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ABSTRACT. This is a survey article on distance-squared mappings and their
related topics.

1. DISTANCE-SQUARED MAPPINGS

Distance-squared mappings were firstly investigated in [5].
Let $n$ $($ resp. $, \mathbb{R}^{n})$ be a positive integer $($ resp. $, the n-$dimensional Euclidean space) .

The $n$-dimensional Euclidean distance is the function $d:\mathbb{R}^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}$ defined by

$d(x, y)=\sqrt{\sum_{i--1}^{n}(x_{i}-y_{i})^{2}},$

where $x=(x_{1}, \ldots, x_{n})$ and $y=(y_{1}, \ldots, y_{n})$ . For any point $p\in \mathbb{R}^{n}$ , the mapping
$d_{p}:\mathbb{R}^{n}arrow \mathbb{R}$ , defined by $d_{p}(x)=d(p, x)$ , is called a distance function.

Definition 1.1. Let $p_{1}$ , . . . , $p_{\ell}(\ell\geq 1)$ be given points in $\mathbb{R}^{n}$ . Then, the following
mapping $d_{(p_{1},\ldots,p_{\ell})}$ : $\mathbb{R}^{n}arrow \mathbb{R}^{\ell}$ is called a distance mapping:

$d_{(p_{1},\ldots,p\ell)}(x)=(d(p_{1}, x), \ldots, d(p\ell, x$

A distance mapping is one in which each component is a distance function. Distance
mappings were firstly studied in the undergraduate-thesis of the first author, and
the main result of the thesis is the following proposition. Proposotion 1.1 can be
found also in [5] with a rigorous proof. The proof uses several geometric results in
[2]. Let $S^{n}$ be the $n$-dimensional unit sphere in $\mathbb{R}^{n+1}$

Proposition 1.1 ([5]). Let $i:S^{1}arrow i(S^{1})\subset \mathbb{R}^{2}$ be a homeomorphism. Then, there
exist two points $p_{1},p_{2}\in i(S^{1})$ such that $d_{(p_{1},p_{2})^{\circ}}i:S^{1}arrow \mathbb{R}^{2}$ is homeomorphic to
the image $d_{(p_{1},p_{2})}\circ i(S^{1})$ .

Proposition 1.1 is applicable even if a mapping $i$ is not differentiable anywhere.
However, it seems quite difficult to derive higher-dimensional extensions of the
proposition.

On the other hand, it is possible to obtain the differentiable version 01 higher-
dimensional extensions as follows.

Definition 1.2. Let $Pi(1\leq i\leq\ell)$ be a given point in $\mathbb{R}^{n}$ . Then, the following
mapping $D_{(p_{1},\ldots,p\ell)}:\mathbb{R}^{n}arrow \mathbb{R}^{\ell}$ is called a distance-squared mapping:

$D_{(p_{1},\ldots,p\ell)}(x)=(d^{2}(p_{1}, x), \ldots, d^{2}(p\ell, x$

Although $D_{(p_{1_{\rangle}}\ldots,p\ell)}$ always has a singular point, the following Theorems 1.1 and
1.2 hold as follows.
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Theorem 1.1 ([5]). Let $M$ be an $m$ -dimen ional closed $c\infty$ manifold $(m\geq 1)$ , and
let $i:Marrow \mathbb{R}^{\ell}(m+1\leq\ell)$ be a $C^{\infty}$ embedding. Then, there exist $p_{1}$ , . . . , $p_{m+1}\in$

$i(M)$ , $p_{m+2}$ , . . . , $p\ell\in \mathbb{R}^{\ell}such$ that $D_{(p_{1},\ldots,p\ell)}\circ i:Marrow \mathbb{R}^{\ell}$ is a $C^{\infty}$ embedding.

For the definition of embedding, see [4].

Corollary 1.1 ([5]). Let $\Lambda l$ be an $m$ -dimensional closed $C^{\infty}$ manifold $(m\geq 1)$ ,

and let $i:Marrow \mathbb{R}^{m+1}$ be a $C^{\infty}$ embedding. Then, there exist $p_{1}$ , . . . , $p_{rn+1}\in i(M)$

such that $D_{(p_{1},\ldots,p_{m+1})}\circ i$ : $Marrow \mathbb{R}^{m+1}$ is a $C^{\infty}$ embedding.

Let $M$ be an $m$-dimensional closed $C^{\infty}$ manifold $(m\geq 1)$ , and let $i$ : $Marrow$

$\mathbb{R}^{m+1}$ be a $c\infty$ embedding. Then, there exist $p_{1}$ , . . . , $p_{m+1}\in i(M)$ such that
$D_{(p_{1},\ldots,p_{m+1})}oi:Marrow \mathbb{R}^{m+1}$ is a $C^{\infty}$ embedding. Let $M$ and $N$ be $C^{\infty}$ manifolds.
A $C^{\infty}$ immersion $f$ : $Marrow N$ (for the definition of immersion, see [4]) is said to be

with normal crossing at a point $y\in N$ if $f^{-1}(y)$ is a finite set $\{x_{1}, x_{2}, . . . , x_{n}\}$ and
for any subsets $\{\lambda_{1}, \lambda_{2}, . . . , \lambda_{s}\}\subset\{1, 2, . . . , n\}(\mathcal{S}\leq n)$ ,

