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ABSTRACT. We announce some results obtained in [16], which is a joint work
with Kamimoto, on the asymptotic behavior of oscillatory integrals with smooth
weights. Our results show that the optimal rates of decay for weighted oscillatory
integrals, whose phases and weights are contained in a certain class of smooth
functions including the real analytic class, can be expressed by the Newton dis-
tance and multiplicity defined in terms of geometrical relationship of the Newton
polyhedra of the phase and the weight.

1. INTRODUCTION

We consider the asymptotic behavior of oscillatory integrals of the weighted form

(1.1) $I(t; \varphi)=\int_{\mathbb{R}^{n}}e^{itf(x)}g(x)\varphi(x)dx$

for large values of the real parameter $t$ , where

$\bullet$ $f$ is a real-valued smooth $(C^{\infty})$ function defined on an open neighborhood
$U$ of the origin in $\mathbb{R}^{n}$ , which is called the phase;

$\bullet$ 9 is a real-valued smooth function defined on $U$ , which is called the weight;
$\bullet$

$\varphi$ is a real-valued smooth function defined on $\mathbb{R}^{n}$ and the support of $\varphi$ is
contained in U. $g\varphi$ is called the amplitude.

The investigations of the behavior of $I(t;\varphi)$ as $tarrow+\infty$ are very important subjects
occurring in harmonic analysis, partial differential equations, probability theory,
number theory, etc. We refer to [22] as a great exposition of such issues. There is
no harm in assuming that $f(O)=0$ since one can always factor out $e^{itf(0)}$ ; If $f$ has
no critical point on the support of $\varphi$ , then $I(t;\varphi)$ decays faster than $t^{-N}$ for any
positive integer $N$ . Hence, in this article, we always assume that

$f(O)=0$ and $\nabla f(O)=0.$

When $f$ has a nondegenerate critical point at the origin, then the asymptotic ex-
pansions of $I(t;\varphi)$ are precisely computed by using the Morse lemma and Fresnel
integrals. (See Section 2.3, Chapter VIII in [22].) We are particularly interested in
the degenerate phase case.

In the real analytic phase case, the following is shown (see [13],[17]) by using a
famous Hironaka’s resolution of singularities [8]: If $f$ is real analytic and the support
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of $\varphi$ is contained in a sufficiently small open neighborhood of the origin, then the

integral $I(t;\varphi)$ has an asymptotic expansion of the form

(1.2) $I(t; \varphi)\sim\sum_{\alpha}\sum_{k=1}^{n}C_{\alpha k}(\varphi)t^{\alpha}(\log t)^{k-1}$ as $tarrow+\infty,$

where $\alpha$ runs through a finite number of arithmetic progressions, not depending

on the amplitude, which consist of negative rational numbers. In special cases of

the smooth phase, $I(t;\varphi)$ also admits an asymptotic expansion of the same form

as in (1.2) (see [21], [15] and Remark 3.2 in this article). In order to see the decay

property of $I(t;\varphi)$ , we are interested in the leading term of (1.2) and define the

following index.

Definition 1.1. Let $f$ , 9 be smooth functions, for which the oscillatory integral (1.1)

admits the asymptotic expansion of the form (1.2). The set $S(f, g)$ consists of pairs
$(\alpha, k)$ such that for each neighborhood of the origin in $\mathbb{R}^{n}$ , there exists a smooth

function $\varphi$ with support contained in this neighborhood for which $C_{\alpha k}(\varphi)\neq 0$ in

(1.2). The maximum element of the set $S(f_{9})$ , under the lexicographic ordering,

is denoted by $(\beta(f, g),$ $\eta(f, g i.e., \beta(f, g)$ is the maximum of values $\alpha$ for which

we can find $k$ so that $(\alpha, k)$ belongs to $S(f, g);\eta(f, g)$ is the maximum of integers $k$

satisfying that $(\beta(f, g), k)$ belongs to $S(f, g)$ . We call $\beta(f, g)$ the oscillation index

of $(f, g)$ and $\eta(f, g)$ the multiplicity of its index.

Roughly speaking, the leading asymptotic behavior of $I(t;\varphi)$ is represented by

using $\beta(f, g)$ and $\eta(f, g)$ as follows: There exists some smooth function $\varphi$ defined

on $U$ such that
$I(t;\varphi)\sim C(\varphi)t^{\beta(f,g)}(\log t)^{\eta(f,g)-1},$

where $C(\varphi)\neq 0$ . In the unweighted case, i.e., $9\equiv 1$ , the multiplicity $\eta(f, 1)$ is one
less than the corresponding multiplicity in [1], p. 183.

The purpose of this article is to determine or precisely estimate the oscillation

index and its multiplicity by means of appropriate information of the phase and

the weight. In the unweighted case, many strong results have been obtained. In a

seminal work of Varchenko [23] (see also [1]), the oscillation index and its multiplicity

are investigated in detail in the case when the phase is real analytic and satisfies a

certain nondegeneracy condition. In particular, they are determined or estimated

by the geometrical data of the Newton polyhedron of the phase. (See Theorem 3.1
below.) In his analysis, some concrete resolution of singularities constructed from

the theory of toric varieties based on the geometry of the Newton polyhedron of the

phase plays an important role. (Recently, it is shown in [15] that the above result

of Varchenko can be generalized to the case when the phase belongs to a wider

class of smooth functions, denoted by $\hat{\mathcal{E}}(U)$ , including the real analytic class. See

Remark 3.2 below). On the other hand, another approach, which is inspired by the

work of Phong and Stein on oscillatory integral operators in the seminal paper [19],

has been developed and succeeds to give many strong results ([4],[5],[6],[9],[10],[3],

etc In particular, the two-dimensional case has been deeply understood. In these
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papers, the importance of resolution of singularities constructed from the Newton
polyhedron is strongly recognized.

