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ABSTRACT. In [12] the authors classified the singular fibers of proper $C^{\infty}$ stable maps

of 3-dimensional manifolds with boundary into surfaces, and computed the cohomol-

ogy groups of the associated universal complex of singular fibers with coefficients in
$\mathbb{Z}_{2}$ . In this paper, we classify the co-orientable singular fibers of such stable maps and

compute the cohomology groups of the associated universal complex with coeficients

in $\mathbb{Z}.$

1. INTRODUCTION

Let $M$ and $N$ be smooth manifolds, where $M$ may possibly have boundary, while
$N$ has no boundary. For a $C^{\infty}$ map $f:Marrow N$ and a point $q\in N$ , we call the map

germ along the pre-image $f^{-1}(q)$

$f:(M, f^{-1}(q))arrow(N, q)$

the fiber over $q$ , adopting the terminology introduced in [6]. Furthermore, if a point
$q\in N$ is a regular value of both $f$ and $f|_{\partial M}$ , then we call the fiber over $q$ a regular

fiber; otherwise, a singular fiber.
We define natural equivalence relations among fibers as follows. Let $f_{i}:M_{i}arrow N_{i}$

be $C^{\infty}$ maps with $q_{i}\in N_{i},$ $i=0$ , 1. The fibers over $q_{0}$ and $q_{1}$ are said to be $C^{\infty}$

equivalent (or $C^{0}$ equivalent) if for some open neighborhoods $U_{i}$ of $q_{i}$ in $N_{i}$ , there exist

diffeomorphisms (resp. homeomorphisms) $\Phi:f_{0}^{-1}(U_{0})arrow f_{1}^{-1}(U_{1})$ and $\varphi:U_{0}arrow U_{1}$

with $\varphi(q_{0})=q_{1}$ that make the following diagram commutative:

$(f_{0}^{-1}(U_{0}), f_{0}^{-1}(q_{0}))arrow^{\Phi}(f_{1}^{-1}(U_{1}), f_{1}^{-1}(q_{1}))$

$f_{0}\downarrow \downarrow f_{1}$

$(U_{0}, q_{0}) arrow^{\varphi} (U_{1}, q_{1})$ .

Denote by $C^{\infty}(M, N)$ the set of all $C^{\infty}$ maps $Marrow N$ equipped with the Whitney
$C^{\infty}$ topology. A $C^{\infty}$ map $f:Marrow N$ is stable $(or$ more precisely, $C^{\infty}$ stable) if there

exists a neighborhood $N(f)$ of $f$ in $C^{\infty}(M, N)$ such that every map $g\in N(f)$ is $C^{\infty}$
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right-left equivalent to $f[3]$ , where two maps $f$ and $9\in C^{\infty}(M, N)$ are $C^{\infty}$ right-

lefl equivalent if there exist diffeomorphisms $\Psi:\Lambda Iarrow M$ and $\psi:Narrow N$ such that
$fo\Psi=\psi og.$

The notion of singular fibers of $C^{\infty}$ maps between manifolds without boundary
was first introduced in [6], where the singular fibers of stable maps $Marrow N$ with
$(\dim M, \dim N)=(2,1)$ , $(3, 2)$ and $(4, 3)$ were classified up to the above equivalences.
Later, singular fibers of stable maps of manifolds without boundary were studied in
[6, 7, 10, 11, 15, 16, 17], especially in connection with cobordisms. The first author
[6] established the theory of universal complex of singular fibers of $C^{\infty}$ maps as an
analogy of the Vassiliev complex for map germs [5, 14]. Its cohomology groups can be
used for getting certain cobordism invariants of singular maps. For example, in [6],
cobordism invariants for stable Morse functions on closed surfaces were obtained, and
the authors obtained a complete cobordism invariant for closed oriented 4-dimensional
manifolds in terms of singular fibers in [10].

In our previous paper [12], we studied singular fibers of proper $C^{\infty}$ stable maps of
3-dimensional manifolds with boundary into surfaces without boundary. By computing
the cohomology groups of the associated universal complex with coefficients in $\mathbb{Z}_{2}$ , we
obtained a non-trivial $\mathbb{Z}_{2}$-valued cobordism invariant for admissible stable Morse func-
tions on compact surfaces with boundary. Here, a map on a manifold with boundary
is said to be admissible if it is submersive near the boundary. Two admissible stable
Morse functions on surfaces with boundary are said to be $\mathcal{A}S_{pr}$-cobordant if there exists
a cobordism between them which is admissible (for details, see Definition 3.4). The
above cohomology class, in fact, gives rise to a non-trivial $\mathcal{A}S_{pr}$-cobordism invariant
for admissible stable Morse functions on surfaces with boundary [12].

In this paper, we classify the co-orientable singular fibers of proper $C^{\infty}$ stable maps
of 3-dimensional manifolds with boundary into surfaces without boundary. Then, we
compute the cohomology groups with integer coefficients of the associated universal
complex. It will turn out that the cohomology groups are non-trivial, but that the as-
sociated $\mathbb{Z}$-valued $\mathcal{A}S_{pr}$-cobordism invariants are, unfortunately, trivial. This supports
the conjecture that the $\mathcal{A}S_{pr}$-cobordism group of admissible stable Morse functions on
compact surfaces with boundary is isomorphic to $\mathbb{Z}_{2}$ (see Conjecture 6.4).