$co\dim(\bigcap_{j=1}^{s}df_{x_{\lambda_{j}}}(T_{x_{\lambda_{j}}}M))=\sum_{j=1}^{s}co\dim(df_{x_{\lambda_{j}}}(T_{x_{\lambda_{j}}}M$

where $co\dim H=\dim T_{y}N-\dim H$ for a linear subspace $H\subset$ $T_{y}N$ . A $c\infty$

immersion $f$ : $Marrow N$ is said to be with normal crossing if $f$ is a $C^{\infty}$ immersion
with normal crossing at any point $y\in N.$

Theorem 1.2 ([5]). Let $M$ be an $m$ -dimensional closed $C^{\infty}$ manifold $(m\geq 1)$ , and
let $i:Marrow \mathbb{R}^{\ell}(m+1\leq\ell)$ be a $C^{\infty}$ immersion with normal crossing. Then, there
exist $p_{1}$ , . . . , $p_{m+1}\in i(M)$ , $p_{m+2}$ , . . . , $P\ell\in \mathbb{R}^{\ell}$ such that $D_{(p_{1},\ldots,p\ell)}\circ i$ : $Marrow \mathbb{R}^{\ell}$ is

a $C^{\infty}$ immersion with normal crossing.

Corollary 1.2 ([5]). Let be an $m$ -dimensional closed $c\infty$ manifold $(m\geq 1)$ ,
and let $i$ : $Marrow \mathbb{R}^{m+1}$ be a $C^{\infty}$ immersion with normal crossing. Then, there exist

$p_{1}$ , . . . , $p_{m+1}\in i(M)$ such that $D_{(p_{1},\ldots,p_{m+1})}oi$ : $Marrow \mathbb{R}^{m+1}$ is a $C^{\infty}$ immersion
with normal crossing.

We say that $\ell$-points $p_{1}$ , . . . , $p_{\ell}\in \mathbb{R}^{n}(1\leq\ell\leq n+1)$ are in general position
if $l=1$ or $\vec{p_{1}p_{2}}$ , . . . , $\vec{p_{1}p_{\ell}}(2\leq\ell\leq n+1)$ are linearly independent, where $\vec{p_{i}p_{j}}$

stands for $(p_{j1}-p_{i1}, \ldots,p_{jn}-p_{in})(p_{i}=(p_{i1}, \ldots,p_{in}),p_{j}=(p_{j1}, \ldots,p_{jn})\in \mathbb{R}^{n})$ .
A mapping $f$ : $\mathbb{R}^{n}arrow \mathbb{R}^{\ell}$ is said to be $\mathcal{A}$-equivalent to a mapping $g$ : $\mathbb{R}^{n}arrow \mathbb{R}^{l}$

if there exist $C^{\infty}$ diffeomorphisms $\varphi$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}$ and $\psi$ : $\mathbb{R}^{\ell}arrow \mathbb{R}^{\ell}$ such that
$\psi\circ f\circ\varphi=g$ . For any two positive integers $\ell,$ $n$ satisfying $\ell\leq n$ , the following
mapping $\Phi_{\ell}$ : $\mathbb{R}^{n}arrow \mathbb{R}^{\ell}(\ell\leq n)$ is called the normal form of definite fold mappings:

$\Phi_{\ell}(x_{1}, \ldots, x_{n})=(x_{1}, \ldots, x_{\ell-1}, x_{\ell}^{2}+\cdots+x_{n}^{2})$ .

The properties of distance-squared mappings, especially (I) and (II) of the following
Theorem 1.3, are essential in the proofs of Theorems 1.1 and 1.2. Thus, in this sense,
the following Theorem 1.3 may be regarded as the main result in [5].

Theorem 1.3 ([5]).
(I) Let $\ell,n$ be integers such that $2\leq\ell\leq n$ , and let $p_{1}$ , . . . , $p\ell\in \mathbb{R}^{n}$ be in general
position. Then, $D_{(p_{1},\ldots,p\ell)}$ : $\mathbb{R}^{n}arrow \mathbb{R}^{\ell}$ is $\mathcal{A}$-equivalent to the normal form of definite
fold mappings.
(II) Let $\ell,n$ be integers such that $2\leq n<\ell$ , and let $p_{1}$ , . . . , $p_{n+1}\in \mathbb{R}^{n}$ be in
general position. Then, $D_{(p_{1},\ldots,p\ell)}$ : $\mathbb{R}^{n}arrow \mathbb{R}^{\ell}$ is $\mathcal{A}$ -equivalent to the inclusion
$(x_{1}, \ldots , x_{n})\mapsto(x_{1}, \ldots, x_{n}, 0, \ldots, 0)$ .
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All results in this section have been rigorously proved in [5].