Until now, there are not so many studies about the weighted case, but some pre-
cise results have been obtained in [24],[1],[20],[2],[18]. In these studies, the Newton
polyhedra of both the phase and the weight play important roles. Particularly, in
[24],[1],[2],[18], it was made an attempt to generalize the results of Varchenko in
[23] as directly as possible in the weighted case under the nondegeneracy condition
on the phase. Vassiliev [24] considers the case when the weight is a monomial. In
[1], there are assertions related to oscillatory integrals with general smooth weights.
Unfortunately, they does not hold and more additional assumptions are necessary
to obtain corresponding assertions. Okada and Takeuchi [18] consider the case when
the phase is convenient, i.e., the Newton polyhedron of the phase intersects all the
coordinate axes. In [2], we generalize and improve the results of Varchenko, and
particularly give several sufficient conditions to determine or precisely estimate the
oscillation index and its multiplicity, which also include the results in [24],[18]. Pra-
manik and Yang [20] consider the two-dimensional case with the weight of the form
$g(x)=|h(x)|^{\epsilon}$ , where $h$ is real analytic and $c$ is positive. (This $g$ may not be s-
mooth.) Their approach is based on not only the method of Varchenko but also the
above-mentioned work of Phong and Stein [19]. As a result, they succeed to remove
the nondegeneracy hypothesis on the phase. Recently, Greenblatt [7] also considers
the asymptotic behavior of oscillatory integrals with nonsmooth weights.

Our new results are generalizations and improvements of the previous studies in
[2], which generalizes the above-mentioned results of Varchenko [23] to the weighted
case. As mentioned above, the importance of resolution of singularities has been
strongly recognized in earlier successive investigations of the behavior of oscillatory
integrals. Let us review our analysis from this point of view. The resolution in the
work of Varchenko [23] is based on the theory of toric varieties. His method gives
quantitative resolution by means of the geometry of the Newton polyhedron of the
phase. In [15], we directly generalize this resolution to the class $\hat{\mathcal{E}}(U)$ of smooth
functions. Furthermore, in order to consider the weighted case, some kind of si-
multaneous resolution of singularities with respect to two functions, i.e., the phase
and the weight, must be constructed. From the viewpoint of the theory of toric
varieties, simultaneous resolution of singularities reflects finer simplicial subdivision
of a fan constructed from the Newton polyhedra of the above two functions. There-
fore, it is essentially important to investigate accurate relationship between cones of
this subdivided fan and faces of the Newton polyhedra of the two functions. This
situation has been investigated in [2], but deeper understanding this relationship
gives stronger results about the behavior of oscillatory integrals. In particular, we
succeed to give explicit formulae of the coefficient of the leading term of the asymp-
totic expansion under some appropriate conditions, which reveals that the behavior
of oscillatory integrals is decided by some important faces, which are called princi-
pal faces (see Definition 2.5 below), of the Newton polyhedra of thc phase and the
weight.
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It is known (see, for instance, [12],[1]) that the asymptotic analysis of oscillatory
integral (1.1) can be reduced to an investigation of the poles of the (weighted) local
zeta function

$Z(s; \varphi)=\int_{\mathbb{R}^{n}}|f(x)|^{s}g(x)\varphi(x)dx,$

where $f,$ $g,$ $\varphi$ are the same as in (1.1). The substantial analysis in our argument is
to investigate properties of poles of the local zeta function $Z(s;\varphi)$ by means of the
Newton polyhedra of the functions $f$ and $g.$

Notation and symbols.
$\bullet$ We denote by $\mathbb{Z}_{+},$ $\mathbb{R}_{+}$ the subsets consisting of all nonnegative numbers in

$\mathbb{Z},$
$\mathbb{R}$ , respectively.

$\bullet$ We use the multi-index as follows. For $x=(x_{1}, \ldots, x_{n})$ , $y=(y_{1}, \ldots, y_{n})\in$

$\mathbb{R}^{n},$ $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{Z}_{+}^{n}$ , define

$\langle x, y\rangle=x_{1}y_{1}+\cdots+x_{n}y_{n},$

$x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \partial^{\alpha}=(\frac{\partial}{\partial x_{1}})^{\alpha}1\ldots(\frac{\partial}{\partial x_{n}})^{\alpha_{n}}$

$\alpha!=\alpha_{1}!\cdots\alpha_{n}!, 0!=1.$

$\bullet$ For $A,$ $B\subset \mathbb{R}^{n}$ and $c\in \mathbb{R}$ , we set

$A+B=\{a+b\in \mathbb{R}^{n}:a\in A$ and $b\in B\},$ $c\cdot A=\{ca\in \mathbb{R}^{n}:a\in A\}.$

$\bullet$ We express by 1 the vector $(1, \ldots, 1)$ or the set $\{(1,$
$\ldots,$

$1$

2. PRELIMINARIES

2.1. Polyhedra. Let us explain fundamental notions in the theory of convex poly-
hedra, which are necessary for our investigation. Refer to [25] for general theory of
convex polyhedra.

