+f(U)_{x}=(G(U)U_{X})_{x}, x\in \mathbb{R}+, t>0$ . (1.1)

Here $U=U(t,x)$ is an unknown $m$-vector function taking values in an open convex set
$\theta_{U}\subset \mathbb{R}^{m};f(U)$ is a smooth $m$-vector function of $U\in\theta_{U};G(U)$ is a smooth $m\cross m$ real

matrix function.
Our main purpose is to show existence and asymptotic stability of a stationary solution

to the system (1.1). To transfer the system to that in a symmetric form, by following the
argument in [7], we firstly assume that the system (1.1) has a strictly convex entropy $\eta=$

$\eta(U)$ satisfying

(i) $\eta(U)$ is a strictly convex scalar function, i.e., the Hessian matrix $D_{U}^{2}\eta(U)$ is posi-
tive definite for $U\in\theta_{U}.$

(ii) There exists a smooth scalar function $q(U)$ (entropy flux) such that $D_{U}q(U)=$

$D_{U}\eta(U)D_{U}f(U)$ .

(iii) The matrix $G(U)(D_{U}^{2}\eta(U))^{-1}$ is real symmetric and non-negative for $U\in\rho_{U}.$

Then we assume that

[A1] the system has the entropy function $\eta(U)$ satisfying $(i)-(iii)$ above.

We introduce a new dependent variable $\hat{U}$ under assuming that there exists a diffeomor-
phism $U\mapsto\hat{U}$ from an open set $\theta_{U}$ onto $\theta_{\hat{U}}$ . Notice that $\hat{U}=\hat{U}(U)$ is given by $\hat{U}(U)=$

$TD_{U}\eta(U)$ and $D_{U}\hat{U}=D_{U}^{2}\eta$ . Then the system (1.1) is deduced to the symmetnc system for
$\hat{U}$ as

$\hat{A}^{0}(\hat{U})\hat{U}_{t}+\hat{A}(\hat{U})\hat{U}_{x}=(\hat{B}(\hat{U})\hat{U}_{X})_{X}$ , (1.2)

where
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$\hat{A}^{0}:=D_{\hat{U}}U=(D_{U}^{2}\eta)^{-1}$ : real symmetric and positive definite,

$\hat{A}$

$:=D_{U}fD_{\hat{U}}U=D_{U}f(D_{U}^{2}\eta)^{-1}$ : real symmetric,
$\hat{B}$

$:=GD_{\hat{U}}U=G(D_{U}^{2}\eta)^{-1}$ : real symmetric and non-negative definite.

We next rewrite the system (1.2) to a normal form which is a coupled system of a

symmetric hyperbolic system and a symmetric parabolic system. To do this, we suppose a

following assumption:

[A21 The null space ノジ $:=ker$B(\^U) is independent of $\hat{U}\in \mathscr{O}_{\hat{U}}.$

Let $m_{1}$
$:=\dim \mathscr{N}$ and $m_{2}:=m-m_{1}$ . Here we assume that $\hat{B}(\hat{U})$ is the form of

$\hat{B}(\hat{U})=(\begin{array}{ll}0 00 \hat{B}_{2}(\hat{U})\end{array})$

without loss of generality (see [7]), where $\hat{B}_{2}(\hat{U})$ is an $m_{2}\cross m_{2}$ matrix and positive definite.

Under the assumption [A2], there exists a transformation $U\mapsto u$ which is a diffeomorphism

from an open set $\mathscr{O}_{U}$ onto $\mathscr{O}_{u}$ . Then we rewrite the system (1.2) to that for a new dependent

variable $u$ as

$A^{0}(u)u_{t}+A(u)u_{x}=B(u)u_{xx}+g(u,u_{x})$ . (1.3)