2. LORENTZIAN DISTANCE-SQUARED MAPPINGS

$L_{01}\cdot$entzian distance-squared mappings were firstly studied in [6].
As same as in Section 1, we let $n$ be a positive integer. Let $x,$ $y$ be two vectors

of $\mathbb{R}^{n+1}$ . Then, the Lorentzian inner product is the following qudratic form:

$\langle x, y\rangle=-x_{0}y_{0}+x_{1}y_{1}+\cdots+x_{n}y_{n},$

where $x=(x_{0}, x_{1}, \ldots, x_{n})$ , $y=(y0, y_{1}, \ldots, y_{n})$ . If the role of the Euclidean inner
product $x \cdot y=\sum_{i=0}^{n}x_{i}y_{i}$ is replaced by the Lorentzian inner product, then the
$(n+1)$-dimensional vector space $\mathbb{R}^{n+1}$ is called Lorentzian $(n+1)$ -space, and it is
denoted by $\mathbb{R}^{1,n}$ . For a vector $x$ of Lorentzian $(n+1)$ -space $\mathbb{R}^{1,n}$ , Lorentzian length

of $x$ is $\sqrt{\langle x,x\rangle}$ . Notice that a pure imaginary value may be taken as the Lorentzian

length and thus $\sqrt{\langle x,x\rangle}$ does not give a real-valued function. On the other hand,

its square $x\mapsto\langle x,$ $x\rangle$ is always a real value. For a non-zero vector $x\in \mathbb{R}^{1,n}$ , it is
called space-like, light-like or time-like if its Lorentzian length is positive, zero or
pure imaginary respectively. The following is the definition of the likeness of the
vector subspace.

Definition 2.1 ([20]). Let $V$ be a vector subspace of $\mathbb{R}^{1,n}$ . Then $V$ is said to be

(1) time-like if $V$ has a time-like vector,
(2) space-like if every nonzero vector in $V$ is space-like, or
(3) light-like otherwise.

The light cone of Lorentzian $(n+1)$-space $\mathbb{R}^{1,n}$ , denoted by $LC$ , is the set of $x\in \mathbb{R}^{1,n}$

such that $\langle x,$ $x\rangle=0$ . For more details on Lorentzian space, refer to [20]. Recently,
Singularity Theory has been very actively applied to geometry of submanifolds in
Lorentzian space (for instance, see [9, 10, 11, 12,13,14,15,16,17,18,21,22,23
In [6], it is given a different application of Singularity Theory to the study of
Lorentzian space from these researches.

Let $p$ be a point of $\mathbb{R}^{1,n}$ . The Lorentzian distance-squared function is the follow-
ing function $\ell_{p}^{2}:\mathbb{R}^{1,n}arrow \mathbb{R}$ ([9]):

$\ell_{p}^{2}(x)=\langle x-p, x-p\rangle.$

Let $P0$ , . . . , $p_{k}\in \mathbb{R}^{1,n}(1\leq k)$ be finitely many points. For any $p_{0}$ , . . . , $Pk\in \mathbb{R}^{1,n},$

the Lorentzian distance-squared mapping, denoted by $L_{(p_{0},\ldots,p_{k})}$ : $\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ , is
defined as follows:

$L_{(p0,\ldots,p_{k})}(x)=(l_{p_{0}}^{2}(x), \ldots, \ell_{p_{k}}^{2}(x))$ .

For finitely many points $P0$ , . . . , $p_{k}\in \mathbb{R}^{1,n}(1\leq k)$ , a vector subspace $V$ is called
the recognition subspace and is denoted by $V(p_{0}, \ldots,p_{k})$ of $\mathbb{R}^{1,n}$ if the following is
satisfied:

$V= \sum_{i=1}^{k}\mathbb{R}\vec{p_{0}p_{i}}.$

For any two positive integers $k,$ $n$ satisfying $k<n$ , the following mapping $\Psi_{k}$ :
$\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ is called the normal form of Lorentzian indefinite fold mapping:

$\Psi_{k}(x_{0}, x_{1}, \ldots, x_{n})=(x_{1}, \ldots, x_{k}, -x_{0}^{2}+\sum_{i=k+1}^{n}x_{i}^{2})$
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Let $j,$ $k$ be two positive integers satisfying $j\leq k$ and let $\tau_{(j,k)}$ : $\mathbb{R}^{j+1}arrow \mathbb{R}^{k+1}$ be

the inclusion:

$\tau_{(j,k)}(X_{0}, X_{1}, \ldots, X_{j})=(X_{0}, X_{1}, \ldots, X_{j}, 0, \ldots, 0)$ .

Theorem 2.1 ([6]). (1) Let $k,$ $n$ be two positive integers and let $Po$ , . . . , $Pk\in$
$\mathbb{R}^{n,1}$ be the same point $(i.e. \dim V(p_{0}, \ldots, p_{k})=0)$ . Then, the Lorentzian

distance-squared mapping $L_{(p_{0},\ldots,p_{k})}$ : $\mathbb{R}^{n,1}arrow \mathbb{R}^{k+1}$ is $\mathcal{A}$-equivalent to the

mapping

$(x_{0}, \ldots, x_{n})\mapsto(-x_{0}^{2}+\sum_{i=1}^{n}x_{i}^{2},0, \ldots, 0)$

(2) Letj, $k,$ $n$ be three positive integers satisfyingj $<n,$ $j\leq k$ , and let $p_{0}$ , . . . , $Pk$

$\in \mathbb{R}^{1,n}$ be $(k+1)$ points such that two recognition subspaces $V(p_{0}, \ldots, p_{k})$

and $V(p_{0}, \ldots, p_{j})$ have the same dimension $j$ . Then, the following hold:

(a) The mapping $L_{(p_{0},\ldots,p_{k})}:\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ is $\mathcal{A}$-equivalent to $\tau_{(j,k)}\circ\Phi_{j+1}$

if and only if $V(p_{0}, \ldots,p_{k})$ is time-like.
(b) The mapping $L_{(p_{0},\ldots,p_{k})}:\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ is $\mathcal{A}$-equivalent to $\tau_{(j,k)^{\circ}}\Psi_{j}$ if

and only if $V(p_{0}, \ldots,p_{k})$ is space-like.
(c) The mapping $L_{(p_{0},\ldots,p_{k})}$ : $\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ is $\mathcal{A}$-equivalent to