For $(a, l)\in \mathbb{R}^{n}\cross \mathbb{R}$ , let $H(a, l)$ and $H^{+}(a, l)$ be a hyperplane and a closed halfspace
in $\mathbb{R}^{n}$ defined by

$H(a, l):=\{x\in \mathbb{R}^{n}:\langle a, x\rangle=l\},$

$H^{+}(a, l):=\{x\in \mathbb{R}^{n}:\langle a, x\rangle\geq l\},$

respectively. $A$ (convex rational) polyhedron is an intersection of closed halfspaces:
a set $P\subset \mathbb{R}^{n}$ presented in the form $P= \bigcap_{j=1}^{N}H^{+}(a^{j}, l_{j})$ for some $a^{1}$ , . . . , $a^{N}\in \mathbb{Z}^{n}$

and $l_{1}$ , . . . , $l_{N}\in \mathbb{Z}.$

Let $P$ be a polyhedron in $\mathbb{R}^{n}$ . A pair $(a, l)\in \mathbb{Z}^{n}\cross \mathbb{Z}$ is said to be valid for $P$ if $P$

is contained in $H^{+}(a, l).$ A face of $P$ is any set of the form $F=P\cap H(a, l)$ , where
$(a, l)$ is valid for $P$ . Since $(0,0)$ is always valid, we consider $P$ itself as a trivial face
of $P$ ; the other faces are called proper faces. Conversely, it is easy to see that any
face is a polyhedron. Considering the valid pair $(0, -1)$ , we see that the empty set
is always a face of $P$ . Indeed, $H^{+}(0, -1)=\mathbb{R}^{n}$ , but $H(O, -1)=\emptyset$ . We write

(2.1) $\mathcal{F}[P]=the$ set of all nonempty faces of $P.$
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The dimension of a face $F$ is the dimension of its afine hull (i.e., the intersection of
all affine flats that contain $F$), which is denoted by $\dim(F)$ . The faces of dimensions
$0$ , 1 and $\dim(P)-1$ are called vertices, edges and facets, respectively. The boundary
of a polyhedron $P$ , denoted by $\partial P$ , is the union of all proper faces of $P$ . For a face
$F,$ $\partial F$ is similarly defined.

Every polyhedron treated in this article satisfies a condition in the following lem-
ma.

Lemma 2.1. Let $P\subset \mathbb{R}_{+}^{n}$ be a polyhedron. Then the following conditions are
equivalent.

(i) $P+\mathbb{R}_{+}^{n}\subset P$ ;
(ii) There exists a finite set of pairs $\{(a^{j}, l_{j})\}_{j=1}^{N}\subset \mathbb{Z}_{+}^{n}\cross \mathbb{Z}_{+}$ such that $P=$

$\bigcap_{j=1}^{N}H^{+}(a^{j}, l_{j})$ .

2.2. Newton polyhedra. Let $f$ be a smooth function defined on a neighborhood
of the origin in $\mathbb{R}^{n}$ , which has the Taylor series at the origin:

(2.2)
$f(x) \sim\sum_{\alpha\in \mathbb{Z}_{+}^{n}}c_{\alpha}x^{\alpha}$

with $c_{\alpha}= \frac{\partial^{\alpha}f(0)}{\alpha!}.$

Definition 2.2. The Newton polyhedron $\Gamma_{+}(f)$ of $f$ is defined to be the convex hull
of the $set\cup\{\alpha+\mathbb{R}_{+}^{n}:c_{\alpha}\neq 0\}.$

It is known that the Newton polyhedron is a polyhedron (see [25]). The following
classes of smooth functions often appear in this article.

$\bullet$ $f$ is said to be flat if $\Gamma_{+}(f)=\emptyset$ $(i.e., all$ derivatives $of f$ vanish $at the$ origin) .
$\bullet$ $f$ is said to be convenient if the Newton polyhedron $\Gamma_{+}(f)$ intersects all the
coordinate axes.

2.3. Newton distance and multiplicity. Let $f,$ $g$ be nonflat smooth functions
defined on a neighborhood of the origin in $\mathbb{R}^{n}$ . We define the Newton distance and

the Newton multiplicity with respect to the pair $(f, g)$ . At the same time, consid-
er important faces of $\Gamma_{+}(f)$ and $r_{+}(9)$ , which will initially affect the asymptotic
behavior of oscillatory integrals. Hereafter, we assume that $f(0)=0.$

Definition 2.3. The Newton distance of the pair $(f, g)$ is defined by

(2.3) $d(f, g) := \max\{d>0 : \partial\Gamma_{+}(f)\cap d\cdot(\Gamma_{+}(g)+1)\neq\emptyset\}.$

This distance will be crucial to determine or estimate the oscillation index. In [1],
p.254, the number $d(f, g)$ is called the coeficient of inscription of $\Gamma_{+}(g)$ in $\Gamma_{+}(f)$ .
$(In [1],$ this number $is$ defined $by \min\{d>0:d\cdot\Gamma_{+}(g)\subset\Gamma_{+}(f)\}$ , which must be
corrected as in (2.3).)