In (1.3), $A^{0}(u)$ is real symmetric and positive definite of the form

$A^{0}(u)=(\begin{array}{ll}A_{1}^{0}(u) 00 A_{2}^{0}(u)\end{array})$

where $A_{1}^{0}(u)$ and $A_{2}^{0}(u)$ are real symmetric and positive definite; $A(u)$ is real symmetric of

the form

$A(u)=(\begin{array}{ll}A_{11}(u) A_{12}(u)A_{21}(u) A_{22}(u)\end{array})$

where $A_{11}(u)$ and $A_{22}(u)$ are symmetric and $TA_{12}(u)=A_{21}(u);B(u)$ is real symmetric and

non-negative definite of the form

$B(u)=(\begin{array}{ll}0 00 B_{2}(u)\end{array})$

where $B_{2}(u)$ is real symmetric and positive definite; $g(u, u_{x})$ is a nonlinear term of the form

$g(u,u_{x})=(\begin{array}{l}g_{1}(u,w_{x})g_{2}(u,u_{x})\end{array}).$

Using a notation $u=T(v,w)$ where $v=v(t,x)\in \mathbb{R}^{m_{1}}$ and $w=w(t,x)\in \mathbb{R}^{m_{2}}$ , we deduce the

system (1.3) to the decomposed form

$A_{1}^{0}(u)v_{t}+A_{11}(u)v_{x}+A_{12}(u)w_{x}=g_{1}(u,w_{x})$ , (1.4a)

$A_{2}^{0}(u)w_{t}+A_{21}(u)v_{X}+A_{22}(u)w_{x}=B_{2}(u)w_{xx}+g_{2}(u,u_{x})$ . (1.4b)

For the system (1.4), we put the following condition.
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[A3] The matrix $A_{11}(u_{+})$ is negative definite for some $u+\in\theta_{u}.$

The assumption [A3] corresponds to the outflow problem for the model system of com-
pressible viscous gases discussed in [5, 6, 13]. We prescribe the initial and the boundary
conditions for (1.4) as

$u(O,x)=u_{0}(x)=T(v_{0},w_{0})(x)$ , ie., $(v,w)(O,x)=(v_{0},w_{0})(x)$ , (1.5)

$w(t,0)=w_{b}$ , (1.6)

where $w_{b}\in \mathbb{R}^{m_{2}}$ is a constant. We assume that a spatial asymptotic state of the initial data
Is a constant:

$\lim_{xarrow\infty}u_{0}(x)=u+=T(v_{+},w_{+})$ , i.e., $\lim_{xarrow\infty}(\nu_{0},w_{0})(x)=(v_{+},w_{+})$ . (1.7)

We show the existence of a solution to the problem $(1.4)-(1.6)$ globally in time under the
smallness assumption on $|w_{b}-w_{+}|$ . Thus the condition [A3] yields that the characteristics
of the hyperbolic system (1.4a) around the boundary are negative. Therefore the boundary
condition (1.6) is necessary and sufficient for the well-posedness.

For the heat-conductive model of compressible viscous gases in $\mathbb{R}^{3}$ , Matsumura and
Nishida in [8] show the asymptotic stability of a constant state (or a stationary solution
corresponding to an extemal potential force) and establish a technical energy method. For
the system (1.1) in the full space $\mathbb{R}^{n}$ , Umeda, Kawashima and Shizuta in [16] consider a
sufficient condition which guarantees a dissipative structure of the system (1.1) and show
the asymptotic stability of the constant state.

For a barotropic model of compressible viscous gases in half space, Kawashima, Nishi-
bata and Zhu in [6] consider an outflow problem, where a negative Dirichlet data for
the velocity is imposed, and show the existence and the asymptotic stability of bound-
ary layer solutions. The generalization of this problem to a multi-dimensional half space
$\mathbb{R}_{+}^{n}=\mathbb{R}+\cross \mathbb{R}^{n-1}$ is considered by Kagei and Kawashima in [2]. For the heat-conductive
model, Kawashima, Nakamura, Nishibata and Zhu [5] prove the existence and the asymp-
totic stability of boundary layer solutions for the outflow problem. For the inflow problem,
the barotropic model is considered in [10] and the heat-conductive model is considered in
[1, 12, 14].