$(x_{0}, \ldots, x_{n})\mapsto(x_{1}, \ldots, x_{j}, x_{0}x_{1}+\sum_{i=j+1}^{n}x_{i}^{2},0, \ldots, 0)$

if and only if $V(p_{0}, \ldots, p_{k})$ is light-like.
(3) Let $k,$ $n$ be two positive integers satisfying $n\leq k$ and let $Po$ , . . . , $p_{k}\in \mathbb{R}^{1,n}$ be

$(k+1)$ points such that $\dim V(p_{0}, \ldots,p_{k})=\dim V(p_{0}, \ldots,p_{n})=n$ . Then,

the following hold:
(a) The mapping $L_{(p_{0},\ldots,p_{k})}$ : $\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ is $\mathcal{A}$-equivalent to $\tau_{(n,k)}\circ\Phi_{n+1}$

if and only if $V(p_{0}, \ldots, p_{k})$ is time-like or space-like.
(b) The mapping $L_{(p_{0},\ldots,p_{k})}:\mathbb{R}^{1_{\}}n}arrow \mathbb{R}^{k+1}$ is $\mathcal{A}$-equivalent to

$(x_{0}, \ldots, x_{n})\mapsto(x_{1}, \ldots, x_{n}, x_{0}x_{1}, O. . . , O)$

if and only if $V(p_{0}, \ldots, p_{k})$ is light-like.
(4) Let $k,$ $n$ be two positive integers satisfying $n<k$ and let $p_{0}$ , . . . , $p_{k}\in \mathbb{R}^{1,n}$

be $(k+1)$ points such that $\dim V(p_{0}, \ldots,p_{k})=\dim V(p_{0}, \ldots,p_{n+1})$

$=n+1$ . Then, $L_{(p_{0},\ldots,p_{k})}$ : $\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ is always $\mathcal{A}$-equivalent to the

inclusion $(x_{0}, \ldots, x_{n})\mapsto(x_{0}, \ldots, x_{n}, 0, \ldots, 0)$ .

Let $p_{0}$ , . . . , $p_{k}\in \mathbb{R}^{n,1}$ be given $(k+1)$ points. We say that $p_{0}$ , . . . , $p_{k}$ are in general
position if the dimension of $V(p_{0}, \ldots,p_{k})$ is $k$ . For $(k+1)$ points $q_{0}$ , . . . , $q_{k}\in \mathbb{R}^{1,n}$ in

general position $(k\leq n)$ , the singular set of $L_{(q_{0},\ldots,q_{k})}$ : $\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ is clearly the
$k$-dimensional affine subspace spanned by these points. Since $\tau_{(k.k)}$ is the identity

mapping, we have the following corollary.

Corollary 2.1 ([6]). (1) Let $k,$ $n$ be two positive integers satisfying $k<n$ and
let $p_{0}$ , . . . , $p_{k}$ belonging to $\mathbb{R}^{1,n}$ be $(k+1)$ points in general position. Then,

the following hold:
(a) The mapping $L_{(p_{0},\ldots,p_{k})}$ : $\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ is $\mathcal{A}$-equivalent to $\Phi_{k+1}$ if and

only if $V(p_{0}, \ldots, p_{k})$ is time-like.
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(b) The mapping $L_{(p_{0},\ldots,p_{k})}$ : $\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ is $\mathcal{A}$-equivalent to $\Psi_{k}$ if and
only if $V(p_{0}, \ldots,p_{k})$ is space-like.

(c) The mapping $L_{(p_{0},\ldots,p_{k})}:\mathbb{R}^{1,n}arrow \mathbb{R}^{k+1}$ is $\mathcal{A}$-equivalent to

$(x_{0}, \ldots, x_{n})\mapsto(x_{1\cdots k}x, x_{0}x_{1}+\sum_{i=k+1}^{n}x_{i}^{2})$

if and only if $V(p_{0}, \ldots,p_{k})$ is light-like.
(2) Let $n$ be a positive integer and let $p_{0}$ , . . . , $Pn\in \mathbb{R}^{1,n}$ be $(n+1)$ points in

general position. Then, the following hold:
(a) The mapping $L_{(p_{0},\ldots,p_{n})}$ : $\mathbb{R}^{1,n}arrow \mathbb{R}^{n+1}$ is $\mathcal{A}$-equivalent to $\Phi_{n+1}$ if and

only if $V(p_{0}, \ldots, p_{n})$ is time-like or space-like.
(b) The mapping $L_{(p_{0},\ldots,p_{n})}$ : $\mathbb{R}^{1,n}arrow \mathbb{R}^{n+1}$ is $\mathcal{A}$-equivalent to

$(x_{0}, \ldots, x_{n})\mapsto(x_{1}, \ldots, x_{n}, x_{0}x_{1})$

if and only if $V(p_{0}, \ldots,p_{n})$ is light-like.

The following are clear:

(1) Any non-singular fiber of $\Phi_{n}$ is a circle.
(2) Any non-singular fiber of $\Psi_{n-1}$ is an equilateral hyperbola.
(3) Any non-singular fiber of $(x_{0}, \ldots, x_{n})\mapsto(x_{1}, \ldots, x_{n-1}, x_{0}x_{1}+x_{n}^{2})$ is a

parabola (possibly at infinity).