We define the map $\Phi$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}$ as

$\Phi(\beta):=d(f, g)(\beta+1)$ .
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The image of $\Gamma_{+}(g)$ by the map $\Phi$ comes in contact with the boundary of $\Gamma_{+}(f)$ .

We denote by $\Gamma_{0}(f)$ this contacting set on $\partial\Gamma_{+}(f)$ and by $\Gamma_{0}(g)$ the image of $\Gamma_{0}(f)$

by the inverse map of $\Phi$ , i.e.,

$\Gamma_{0}(f):=\partial\Gamma_{+}(f)\cap\Phi(\Gamma_{+}(g))(=\partial\Gamma_{+}(f)\cap d(f, g)\cdot(\Gamma_{+}(g)+1$

$\Gamma_{0}(g):=\Phi^{-1}(\Gamma_{0}(f))(=(\frac{1}{d(f,g)}\cdot\partial\Gamma_{+}(f)-1)\cap\Gamma_{+}(g))$ .

Note that $\Gamma_{0}(g)$ is a certain union of faces of $\Gamma_{+}(g)$ .

Let us define the Newton multiplicity and important faces of $\Gamma_{+}(f)$ and $\Gamma_{+}(g)$ ,

which will play important roles in the investigation of multiplicity of the oscillation

index. We defince the map

$\tau_{f}:\partial\Gamma_{+}(f)arrow \mathcal{F}[\Gamma_{+}(f)]$

as follows (see the definition (2.1) of $\mathcal{F}$ For $\alpha\in\partial\Gamma_{+}(f)$ , let $\tau_{f}(\alpha)$ be the smallest
face of $\Gamma_{+}(f)$ containing $\alpha$ . In other words, $\tau_{f}(\alpha)$ is the face whose relative interior

contains the point $\alpha\in\partial\Gamma_{+}(f)$ . Define

$\mathcal{F}_{0}[\Gamma_{+}(f)]:=\{\tau_{f}(\alpha):\alpha\in\Gamma_{0}(f)\}(\subset \mathcal{F}[\Gamma_{+}(f)])$ .

Definition 2.4. The Newton multiplicity of the pair $(f, g)$ is defined by

$m(f_{9}) := \max\{n-\dim(\tau) : \tau\in \mathcal{F}_{0}[\Gamma_{+}(f)]\}.$

Definition 2.5. Define

$\mathcal{F}_{*}[\Gamma_{+}(f)]:=\{\tau\in \mathcal{F}_{0}[\Gamma_{+}(f)]:n-\dim(\tau)=m(f, g$

The elements of the above set are called the principal faces of $\Gamma_{+}(f)$ . Define

$\mathcal{F}_{*}[\Gamma_{+}(g)]:=\{\Phi^{-1}(\tau)\cap\Gamma_{+}(g):\tau\in \mathcal{F}_{*}[\Gamma_{+}(f)]\}.$

It is easy to see that every element of the above set is a face of $\Gamma_{+}(g)$ , which is

called a principal face of $\Gamma_{+}(g)$ . The map $\Psi$ : $\mathcal{F}_{*}[\Gamma_{+}(f)]arrow \mathcal{F}_{*}[\Gamma_{+}(g)]$ is defined
as $\Psi(\tau):=\Phi^{-1}(\tau)\cap\Gamma_{+}(g)$ . It is easy to see that this map is bijective. We say
that $\tau\in \mathcal{F}_{*}[\Gamma_{+}(f)]$ (resp. $\gamma\in \mathcal{F}_{*}[\Gamma_{+}(g)]$ ) is associated to $\gamma\in \mathcal{F}_{*}[\Gamma_{+}(9)]$ (resp.
$\tau\in \mathcal{F}_{*}[\Gamma_{+}(f)])$ , if $\gamma=\Psi(\tau)$ .

Remark 2.6. In [2], the union of the faces belonging to $\mathcal{F}_{*}[\Gamma_{+}(g)]$ was called the

essential set on $\Gamma_{0}(g)$ . It is shown in [2] that every two faces belonging to $\mathcal{F}_{*}[\Gamma_{+}(g)]$

are disjoint.

Remark 2.7. Let us consider the case $g(O)\neq$ O. Then $\Gamma_{+}(g)=\mathbb{R}_{+}^{n}$ . In this case,

since $d(f, g)$ and $m(f, g)$ are independent of $g$ , we simply denote them by $d(f)$ and
$m(f)$ , respectively. It is easy to see the following:

$\bullet$ $d(f, g)\leq d(f)$ for general 9;
$\bullet$ The Newton distance $d(f)$ is determined by the point $q_{*}=(d(f), \ldots, d(f))$ ,

which is the intersection of the line $\alpha_{1}=\cdots=\alpha_{n}$ with $\partial\Gamma_{+}(f)$ ;
$\bullet$ The principal face $\tau_{*}$ of $\Gamma_{+}(f)$ is the smallest face of $\Gamma_{+}(f)$ containing the
point $q_{*}$ ;

$\bullet m(f)=n-\dim(\tau_{*})$ .
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2.4. The $\gamma$-part. Let $f$ be a smooth function defined on a neighborhood $V$ of
the origin whose Taylor series at the origin is as in (2.2), $P\subset \mathbb{R}_{+}^{n}$ a nonempty
polyhedron in $\mathbb{R}_{+}^{n}$ containing $\Gamma_{+}(f)$ and $\gamma$ a face of $P$ . Note that $P$ satisfies the
condition: $P+\mathbb{R}_{+}^{n}\subset P$ (see Lemma 2.1).