Notations. For vectors $u,v\in \mathbb{R}^{m},$ $|u|$ and $\langle u,v\rangle$ denote standard Euchdean nom and inner
product, respectively. For a matrix $A$ , TA denotes a transport matrix of $A$ . For $1\leq p\leq\infty,$

$L^{p}(\mathbb{R}_{+})$ denotes a standard Lebesgue space over $\mathbb{R}_{+}$ equipped with a norm $\Vert\cdot\Vert_{U}$ . For a
non-negative integer $s,$ $H^{s}(\mathbb{R}_{+})$ denotes an s-th order Sobolev space over $\mathbb{R}_{+}$ in the $L^{2}$ sense
with a norm $\Vert\cdot\Vert_{H^{S}}$ . Notice that $H^{0}(\mathbb{R}_{+})=L^{2}(\mathbb{R}_{+})$ and $\Vert\cdot\Vert_{H^{0}}=\Vert\cdot\Vert_{L^{2}}$ . For a function
$f=f(u)$ , $D_{u}f(u)$ denotes a Fr\’echet derivative of $f$ with respect to $u$ . Especially, in the
case of $u=T(u_{1}, \ldots,u_{n})\in \mathbb{R}^{n}$ and $f(u)=T(f_{1}, \ldots,f_{m})(u)\in \mathbb{R}^{m}$ , the Fr\’echet derivative
$D_{u}f=( \neq_{u}^{\partial}\frac{i}{j})_{ij}$ is an $m\cross n$ matrix. For a function $f=f(v,w)$ , we sometimes abbreviate

partial Fr\’echet derivatives $D_{\nu}f(v,w)$ and $D_{w}f(v,w)$ to $f_{\nu}(v,w)$ and $f_{w}(v,w)$ , respectively.
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2 Existence of stationary solution

The stationary wave $\tilde{U}(x)$ is defined as a smooth stationary solution to (1.1) which converges

to a constant state $U+=U(u_{+})$ as $xarrow\infty$ . Thus $\tilde{U}$ satisfies a system of equations

$f(\tilde{U})_{x}=(G(\tilde{U})\tilde{U}_{x})_{x}, x\in \mathbb{R}_{+}$ . (2.1)

Let $\tilde{u}=T(\tilde{v},\tilde{w})$ be a stationary solution for (1.4). Since the transformation $U\mapsto u$ is a

diffeomorphism, we have a relation between $\tilde{U}$ and $\tilde{u}$ , i.e., $\tilde{u}=u(\tilde{U})$ and $\tilde{U}=U(\tilde{u})$ . We

assume that $\tilde{u}$ satisfies the same conditions (1.6) and (1.7), that is,

梅 w
$\sim$

(0) $=w_{b}$ , (2.2a)

$\lim_{xarrow\infty}\tilde{u}(x)=u+$ , ie., $\lim_{xarrow\infty}(\tilde{v},\tilde{w})(x)=(v_{+},w_{+})$ . (2.2b)

The existence of the stationary solution for the boundary value problem (2.1) and (2.2)

is shown in Theorem 2.1 below. We note that the non-degenerate stationary solution exists

if the number of negative characteristics is greater than the number of hyperbolic equations

(1.4a). In order to handle the degenerate case, we have to assume that the matrix $D_{U}f(U_{+})$

has a simple eigenvalue O. Let $\mu(U)$ be an eigenvalue of the matrix $D_{U}f(U)$ satisfying

$\mu(U_{+})=0$ and let $R(U)$ be a right eigenvector of $D_{U}f(U)$ corresponding to $\mu(U)$ . We also

use a notation $\#^{-}(A)$ which denotes the number of negative eigenvalues of a matrix $A.$

Theorem 2.1. Assume that $[A1]-[A3]$ hold and let $\delta$ $:=|w+-w_{b}|.$

(i) (Non-degenerate case) We assume that

$\#^{-}(D_{U}f(U_{+}))>m_{1}$

holds. Then there exists a local stable manifold $\mathscr{M}^{s}\subset \mathbb{R}^{m_{2}}$ around the equilibrium