Therefore, by the case $k=n-1$ in Corollary 2.1, we have the following:

Corollary 2.2 ([6]). Letn be a positive integer such that $2\leq n$ and let $p_{0}$ , . . . , $p_{n-1}$

belonging to $\mathbb{R}^{1,n}$ be $n$ points in general position. Then, the following hold:

(1) There exists a $C^{\infty}$ diffeomorphism $h$ : $\mathbb{R}^{1,n}arrow \mathbb{R}^{1,n}$ by which any non-
singular fiber $L_{(p0\cdots,p_{\mathfrak{n}-1})}^{-1}(y)$ is mapped to a circle if and only if the recog-

nition subspace $V(p_{0}, \ldots, p_{n-1})$ is time-like.
(2) There exists a $C^{\infty}$ diffeomorphism $h:\mathbb{R}^{1,n}arrow \mathbb{R}^{1,n}$ by which any non-

singular fiber $L_{(Po\cdots,p_{\mathfrak{n}-1})}^{-1}(y)$ is mapped to an equilateral hyperbola if and
only if $V(p_{0}, \ldots, p_{n-1})$ is space-like.

(3) There exists a $C^{\infty}$ diffeomorphism $h:\mathbb{R}^{1,n}arrow \mathbb{R}^{1,n}$ by which any non-
singular fiber $L_{(p0,\ldots,p_{n-1})}^{-1}(y)$ is mapped to a parabola if and only if the

recognition subspace $V(p_{0}, \ldots,p_{n-1})$ is light-like.

In [6], it is remarked that an afine diffeomorphism can be chosen as the diffeomor-
phism $h:\mathbb{R}^{1,n}arrow \mathbb{R}^{1,n}$ in Corollary 2.2.

The motivation to classify Lorentzian distance-squared mappings in [6] is the
classification results on distance-squared mappings, namely Theorem 1.3. It is
natural to ask how Theorem 1.3 changes if distance-squared functions are replaced
with Lorentzian distance-squared functions. Combining Theorem 1.3 and Corollary
2.1, we have the following:

Corollary 2.3 ([6]). (1) Let $k,$ $n$ be two positive integers satisfying $k<n$ and
let $p_{0}$ , . . . , $p_{k}$ belonging to $\mathbb{R}^{1,n}$ be $(k+1)$ points in general position. Then,
$L_{(p0,\ldots,p_{k})}$ is $\mathcal{A}$-equivalent to $D_{(Po,\ldots,p_{k})}$ if and only if $V(p_{0}, \ldots,p_{k})$ is time-
like.

(2) Let $n$ be a positive integer.and let $p_{0}$ , . . . , $p_{n}\in \mathbb{R}^{1,n}$ be $(n+1)$ points in
general position. Then, $L_{(p_{0},\ldots,p_{n})}i_{\mathcal{S}}\mathcal{A}$-equivalent to $D_{(p0,\ldots,p_{n})}$ if and only

if $V(p_{0}, \ldots,p_{n})$ is time-like or space-like.
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(3) Let $k,$ $n$ be two positive integers satisfying $n<k$ and let $p_{0}$ , . . . , $p_{k}\in \mathbb{R}^{1,n}$

be $(k+1)$ points such that the $(n+2)$ points $p_{0}$ , . . . , $p_{n+1}$ are in general
position. Then, $L_{(p_{0},\ldots,p_{k})}$ is always $\mathcal{A}$-equivalent to $D_{(p_{0},\ldots,p_{k})}.$

All results in this section have been rigorously proved in [6].

3. GENERALIZED DISTANCE-SQUARED MAPPINGS OF $\mathbb{R}^{2}$ INTO $\mathbb{R}^{2}$

Generalized distance-squared mappings were firstly studied in [8]. For any
two positive integers $k,$ $n$ , we let $p_{0},$ $p_{1}$ , . . . , $p_{k}$ be $(k+1)$ points of $\mathbb{R}^{n+1}$ . We
set $p_{i}=(p_{i0},p_{i1}, \ldots,p_{in})(0\leq i\leq k)$ . We let $A=(a_{ij})_{0<i\leq k,0\leq j\leq n}$ be a
$(k+1)\cross(n+1)$ matrix with non-zero entries. Then, we consider the following
mapping $G_{(p_{0},p_{1},\ldots,p_{k},A)}:\mathbb{R}^{n+1}arrow \mathbb{R}^{k+1}$ :

$G_{(A)}p0,p1, \ldots,pk,(x)=(\sum_{j=0}^{n}a_{0j}(x_{j}-p_{0j})^{2},\sum_{j=0}^{n}a_{1j}(x_{j}-p_{1j})^{2},$ $\ldots,\sum_{j=0}^{n}a_{kj}(x_{j}-p_{kj})^{2})$ ,

where $x=(x_{0}, x_{1}, \ldots, x_{n})$ The mapping $G_{(p_{0},p_{1},\ldots,p_{k},A)}$ is called a generalized
distance-squared mapping. Notice that a distance-squared mapping $D_{(p_{0},p_{1},\ldots,p_{k})}$

defined in Section 1 is the mapping $G_{(p_{0},p_{1},\ldots,p_{k},A)}$ in the case that each entry of
$A$ is 1, and a Lorentzian distance-squared mapping $L_{(p_{0)}p_{1},\ldots,p_{k})}$ defined in Section
2 is the mapping $G_{(p_{0},p_{1},\ldots,p_{k},A)}$ in the case of $a_{i0}=-1$ and $a_{ij}=1$ if $j\neq$ O.
Notice also that in these cases, the rank of $A$ is 1. In the applications of singularity
theory to differential geometry, generalized distance-squared mappings are a useful
tool. Information on the contacts amongst the families of quadrics defined by the
components of $G_{(p_{0},p_{1},\ldots,p_{k},A)}$ is given by their singularities. Hence, it is natural to
classify maps $G_{(p0,p_{1},\ldots,p_{k},A)}.$

From now on in this section, we concentrate on the case of $\mathbb{R}^{2}$ into $\mathbb{R}^{2}$ . It is
interesting to observe that new $\mathcal{A}$-classes occur even in this case.