Definition 2.8. We say that $f$ admits the $\gamma$ -part on an open neighborhood $U\subset V$

of the origin if for any $x$ in $U$ the limit:

(2.4) $\lim_{tarrow 0}\frac{f(t^{a_{1}}x_{1},\ldots,t^{a_{n}}x_{n})}{t^{l}}$

exists for all valid pairs $(a, l)=((a_{1}, \ldots, a_{n}), l)\in \mathbb{Z}_{+}^{n}\cross \mathbb{Z}_{+}$ defining $\gamma$ . When $f$

admits the $\gamma$-part, it is known in [15], Proposition 5.2 (iii), that the above hmits
take the same value for any $(a, l)$ , which is denoted by $f_{\gamma}(x)$ . We consider $f_{\gamma}$ as a
function on $U$ , which is called the $\gamma$-part of $f$ on $U.$

Remark 2.9. We summarize important properties of the $\gamma$-part. See [15] for the
details.

(i) The $\gamma$-part $f_{\gamma}$ is a smooth function defined on $U.$

(ii) If $f$ admits the $\gamma$-part $f_{\gamma}$ on $U$ , then $f_{\gamma}$ has the quasihomogeneous property:

$f_{\gamma}(t^{a_{1}}x_{1}, \ldots, t^{a_{n}}x_{n})=t^{l}f_{\gamma}(x)$ for $0<t<landx\in U,$

where $(a, l)\in \mathbb{Z}_{+}^{n}\cross \mathbb{Z}_{+}$ is a valid pair defining $\gamma.$

(iii) For a compact face $\gamma$ of $\Gamma_{+}(f)$ , $f$ always admits the $\gamma$-part near the origin
and $f_{\gamma}(x)$ equals the polynomial $\sum_{\alpha\in\gamma\cap \mathbb{Z}_{+}}{}_{n}C_{\alpha}X^{\alpha}$ , which is the same as the

well-known $\gamma$-part of $f$ in [23],[1]. Note that $\gamma$ is a compact face if and only
if every valid pair $(a, l)=(a_{1}, \ldots, a_{n})$ defining $\gamma$ satisfies $a_{j}>0$ for any $j.$

(iv) Let $f$ be a smooth function and $\gamma$ a noncompact face of $\Gamma_{+}(f)$ . Then, $f$

does not admit the $\gamma$-part in general. If $f$ admits the $\gamma$-part, then the Taylor
series of $f_{\gamma}(x)$ at the origin is $\sum_{\alpha\in\gamma\cap \mathbb{Z}_{+}^{n}}c_{\alpha}x^{\alpha}$ , where the Taylor series of $f$ is

as in (2.2).
(v) Let $f$ be a smooth function and $\gamma$ a face defined by the intersection of $\Gamma_{+}(f)$

and some coordinate hyperplane. Altough $\gamma$ is a noncompact face if $\gamma\neq\emptyset,$

$f$ always admits the $\gamma$-part. Indeed, for every valid pair $(a, l)$ defining $\gamma,$

we have $l=0$ , which implies the existence of the limit (2.4).
(vi) If $f$ is real analytic and $\gamma$ is a face of $\Gamma_{+}(f)$ , then $f$ admits the $\gamma$-part.

Moreover, $f_{\gamma}(x)$ is real analytic and is equal to a convergent power series
$\sum_{\alpha\in\gamma\cap \mathbb{Z}_{+}^{n}}c_{\alpha}x^{\alpha}$ on some neighborhood of the origin.

2.5. The classes $\hat{\mathcal{E}}[P](U)$ and $\hat{\mathcal{E}}(U)$ . Let $P$ be a polyhedron (possibly an empty
set) in $\mathbb{R}^{n}$ satisfying $P+\mathbb{R}_{+}^{n}\subset P$ when $P\neq\emptyset$ . Let $U$ be an open neighborhood of
the origin.

Definition 2.10. Denote by $\mathcal{E}[P](U)$ the set of smooth functions on $U$ whose New-
ton polyhedra are contained in $P$ . Moreover, when $P\neq\emptyset$ , we denote by $\hat{\mathcal{E}}[P](U)$

the set of the elements $f$ in $\mathcal{E}[P](U)$ such that $f$ admits the $\gamma$-part on some neigh-
borhood of the origin for any face $\gamma$ of $P$ . When $P=\emptyset,$ $\hat{\mathcal{E}}[P](U)$ is defined to be
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the set $\{0\}$ , i.e., the set consisting of only the function identically equaling zero on
$U.$

We summarize properties of the classes $\mathcal{E}[P](U)$ and $\hat{\mathcal{E}}[P](U)$ , which can be di-
rectly seen from their definitions:

(i) $\hat{\mathcal{E}}[\mathbb{R}_{+}^{n}](U)=\mathcal{E}[\mathbb{R}_{+}^{n}](U)=C^{\infty}(U)$ ;
(ii) If $P_{1},$ $P_{2}\subset \mathbb{R}_{+}^{n}$ are polyhedra with $P_{1}\subset P_{2}$ , then $\mathcal{E}[P_{1}](U)\subset \mathcal{E}[P_{2}](U)$ and

$\hat{\mathcal{E}}[P_{1}](U)\subset\hat{\mathcal{E}}[P_{2}](U)$ ;

(iii) $(C^{\omega}(U)\cap \mathcal{E}[P](U))\subsetneq\hat{\mathcal{E}}[P](U)\subsetneq \mathcal{E}[P](U)$ ;

(iv) $\mathcal{E}[P](U)$ and $\hat{\mathcal{E}}[P](U)$ are $C^{\infty}(U)$-modules and ideals of $C^{\infty}(U)$ .