$w_{+}such$ that if $w_{b}\in \mathscr{M}^{s}$ and $\delta$ is sufficiently small, then there exists a unique smooth

solution $\tilde{u}(x)$ to (2. 1) and (2.2) satisfying

$|\partial_{x}^{k}(\tilde{u}(x)-u_{+})|\leq C\delta e^{-cx}$ for $k=0$ , 1, $\cdots$ (2.3)

(ii) (Degenerate case) We assume that $D_{U}f(U_{+})$ has a simple eigenvalue $0$, i.e., $\mu(U_{+})=$

O. Moreover we assume that the characteristic field corresponding to $\mu(U_{+})=0$ is

genuinely nonlinear, that is,

$D_{U}\mu(U_{+})R(U_{+})\neq 0$ . (2.4)

Then there exists a certain region $\mathscr{M}\subset \mathbb{R}^{m_{2}}$ such that if $w_{b}\in \mathscr{M}$ and $\delta$ is suficiently

small, then there exists a unique smooth solution $u(x)$ satisfying

$| \partial_{X}^{k}(\tilde{u}(x)-u_{+})|\leq C\frac{\delta^{k+1}}{(1+\delta x)^{k+1}}+C\delta e^{-cx}$ for $k=0$ , 1, $\cdots$
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(i) Non-degenerate case (ii) Degenerate case

Figure 1: The left figure shows the state space of $\tilde{w}\in \mathbb{R}^{m_{2}}$ for the non-degenerate case. The
region $\mathscr{M}^{u}$ means a local unstable manifold. The right figure is the degenerate case. $\mathscr{M}^{c}$ is
a local center manifold corresponding to eigenvalue O.

Proof Here we only give a brief outline of the proof for the non-degenerate case (i). For
more details, see the paper [11]. Integrate (2.1) over $(x,\infty)$ with using a property $\tilde{U}_{X}(x)arrow 0$

as $xarrow\infty$ and symmetrize the resultant equation, we have

$B(\tilde{u})\tilde{u}_{X}=A(u_{+})(\tilde{u}-u_{+})+O(|\tilde{u}-u_{+}|^{2})$

which is rewritten to

$0=A$ ( $u+$ )(ラー $v_{+}$ ) $+A_{12}(u_{+})(\tilde{w}-w_{+})+O(|\tilde{u}-u+|^{2})$ , (2.5a)

$B_{2}(\tilde{u})\tilde{w}_{x}=A_{21}$ ( $u+$ )(ラー $v_{+}$ ) $+A_{22}(u_{+})(\tilde{w}-w_{+})+O(|\tilde{u}-u_{+}|^{2})$ . (2.5b)

Due to the assumption [A3], we solve (2.5a) with respect to $\tilde{v}$ by using the implicit function
theorem. Thus $\tilde{v}$ is represented as a function of $\tilde{w}$

ラー $v+=\Gamma(\tilde{w}-w_{+})+O(|\tilde{w}-w_{+}|^{2})$ , $\Gamma:=-A11(u_{+})^{-1}A_{12}(u_{+})$ . (2.6)

Substituting (2.6) in (2.5b), we get an $m_{2}\cross m_{2}$ system of differential equations for $\tilde{w}$

$\tilde{w}_{x}=\tilde{A}(\tilde{w}-w_{+})+O(|\tilde{w}-w_{+}|^{2})$ , (2.7)

$\tilde{A}:=B_{2}(u_{+})^{-1}(-A_{21}(u_{+})A_{11}(u_{+})^{-1}A_{12}(u_{+})+A_{22}(u_{+}))$ .

Moreover, we see that

$\#^{-}(\tilde{A})=\#^{-}(A(u_{+}))-\#^{-}(A_{11}(u_{+}))=\#^{-}(f_{U}(U_{+}))-m_{1}>0$

which yields the existence of the local stable manifold. Therefore we complete the proof.
口

3 Asymptotic stability of stationary solution

We next show the asymptotic stability of the stationary solution of which existence is shown
in Theorem 2.1. To do this, we have to assume a condition which guarantees a dissipative
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structure of the system. This kind of dissipative structure is firstly studied by Kawashima in

his doctorial thesis in 1984, and the following condition is imposed in [3, 15, 16].