Definition 3.1. (1) Let $\Phi_{n+1}:\mathbb{R}^{n+1}arrow \mathbb{R}^{n+1}$ denote the following mapping:

$\Phi_{n+1}(x_{0}, x_{1}, \ldots, x_{n})=(x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}^{2})$ .

When a map-germ $f$ : $(\mathbb{R}^{n+1}, q)arrow(\mathbb{R}^{n+1}, f(q))$ is $\mathcal{A}$-equivalent to $\Phi_{n+1}$ :
$(\mathbb{R}^{n+1},0)arrow(\mathbb{R}^{n+1},0)$ , the point $q\in \mathbb{R}^{n+1}$ is said to be a fold point of $f.$

(2) Let $\Gamma_{n+1}$ : $\mathbb{R}^{n+1}arrow \mathbb{R}^{n+1}$ denote the following mapping:

$\Gamma_{n+1}(x_{0}, x_{1}, \ldots, x_{n})=(x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}^{3}+x_{0}x_{n})$ .

When a map-germ $f$ : $(\mathbb{R}^{n+1}, q)arrow(\mathbb{R}^{n+1}, f(q))$ is $\mathcal{A}$-equivalent to $\Gamma_{n+1}$ :
$(\mathbb{R}^{n+1},0)arrow(\mathbb{R}^{n+1},0)$ , the point $q\in \mathbb{R}^{n+1}$ is said to be a cusp point of $f.$

It is known that both $\Phi_{n+1},$ $\Gamma_{n+1}$ are proper and stable mappings (for instance see
[1]).

Recall the special cases of Theorem 1.3 and Corollary 2.1 as follows:

Proposition 3.1 (special cases of Theorem 1.3 and Corollary 2.1). Let $p_{0},$ $p_{1}$ , . . . , $p_{n}$

be $(n+l)$ -points of $\mathbb{R}^{n+1}$ such that the dimension of $\sum_{i=1}^{n}\mathbb{R}\vec{p_{0}p_{i}}$ is $n$ . Then, the
following hold:

(1) The distance-squared mapping $D_{(p_{0},p_{1},\ldots,p_{n})}$ : $\mathbb{R}^{n+1}arrow \mathbb{R}^{n+1}$ is $\mathcal{A}$-equivalent
to $\Phi_{n+1}.$

(2) The Lorentzian distance-squared mapping $L_{(p_{0},p_{1},\ldots,p_{n})}$ : $\mathbb{R}^{n+1}arrow \mathbb{R}^{n+1}$ is
$\mathcal{A}$-equivalent to $\Phi_{n+1}.$

33



For generalized distance-squared mappings, it is natural to expect that for generic
$p_{0},p_{1}$ , . . . , $p_{n},$ $G_{(p0,p_{1},\ldots,p_{n},A)}$ is proper and stable, and the rank of $A$ is a complete
invariant of $\mathcal{A}$-types. Thus, we reach the following conjecture.

Conjecture 3.1 ([8]). Let $A_{k}$ be an $(n+1)\cross(n+1)$ matrix of rank $k$ with non-zero
entries $(1\leq k\leq(n+1 Then, there$ exists $a$ subset $\Sigma\subset(\mathbb{R}^{n+1})^{n+1}$ of Lebesgue
measure zero such that for any $(p_{0}, p_{1}, \ldots, p_{n})\in(\mathbb{R}^{n+1})^{n+1}-\Sigma$ , the following hold:

(1) For any $k(1\leq k\leq(n+1$ the generalized distance-squared mapping
$G_{(p_{0},p_{1},\ldots,p_{\mathfrak{n}},A_{k})}$ is proper and stable.

(2) For any two integers $k_{1},$ $k_{2}$ such that $1\leq k_{1}<k_{2}\leq(n+1)$ , $G_{(p0,p_{1},\ldots,p_{n},A_{k_{2}})}$

is not $\mathcal{A}$-equivalent to $G_{(p_{O},p_{1},\ldots,p_{n},A_{k_{1}})}.$

(3) Let $B_{k}$ be an $(n+1)\cross(n+1)$ matrix of rank $k$ with non-zero entries
$(1\leq k\leq(n+1))$ and let $(q_{0}, q_{1}, \ldots, q_{n})$ be in $(\mathbb{R}^{n+1})^{n+1}-\Sigma$ . Then,
$G_{(p_{0},p_{1},\ldots,p_{\mathfrak{n}},A_{k})}$ is $\mathcal{A}$-equivalent to $G_{(q0,q_{1},\ldots,q_{\mathfrak{n}},B_{k})}$ for any $k.$