Definition 2.11. $\hat{\mathcal{E}}(U)$ $:=\{f\in C^{\infty}(U) : f\in\hat{\mathcal{E}}[\Gamma_{+}(f)](U)\}.$

It is easy to see the following properties of the class $\hat{\mathcal{E}}(U)$ .

(i) $C^{\omega}(U)\subsetneq\hat{\mathcal{E}}(U)\subsetneq C^{\infty}(U)$ ;

(ii) When $f$ is flat but $f\not\equiv O,$ $f$ does not belong to $\hat{\mathcal{E}}(U)$ .

The class $\hat{\mathcal{E}}(U)$ contains many kinds of smooth functions.

$\bullet$
$\hat{\mathcal{E}}(U)$ contains the function identically equaling zero on $U.$

$\bullet$ Every real analytic function defined on $U$ belongs to $\hat{\mathcal{E}}(U)$ . (From (vi) in
Remark 2.9.)

$\bullet$ If $f\in C^{\infty}(U)$ is convenient, then $f$ belongs to $\hat{\mathcal{E}}(U)$ . (In this case, every
proper noncompact face of $\Gamma_{+}(f)$ can be expressed by the intersection of
$\Gamma_{+}(f)$ and some coordinate hyperplane. Therefore, (iii), (v) in Remark 2.9
imply this assertion.)

$\bullet$ In the one-dimensional case, every nonflat smooth function belongs to $\hat{\mathcal{E}}(U)$ .

(This is a particular case of the above convenient case.)
$\bullet$ The Denjoy-Carleman (quasianalytic) classes are contained in $\hat{\mathcal{E}}(U)$ . (See
Proposition 6.10 in [15].)

Unfortunately, the algebraic structure of $\hat{\mathcal{E}}(U)$ is poor. Indeed, it is not closed un-
der addition. For example, consider $f_{1}(x_{1}, x_{2})=x_{1}+x_{1}\exp(-1/x_{2}^{2})$ and $f_{2}(x_{1}, x_{2})=$

$-x_{1}$ . Indeed, both $f_{1}$ and $f_{2}$ belong to $\hat{\mathcal{E}}(U)$ , but $f_{1}+f_{2}(=\exp(-1/x_{2}^{2}))$ does not

belong to $\hat{\mathcal{E}}(U)$ .

3. EARLIER STUDIES

In this section, we state the results of Varchenko [23] and their generalizations
[2] relating to the behavior of the oscillatory integral $I(t;\varphi)$ in (1.1). Moreover, we
explain some earlier results [24],[1],[20],[18] of the asymptotic behavior of weighted
oscillatory integrals.

Throughout this section, the following three conditions are assumed: Let $U$ be an
open neighborhood of the origin in $\mathbb{R}^{n}.$

(A) $f$ is a nonflat smooth $(C^{\infty})$ function defined on $U$ satisfying that $f(O)=0$

and $\nabla f(0)=0$ ;
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(B) $g$ is a nonflat smooth function defined on $U$ ;
(C) $\varphi$ is a smooth function whose support is contained in $U.$

3.1. Results of Varchenko. Let us recall a part of famous results due to Varchenko
in [23] and Arnold, Gusein-Zade and Varchenko [1] in the case when $f$ is real analytic

on $U$ and $g\equiv 1$ . These results require the following condition.

(D) $f$ is real analytic on $U$ and is nondegenerate over $\mathbb{R}$ with respect to the

Newton polyhedron $\Gamma_{+}(f)$ , i.e., for every compact face $\gamma$ of $\Gamma_{+}(f)$ , the $\gamma-$

part $f_{\gamma}$ satisfies

(3.1) $\nabla f_{\gamma}=(\frac{\partial f_{\gamma}}{\partial x_{1}}, \ldots, \frac{\partial f_{\gamma}}{\partial x_{n}})\neq(0, \ldots, 0)$ on the set $(\mathbb{R}\backslash \{0\})^{n}.$

Theorem 3.1 ([23],[1]). If $f$ satisfies the condition (D) , then the following hold (see

Remark 2.7):

(i) The progression $\{\alpha\}$ in (1.2) belongs to finitely many arithmetic progres-
sions, which are obtained by using the theory of toric varieties based on the
geometry of the Newton polyhedron $\Gamma_{+}(f)$ .

(ii) $\beta(f, 1)\leq-1/d(f)$ ;
(iii) If at least one of the following conditions is satisfied:

(a) $d(f)>1$ ;
(b) $f$ is nonnegative or $nonp_{0\mathcal{S}}itive$ on $U$ ;
(c) $1/d(f)$ is not an odd integer and $f_{\tau_{*}}$ does not $vani_{\mathcal{S}}h$ on $U\cap(\mathbb{R}\backslash \{0\})^{n},$

where $\tau_{*}$ is the principal face of $\Gamma_{+}(f)$ ,
then $\beta(f, 1)=-1/d(f)$ and $\eta(f, 1)=m(f)$ .