[A4] Let $\lambda A^{0}(u_{+})\phi=A(u_{+})\phi$ and $B(u_{+})\phi=0$ for $\lambda\in \mathbb{R}$ and $\phi\in \mathbb{R}^{m}$ . Then $ $=$ 0.

Kawashima proves the asymptotic stability of a constant state for the full space problem

under the stability condition in his papers [3, 4, 15, 16]. The main purpose of the present

paper is to show the asymptotic stability of the stationary solution in half space under the

stability condition.
We first summarize a result on asymptotic stability of the non-degenerate stationary

solution.

Theorem 3.1. Assume that $[A1]-[A4]$ hold and that the same assumptions as in Theorem

$2.1-(i)$ hold. Then there exists a positive constant $\epsilon_{0}$ such that if
$\Vert u_{0}-\tilde{u}\Vert_{H^{2}}+\delta\leq\epsilon_{0},$

the problem (1.4), (1.5) and (1.6) has a unique solution $u(t,x)$ globally in time satisfying

$u-\tilde{u}\in C([0,\infty),H^{2}(\mathbb{R}_{+}))$ .

Moreover the solution $u$ converges to the stationary solution $\tilde{u}$:

$\lim_{tarrow\infty}\Vert u(t)-\tilde{u}\Vert_{L^{\infty}}=0$ . (3.1)

In order to show asymptotic stability of the degenerate stationary solution, we have to

assume convexity of the flux function $f(u)$ along a certain vector $\hat{r}\in \mathbb{R}^{m}$ defined by

$\hat{r}:=(D_{U}\mu(U_{+})R(U_{+}))D_{U}^{2}\eta(U_{+})R(U_{+})$ . (3.2)

Here we have assumed that $D_{U}\mu(U_{+})R(U_{+})\neq 0f0r$ existence of the degenerate stationary

solution. Notice that the direction of $\hat{r}$ is uniquely determined since $\hat{r}$ is independent of the

sign of $R(U_{+})$ . We also note that $\hat{r}$ is a right eigenvector of $\hat{A}(\hat{U}(U_{+}))$ corresponding to the

eigenvalue O. Using $\hat{r}$ , we define a scalar function $\hat{f}(U)$ by

$\hat{f}(U):=\langle\hat{r},f(U)\rangle.$

In Theorem 3.2, by assuming that $\hat{f}(U)$ is convex at $U=U+$ , we show asymptotic stability

of the degenerate stationary solution.

Theorem 3.2. Assume that $[A1]-[A4]$ hold and that the same assumptions as in Theorem

2.1-(ii) hold. Moreover, we assume that a scalarfunction $\hat{f}(U)$ is convex at $U=U+$, that

is, the Hessian matrix $D_{U}^{2}\hat{f}(U_{+})$ is non-negative definite. Then the same conclusion as in

Theorem 3.1 holds true.

The crucial point of proof of Theorems 3.1 and 3.2 is to obtain a uniform a priori esti-

mate of a perturbation from the stationary solution

$(\varphi, \psi)(t,x):=(v,w)(t,x)-(\tilde{v},\tilde{w})(x)$ .
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We also use a notation $\xi(t,x)$ $:=u(t,x)-\tilde{u}(x)=(\varphi, \psi)(t,x)$ . From (1.3), $\xi$ satisfies

$A^{0}(u)\xi_{t}+A(u)\xi_{x}=B(u)\xi_{xx}+h$ , (3.3)

$h:=g-\tilde{g}-(A-\tilde{A})\tilde{u}_{x}+(B-\tilde{B})\tilde{u}_{XX},$

where $\tilde{g}:=g(\tilde{u},\tilde{u}_{x})$ , $\tilde{A}:=A(\tilde{u})$ , $\tilde{B}:=B(\tilde{u})$ . We also have the equation for $(\varphi, \psi)$ from (1.4)

as

$A_{1}^{0}(u)\wp+A_{11}(u)\varphi_{x}+A_{12}(u)\psi_{X}=h_{1}$ , (3.4a)