In [8], the affirmative answer to Conjecture 3.1 in the case $n=1$ are given as
follows:

Theorem 3.1 ([8]). Let $((x_{0}, y_{0}), (x_{1}, y_{1}))$ be the standard coordinates of $(\mathbb{R}^{2})^{2}$ and
let $\Sigma$ be the hypersurface in $(\mathbb{R}^{2})^{2}$ defined by $(x_{0}-x_{1})(y_{0}-y_{1})=0$ . Let $(p_{0},p_{1})$ be
a point in $(\mathbb{R}^{2})^{2}-\Sigma$ and let $A_{k}$ be a $2\cross 2$ matrix of rank $k$ with non-zero entries
$(k=1,2)$ . Then, the following hold:

(1) The mapping $G_{(p0,p_{1},A_{1})}$ is $\mathcal{A}$-equivalent to $\Phi_{2}.$

(2) The mapping $G_{(p_{O},p_{1},A_{2})}$ is proper and stable, and it is not $\mathcal{A}$-equivalent to
$G_{(p_{0},p_{1},A_{1})}.$

(3) Let $B_{2}$ be a $2\cross 2$ matrix of rank 2 with non-zero entries and let $(q_{0}, q_{1})$ be
a point in $(\mathbb{R}^{2})^{2}-\Sigma$ . Then, $G_{(p_{0},p_{1},A_{2})}$ is $\mathcal{A}$-equivalent to $G_{(q0,q_{1},B_{2})}.$

There is another motivation for Theorem 3.1. Set $f_{t}(x)=x+tx^{2}(t, x\in \mathbb{R})$ . Then,
the following two are easily observed.

(1) $f_{t}$ is proper and stable for any $t\in \mathbb{R}.$

(2) $f_{t}(t\neq 0)$ is not $\mathcal{A}$-equivalent to $f_{0}.$

Notice that the mapping
$F:\mathbb{R}arrow C^{\infty}(\mathbb{R}, \mathbb{R})$

defined by $F(t)=f_{t}$ , is continuous nowhere. Here, $C^{\infty}(\mathbb{R}, \mathbb{R})$ is the topological
space consisting of $c\infty$ mappings $\mathbb{R}arrow \mathbb{R}$ endowed with the Whitney $c\infty$ topology.
The one-parameter family $f_{t}$ is a very simple example for preliminary phenomena
of wall crossing phenomena. Theorem 3.1 gives an example for such phenomena
in the case of the plane to the plane as follows. Let $M(2, \mathbb{R})$ be the set consisting
of $2\cross 2$ matrices with real entries and let $P$ : $\mathbb{R}arrow(\mathbb{R}^{2})^{2}-\Sigma$ be a continuous
mapping, where $\Sigma$ is the set given in Theorem 3.1. Moreover, let $A:\mathbb{R}arrow M(2, \mathbb{R})$

be a continuous mapping such that rankA$(O)=1$ and rankA$(t)=2$ if $t\neq 0$ . Then,
Theorem 3.1 implies the following interesting phenomenon:

(1) The mapping $G_{(P(s),A(t))}$ is proper and stable for any $(s, t)\in \mathbb{R}^{2}.$

(2) The mapping $G_{(P(s),A(t))}(t\neq 0)$ is not $\mathcal{A}$-equivalent to $G_{(P(s),A(0))}.$

Notice that the mappings $P$ and $A$ induce the mapping

$(\tilde{P},\tilde{A}):\mathbb{R}^{2}arrow C^{\infty}(\mathbb{R}^{2}, \mathbb{R}^{2})$

defined by $(\tilde{P},\tilde{A})(\mathcal{S}, t)=G_{(P(s),A(t))}$ , where $C^{\infty}(\mathbb{R}^{2}, \mathbb{R}^{2})$ is the topological space
consisting of $c\infty$ mappings $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ endowed with the Whitney $C^{\infty}$ topology.
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Notice also that the mapping $(\tilde{P},\overline{A})$ is continuous nowhere. Therefore, $(\overline{P},\overline{A})$ is
useless for the proof of (3) of Theorem 3.1.

The keys for proving Theorem 3.1 are the following two propositions.

Proposition 3.2 ([8]). Let $A_{2}$ be a $2\cross 2$ matrix of rank two with non-zero entries.
Let $p_{0},$ $p_{1}$ be two points of $\mathbb{R}^{2}$ satisfying $(p_{0}, p_{1})\in(\mathbb{R}^{2})^{2}-\Sigma$ , where $\Sigma\subset(\mathbb{R}^{2})^{2}$ is
the hypersurface defined in Theorem 3.1. Then, the following hold:

(1) The singular set $S(G_{(p_{0},p_{1},A_{2})})$ is a rectangular hyperbola.
(2) Any point of $S(G_{(p_{O},p_{1},A_{2})})is$ a fold point except for one.
(3) The exceptional point given in (2) is a cusp point.

Proposition 3.3 ([8]). Let $A_{2}$ be a $2\cross 2$ matrix of rank two with non-zero entries.
Let $p_{0},$ $p_{1}$ be two points of $\mathbb{R}^{2}$ satisfying $(p_{0},p_{1})\in(\mathbb{R}^{2})^{2}-\Sigma$ , where $\Sigma\subset(\mathbb{R}^{2})^{2}$ is
the hypersurface defined in Theorem 3.1. Then, for any positive real numbers $a,$

$b$

$(a\neq b)$ , there exists a point $q=(q_{0}, q_{1})\in \mathbb{R}^{2}$ such that $(q, (0,0))\in(\mathbb{R}^{2})^{2}-\Sigma$ and
$G_{(p0,p_{1},A_{2})}$ is $\mathcal{A}$-equivalent to $F_{q}:\mathbb{R}^{2}arrow \mathbb{R}^{2}$ defined by

$F_{q}(x, y)=((x-q_{0})^{2}+(y-q_{1})^{2}, ax^{2}+b\prime/^{2})$ .