Remark 3.2. Let us consider the case when the phase satisfies a weaker regularity

condition:

(E) $f$ belongs to the class $\hat{\mathcal{E}}(U)$ and is nondegenerate over $\mathbb{R}$ with respect to its
Newton polyhedron.

It is shown in [15] that $I(t;\varphi)$ also has an asymptotic expansion of the form (1.2)
in the case when the phase satisfies the above condition. Furthermore, Varchenko’s
results can be directly generalized to the case when the phase belongs to the class
$\hat{\mathcal{E}}(U)$ . In [15], more precise results are obtained.

Some kind of restrictions to the regularity of the phase, for example the condition:
$f\in\hat{\mathcal{E}}(U)$ , is necessary in the above results. Indeed, consider the following two-

dimensional example: $f(x_{1}, x_{2})=x_{1}^{2}+e^{-1/|x|^{\alpha}}2(\alpha>0)$ and $g\equiv 1$ , which is given
by Iosevich and Sawyer in [11]. Note that the above $f$ satisfies the nondegeneracy

condition (3.1) but it does not belong to $\hat{\mathcal{E}}(U)$ . It is easy to see the following: $d(f)=$

$2,$ $m(f)=1,$ $f_{\tau_{*}}(x_{1}, x_{2})=x_{1}^{2}$ . It is shown in [11] that $|I(t;\varphi)|\leq Ct^{-1/2}(\log t)^{-1/\alpha}$ for
$t\geq 2$ . In particular, we have $\lim_{tarrow\infty}t^{1/2}I(t;\varphi)=0$ . The pattern of an asymptotic
expansion of $I(t;\varphi)$ in this example might be different from that in (1.2).
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3.2. Weighted case. The following theorem naturally generalizes the assertion (ii)

in Theorem 3.1.

Theorem 3.3 ([2]). Suppose that (i) $f$ satisfies the condition (D) and (ii) at least

one of the following conditions is satisfied:
(a) $f$ is convenient;
(b) $g$ is convenient;
(c) $g$ is real analytic on $U$ ;
(d) $g$ is expressed as $g(x)=x^{p}\tilde{g}(x)$ on $U$ , where $p\in \mathbb{Z}_{+}^{n}$ and $\tilde{g}$ is a smooth

junction defined on $U$ with $\tilde{g}(0)\neq 0.$

Then, we have $\beta(f, g)\leq-1/d(f, g)$ .

The following theorem partially generalizes the assertion (iii) in Theorem 3.1.

Theorem 3.4 ([2]). Suppose that (i) $f$ satisfies the condition (D) , (ii) at least one

of the following two conditions is satisfied:
(a) $f$ is convenient and $g_{\gamma_{*}}$ is nonnegative or nonpositive on $U$ for all principal

faces $\gamma_{*}$ of $\Gamma_{+}(g)$ ;
(b) $g$ is expressed as $g(x)=x^{p}\tilde{g}(x)$ on $U$ , where every component of $p\in \mathbb{Z}_{+}^{n}$ is

even and $\tilde{g}$ is a smooth function defined on $U$ with $\tilde{g}(0)\neq 0$

and (iii) at least one of the following two conditions is satisfied:
(c) $d(f, g)>1$ ;
(d) $f$ is nonnegative or nonpositive on $U.$

Then the equations $\beta(f_{9})=-1/d(f, g)$ and $\eta(f, g)=m(f, g)$ hold.

Remark 3.5. Similar results to the above two theorems have been obtained in [24],

[1], [18]. Vassiliev [24] consider the case when $g$ is a monomial. Okada and Takeuchi
[18] consider the case when $f$ is convenient. In our language, the results in [1] can
be stated as follows:

(Theorem 8.4 in [1], p. 254) If $f$ is real analytic and is nondegenerate over $\mathbb{R}$ with
$re\mathcal{S}pect$ to its Newton polyhedron, then

(i) $\beta(f, g)\leq-1/d(f, g)$ ;
(ii) If $d(f_{9})>1$ and $\Gamma_{+}(g)=\{p\}+\mathbb{R}_{+}^{n}$ with $p\in \mathbb{Z}_{+}^{n}$ , then $\beta(f, g)=-1/d(f, g)$ .

Unfortunately, more additional assumptions are necessary to obtain the above
assertions (i), (ii). Indeed, consider the following two-dimensional example:

$f(x_{1}, x_{2})=x_{1}^{4}$ ; $g(x_{1}, x_{2})=x_{1}^{2}x_{2}^{2}+e^{-1/x_{2}^{2}}.$

It follows from easy computations that this example violates (i), (ii). (See Section
7.2 in [2].)

Note that some conditions in the assumptions of the above theorems can be con-
sidered as typical cases of the assumptions in our new theorems in Section 4, so they

are sometimes more useful for the practical applications.
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Remark 3.6. Pramanik and Yang [20] obtain a similar result relating to the above
equation $\beta(f, g)=-1/d(f, g)$ in the case when the dimension is two and the
weight has the form $g(x)=|h(x)|^{\epsilon}$ , where $h$ is real analytic and $\epsilon$ is positive.
Their approach is based on the Puiseux series expansions of the roots of $f$ and $h,$

which is inspired by the work of Phong and Stein [19]. Their definition of Newton
distance, which is different from ours, is given through the process of a good choice
of coordinate system. As a result, their result does not need the nondegeneracy
condition on the phase.