$A_{2}^{0}(u)\psi+A_{21}(u)\varphi_{X}+A_{22}(u)\psi_{x}=B_{2}(u)\psi_{XX}+h_{2}$ , (3.4b)

where $h=T(h_{1},h_{2})$ and

$hl:=g_{1}-\tilde{g}_{1}-(An-\tilde{A}_{1})\tilde{v}_{x}-(A_{12}-\tilde{A}_{12})\tilde{w}_{x},$

$h_{2}:=g_{2}-\tilde{g}_{2}-(A_{21}-\tilde{A}_{21})\tilde{v}_{x}-(A_{22}-\tilde{A}_{22})\tilde{w}_{X}+(B_{2}-\tilde{B}_{2})\tilde{w}_{xx},$

where $\tilde{g}_{1}$ $:=g_{1}(\tilde{u},\tilde{w}_{x})$ , $\tilde{g}_{2}:=g_{2}(\tilde{u},\tilde{u}_{x})$ , $\tilde{A}_{ij}:=A_{ij}(u)(i,j=1,2)$ , $\tilde{B}_{2}:=B_{2}(\tilde{u})$ . The initial
and the boundary conditions are prescribed as

$(\varphi, \psi)(0,x)=(\mathfrak{w}, \psi_{0})(x) :=(v_{0},w_{0})(x)-(\tilde{v},\tilde{w})(x)$ , (3.5)

$\psi(t,0)=0$ . (3.6)

To summarize the a priori estimate for a solution $(\varphi, \psi)$ in Sobolev space $H^{2}$ , we define
an energy norm $N(t)$

$N(t):= \sup\Vert(\varphi, \psi)(\tau)\Vert_{H^{2}}.$

$0\leq\tau\leq t$

Proposition 3.3. Let $(\varphi, \psi)\in C([O,T];H^{2}(\mathbb{R}_{+}))$ be a solution to $(3.4)-(3.6)$ for a certain
$T>0$ . Then there exists a positive constant $\epsilon_{1}$ such that if $N(t)+\delta\leq\epsilon_{1}$ , the solution

satisfies

$\Vert(\varphi, \psi)(t)\Vert_{H^{2}}^{2}+\int_{0}$

ノ

$(\Vert\varphi_{x}(\tau)\Vert_{H^{1}}^{2}+\Vert\psi_{x}(\tau)\Vert_{H^{2}}^{2})d\tau\leq C\Vert((\mathfrak{w}, \psi_{0})\Vert_{H^{2}}^{2}$ . (3.7)

The proof of Proposition 3.3 is divided into several steps. In this paper, we only show
the brief derivation of the basic $L^{2}$ estimate for the non-degenerate case. To this end, we
employ an energy form $\mathscr{E}$ defined by

$\mathscr{E}:=\eta(U)-\eta(\tilde{U})-D_{U}\eta(\tilde{U})(U-\tilde{U})$ .

Note that, if $N(t)$ is sufficiently small, the energy form $\mathscr{E}$ is equivalent to $|(\varphi, \psi)|^{2}$ because
the Hessian matrix $D_{z}^{2}\eta$ is positive. From a direct computation, we see that $\mathscr{E}$ satisfies

$\mathscr{E}_{t}+\mathscr{F}_{x}+\langle B_{2}(u)\psi_{X},$ $\psi_{x}\rangle+\mathscr{G}=$玖 $+\mathscr{R}$ , (3.8)

where

$\mathscr{F}:=q(U)-q(\tilde{U})-D_{U}\eta(\tilde{U})(f(U)-f(\tilde{U}))$ ,

$\mathscr{R}:=(D_{U}\eta(U)-D_{U}\eta(\tilde{U}))(G(U)U_{x}-G(\tilde{U})\tilde{U}_{X})$ ,