All results in this section have been rigorously proved in [8].

4. GENERALIZED DISTANCE-SQUARED MAPPINGS OF $\mathbb{R}^{n+1}$ INTO $\mathbb{R}^{2n+1}$

Let $n$ be a positive integer. Generalized distance-squared mappings $G_{(p_{0},p_{1},\ldots,p_{2n},A)}$ :
$\mathbb{R}^{n+1}arrow \mathbb{R}^{2n+1}$ were firstly studied in [7]. In this section, we survey results for gen-
eralized distance-squared mappings of $\mathbb{R}^{n+1}$ into $\mathbb{R}^{2n+1}$ obtained in [7].

In the case of $n=2k$ , a partial classification result for $G_{(p_{O},\ldots,p_{k},A)}$ is known
as follows. A distance-squared mapping $D_{(p_{0},p_{1},\ldots,p_{k})}$ (resp., Lorentzian distance-
squared mappings $L_{(p0,p_{1},\ldots,p_{k})}$ ) is the mapping $G_{(p_{0},p_{1},\ldots,p_{k},A)}$ in the case that each
entry of $A$ is 1 $($resp. $, in the$ case $of a_{i0}=-1 and a_{ij}=1 if j\neq 0)$ .

Proposition 4.1 $([5,6 There$ exists $a$ closed subset $\Sigma\subset(\mathbb{R}^{n+1})^{2n+1}$ with
Lebesgue measure zero such that for any $p=(p_{0}, \ldots,p_{2n})\in(\mathbb{R}^{n+1})^{2n+1}-\Sigma$ , both
$D_{(p_{0},p_{1},\ldots,p_{2n})}$ and $L_{(p_{0},p_{1},\ldots,p_{2n})}$ are $\mathcal{A}$-equivalent to an inclusion.

The following Theorem 4.1 generalizes Proposition 4.1.

Theorem 4.1 ([7]). Let $A=(a_{ij})_{0\leq i\leq 2n,0\leq j\leq n}$ be $a(2n+1)\cross(n+1)$ matrix with
non-zero entries. Then, the following two hold:

(1) Suppose that the rank of $A$ is $n+1$ . Then, there exists a closed sub-
set $\Sigma_{A}\subset(\mathbb{R}^{n+1})^{2n+1}$ with Lebesgue measure zero such that for any $p=$

$(p_{0}, \ldots, p_{2n})\in(\mathbb{R}^{n+1})^{2n+1}-\Sigma_{A},$ $G_{(p,A)}$ is $\mathcal{A}$-equivalent to the following
mapping:

$(x_{0}, x_{1}, \ldots, x_{n})\mapsto(x_{0}^{2}, x_{0}x_{1}, \ldots, x_{0}x_{n},x_{1}, \ldots, x_{n})$ .

(2) Suppose that the rank of $A$ is less than $n+1$ . Then, there exists a closed
subset $\Sigma_{A}\subset(\mathbb{R}^{n+1})^{2n+1}$ with Lebesgue measure zero such that for any
$p=(p_{0}, \ldots,p_{2n})\in(\mathbb{R}^{n+1})^{2n+1}-\Sigma_{A},$ $G_{(p,A)}$ is $\mathcal{A}$-equivalent to an inclusion.

The mapping given in the assertion (1) of Theorem 4.1 is defined in [24] and is
called the normal form of Whitney umbrella. It is clear that the normal form of
Whitney umbrella is not $\mathcal{A}$-equivalent to an inclusion. Moreover, it is easily seen
that these two mappings are proper and stable by the characterization theorem of
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stable mappings given in [19]. Thus, Theorem 4.1 may be regarded as a result of

Theorem 3.1 type. On the other hand, it is desirable to improve Theorem 4.1 so
that the bad set $\Sigma_{A}$ given in Theorem 4.1 does not depend on the given matrix $A.$

However, contrary to the case of $\mathbb{R}^{2}$ into $\mathbb{R}^{2}$ , in this case it is impossible to expect

the existence of such a universal bad set as follows.

Theorem 4.2 ([7]). There does not exist a closed subset $\Sigma\subset(\mathbb{R}^{n+1})^{2n+1}$ with

Lebesgue measure zero such that for any $p=(p_{0}, \ldots,p_{2n})\in(\mathbb{R}^{n+1})^{2n+1}-\Sigma$ the

following two hold.

(1) Suppose that the rank of $A$ is $n+1$ . Then, $G_{(p,A)}$ is $A$-equivalent to the

following mapping:

$(x_{0}, x_{1}, \ldots, x_{n})\mapsto(x_{0}^{2}, x_{0}x_{1}, \ldots, x_{0}x_{n},x_{1}, \ldots, x_{n})$ .

(2) Suppose that the rank of $A$ is less than $n+1$ . Then, $G_{(p,A)}$ is $\mathcal{A}$-equivalent

to an inclusion.

All results in this section have been rigorously proved in [7].
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