The following theorem shows an interesting symmetry property”’ with respect to
the phase and the weight.

Theorem 3.7 ([2]). Suppose that $f,$ $g$ satisfy the condition (D) and that they are
convenient and nonnegative or nonpositive on U. Then we have $\beta(x^{1}f, g)\beta(x^{1}g, f)\geq$

$1$ , where $x^{1}=x_{1}\cdots x_{n}$ . Moreover, the following two conditions are equivalent:

(i) $\beta(x^{1}f, g)\beta(x^{1}g, f)=1$ ;
(ii) There exists a positive rational number $d$ such that $\Gamma_{+}(x^{1}f)=d\cdot\Gamma_{+}(x^{1}g)$ .

If the condition (i) or (ii) is satisfied, then we have $\eta(x^{1}f, g)=\eta(x^{1}g, f)=n.$

Lastly, we comment on significance for the investigation in the weighted case.
Since the weighted case may be considered as a special case of the unweighted case,
unweighted results concerned with the upper bound estimates for oscillation index
are also available in the weighted case. However, these estimates are “uniformly”
satisfied with respect to the amplitude. Henee, we may obtain more precise results
in the case of a specific amplitude.

4. MAIN RESULTS

In this section, our new results in [16] are given. Understanding the resolution
of singularities for the phase and the weight deeply, we can generalize and improve
the results in [2]. Furthermore, the theorems can be stated in more clear form by

using the class $\hat{\mathcal{E}}(U)$ , which means that properties of $\hat{\mathcal{E}}(U)$ play crucial roles in the
sufficient condition on the phase and the weight. See also [14].

Throughout this section, the three conditions (A), (B), (C) at the beginning of
Section 3 are assumed, where $U$ is an open neighborhood of the origin in $\mathbb{R}^{n}.$

First, let us give a sharp estimate for $I(t;\varphi)$ . Since the class $\hat{\mathcal{E}}(U)$ contains many
kinds of smooth functions as in Section 2.5, the following theorem generalizes and
improves Theorem 3.3.

Theorem 4.1 ([16]). Suppose that (i) $f$ satisfies the condition (E) (see Remark 3.2)
and (ii) at least one of the following two conditions $i\mathcal{S}$ satisfied:

(a) $g$ belongs to the class $\hat{\mathcal{E}}(U)$ ;
(b) $f$ is convenient.

If the support of $\varphi$ is contained in a suffi ciently small neighborhood of the origin,
then there exists a $po\mathcal{S}itive$ constant $C(\varphi)$ independent of $t$ such that

$|I(t;\varphi)|\leq C(\varphi)t^{-1/d(f_{9})}(\log t)^{m(f,g)-1}$ for $t\geq 2.$
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In particular, we have $\beta(f, g)\leq-1/d(f, g)$ .

Next, let us consider the case when the equality $\beta(f, g)=-1/d(f, g)$ holds. The

following theorem generalizes and improves Theorem 3.4.

Theorem 4.2 ([16]). Suppose that the conditions (i), (ii) in Theorem 4.1 are sat-

isfied, (iii) there exists a principal face $\gamma_{*}$ of $\Gamma_{+}(g)$ such that $g_{\gamma_{*}}$ is nonnegative or
nonpositive on $U$ and (iv) at least one of the following three conditions $i\mathcal{S}$ satisfied:

(a) $d(f, g)>1$ ;
(b) $f$ is nonnegative or nonpositive on $U$ ;
(c) $1/d(f, g)$ is not an odd integer and $f_{\tau_{*}}$ does not vanish on $U\cap(\mathbb{R}\backslash \{0\})^{n}$

where $\tau_{*}$ is a principal face of $\Gamma_{+}(f)$ associated to $\gamma_{*}$ in (iii).

Then the equations $\beta(f, g)=-1/d(f, g)$ and $\eta(f, g)=m(f, g)$ hold.

Remark 4.3. In [16], we give explicit formulae for the coefficient of the leading term

of the asymptotic expansion (1.2) under the assumptions $(i)-(iii)$ . These explicit

formulae show that the above coefficient essentially depends on the principal face-

parts $f_{\tau_{*}}$ and $g_{\gamma_{*}}$ . The above $(i)-(iv)$ are suffcient conditions for the nonvanishing
of the leading term.

Finally, Theorem 3.7 can be generalized in the following form.

Theorem 4.4 ([16]). Suppose that $f,$ $g$ satisfy the condition (E) and that they are
nonnegative or nonpositive on U. Then we have $\beta(x^{1}f_{9})\beta(X^{1_{9}}, f)\geq 1$ . Moreover,

the following two conditions are equivalent:

(i) $\beta(x^{1}f_{9})\beta(x^{1}9, f)=1$ ;
(ii) There exists a positive rational number $d_{\mathcal{S}}uch$ that $\Gamma_{+}(x^{1}f)=d\cdot\Gamma_{+}(x^{1}g)$ .

If the condition (i) or (ii) is satisfied, then we have $\eta(x^{1}f, g)=\eta(x^{1}g, f)=n.$
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