$\mathscr{G}:=D_{U}\eta(\tilde{U})_{x}(f(U)-f(\tilde{U}))-(D_{U}\eta(U)-D_{U}\eta(0))f(0)_{x},$
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and $\mathscr{R}$ is a remainder term satisfying

$\int_{\mathbb{R}+}|\mathscr{R}|dx\leq C\int_{\mathbb{R}+}(|\tilde{u}_{x}||\xi||\xi_{x}|+|\tilde{u}_{x}|^{2}|\xi|^{2})dx\leq C\delta(|\varphi(t,0)|^{2}+\Vert\xi_{x}(t)\Vert_{L^{2}}^{2})$ . (3.9)

By using the boundary condition (3.6) and $A_{11}(u_{+})<0$ in [A3] as well as a smallness of

$N(t)$ , we have

$\int_{\mathbb{R}+}\mathscr{F}_{x}dx=-\mathscr{F}|_{x=0}\geq-\frac{1}{2}\langleA(\tilde{u})\xi,$ $\xi\rangle|_{x=0}-C|\xi(t,0)|^{3}\geq c|\varphi(t,0)|^{2}$ , (310)

$| \int_{\mathbb{R}+}\mathscr{R}_{x}dx|=|\mathscr{R}|_{x=0}|\leq C(N(t)+\delta)|\varphi(t,0)|^{2}. (311)$

Due to the positivity of $B_{2}(u)$ , we have

$\int_{\mathbb{R}+}\langle B_{2}(u)\psi_{x}, \psi_{x}\rangle dx\geq c\Vert\psi_{x}\Vert_{L^{2}}^{2}$ . (3.12)

By using the expression of $\mathscr{G}$ as

$\mathscr{G}=\frac{1}{2}\langle D_{U}^{2}\eta(\tilde{U})\tilde{U}_{x},f_{UU}(\tilde{U})_{-}^{-2}\rangle+O(|\tilde{U}_{x}||_{-}^{-}|^{3}+|f(\tilde{U})_{X}||_{-}^{-}|^{2}) , (313)$

where $:=U-\tilde{U}$ , we estimate the integral of $\mathscr{G}$ as

$\int_{\mathbb{R}+}|\mathscr{G}|dx\leq C\int_{\mathbb{R}+}|\tilde{u}_{x}||\xi|^{2}dx\leq C\delta(|\varphi(t,0)|^{2}+\Vert\xi_{x}(t)\Vert_{L^{2}}^{2})$ . (3.14)

Here we have utilized the Poincar\’e type inequality

$\int_{\mathbb{R}+}e^{-cx}|\xi(x)|^{2}dx\leq C(|\xi(0)|^{2}+\Vert\xi_{X}\Vert_{L^{2}}^{2})$

in deriving (3.9) and (3.14). Therefore, combining the estimates obtained.above, we obtain

the basic $L^{2}$ estimate for the non-degenerate case as

$\Vert(\varphi, \psi)(t)\Vert_{L^{2}}^{2}+\int_{0}^{t}(\Vert\psi_{x}(\tau)\Vert_{L^{2}}^{2}+|\varphi(\tau,0)|^{2})d\tau$

$\leq C\Vert(\wp) , \psi_{0})\Vert_{L^{2}}^{2}+C\delta\int_{0}^{t}\Vert\varphi_{x}(\tau)\Vert_{L^{2}}^{2}d\tau$ (3.15)

provided that $N(t)+\delta$ is sufficiently small. For the degenerate case, owing to the algebraic

convergence of the degenerate stationary solution, we can not obtain the same estimate
(3.14) of $\mathscr{G}$ as the non-degenerate case. To overcome this difficulty, we show that the

leading part of $\mathscr{G}$ is non-negative under the assumption in Theorem 3.2 that $\hat{f}(U)$ is convex.
To complete the proof of Proposition 3.3, we derive the estimates for the higher order

derivatives. To do this, we combine the energy method in half space discussed in [9] and the

dissipative estimate of the hyperbolic part under the stability condition. For more detailed

computations, see [11].
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