The paper is organized as follows. In \S 2, we recall the classification of fibers of
proper $C^{\infty}$ stable maps of 3-dimensional manifolds with boundary into surfaces with-
out boundary, with respect to the $C^{\infty}$ equivalence. In \S 3, we briefly recall the theory
of universal complex of singular fibers of a certain class of $C^{\infty}$ maps. In \S 4, we formu-
late the fibers which are (strongly) co-orientable and construct the associated universal
complex with integer coefficients. In \S 5, some specific classes of stable maps and ad-
missible stable maps together with certain equivalence relations among their fibers are
introduced. In \S 6, we compute the cohomology groups of the universal complex of
co-orientable singular fibers of proper (admissible) $C^{\infty}$ stable maps of 3-dimensional
manifolds with boundary into surfaces without boundary and discuss their associated
cobordism invariants. In \S 7, we consider fibers of maps of orientable manifolds and
compute the cohomology groups of the corresponding subcomplexes. Our results sup-
port the conjecture that the orientable $\mathcal{A}\mathcal{S}_{pr}$-cobordism group of admissible stable
Morse functions on compact orientable surfaces with boundary is isomorphic to $\mathbb{Z}_{2}$

(see Conjecture 7.6).
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Throughout the paper, all manifolds and maps between them are smooth of class
$C^{\infty}$ unless otherwise specified. For a map $f:Marrow N$ between manifolds, we denote

by $S(f)$ the set of points in $M$ where the differential of $f$ does not have maximal rank
$\min\{\dim M, \dim N\}$ . For a space $X,$ $id_{X}$ denotes the identity map of $X.$

2. CLASSIFICATION OF SINGULAR FIBERS

In this section, we recall the classification of singular fibers of proper $C^{\infty}$ stable maps

of 3-dimensional manifolds with boundary into surfaces without boundary.

Let us first recall the following characterization of $C^{\infty}$ stable maps. In the following,

for a 3-manifold $M$ with boundary and a point $p\in\partial M$ , we use local coordinates
$(x, y, z)$ around $p$ such that Int $f|/I$ and $\partial M$ correspond to the sets $\{z>0\}$ and $\{z=0\},$

respectively.

Proposition 2.1 (Shibata [13], Martins and Nabarro [4]). Let $lI\prime I$ be a 3-manifold
possibly with boundary and $N$ a surface without boundary. A proper $C^{\infty}$ map $f:Marrow$

$N$ is $C^{\infty}$ stable if and only if it satisfies the following conditions.

(1) (Local conditions)
(1a) For $p\in$ Int $M$ , the germ of $f$ at $p$ is right-left equivalent to one of the

following:

$\{$

$(x, y)$ , $p$ : regular point,

$(x, y, z)\mapsto$

$(x, y^{2}+z^{2})$ , $p$ : definite fold point,

$(x, y^{2}-z^{2})$ , $p$ : indefinite fold point,

$(x, y^{3}+xy-z^{2})$ , $p$ :cusp point.

(1b) For $p\in\partial M\backslash S(f)$ , the germ of $f$ at $p$ is right-left equivalent to one of the
following:

$\{$

$(x, y)$ , $p$ : regular point of $f|_{\partial M},$

$(x, y, z)\mapsto$

$(x, y^{2}+z)$ , $p$ : boundary definite fold point,

$(x, y^{2}-z)$ , $p$ : boundary indefinite fold point,

$(x, y^{3}+xy+z)$ , $p$ : boundary cusp point.

(1c) For $p\in\partial lII\cap S(f)$ , the germ of $f$ at $p$ is right-left equivalent to the map

germ
$(x, y, z)\mapsto(x, y^{2}+xz\pm z^{2})$ .

(2) (Global conditions) For each $q\in f(S(f))\cup f(S(f|_{\partial M}))$ , the multi-germ

$(f|_{S(f)\cup S(f|_{\partial\Lambda I})}, f^{-1}(q)\cap(S(f)\cup S(f|_{\partial11I})))$

is right-left equivalent to one of the eight multi-germs as depicted in Figure 1,

where the ordinary curves correspond to the singular value set $f(S(f))$ and

the dotted curves to $f(S(f|_{\partial M}))$ : (1) corresponds to a single fold point, (4)

corresponds to a single boundary fold point, (3), (6) and (7) represent normal
crossings of two immersion germs, each of which corresponds to a fold point

or a boundary fold point, (2) corresponds to a cusp point, (5) corresponds to a
boundary cusp point, and (8) corresponds to a single point in $\partial M\cap S(f)$ .
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$\overline{q}$

(1) (4)

(5). (6) (8)

FIGURE 1. Multi-germs of $f|_{S(f)\cup S(f|_{\partial M})}$

Note that if a $C^{\infty}$ map $f:Marrow N$ is $C^{\infty}$ stable, then so is $f|_{\partial M}$ : $\partial Marrow N.$

In the following, a map germ at a point on the boundary right-left equivalent to the
normal form

$(x, y, z)\mapsto(x, y^{2}+xz+z^{2})$ $or$ $(x, y, z)\mapsto(x, y^{2}+xz-z^{2})$

is called a definite $\Sigma_{1,0}^{2,0}$ point or an indefinite $\Sigma_{1,0}^{2,0}$ point, respectively.

Definition 2.2. Let us consider finitely many fibers of smooth maps with all the
dimensions of the sources and the targets being the same. Then, their disjoint union is
the fiber corresponding to the single map defined on the disjoint union of the sources,
where the target spaces are all identified to a single small open disk. This depends on
such identifications; however, in the following, we can take “generic identifications”’ in
such a way that the resulting map is $C^{\infty}$ stable and is unique up to $C^{\infty}$ equivalence,
as long as the identifications are generic.

By using the method developed in [6], the authors [12] have obtained the following
classification of singular fibers.

Theorem 2.3. Let $f:Marrow N$ be a proper $C^{\infty}$ stable map of a 3-manifold $M$ with
boundary into a surface $N$ without boundary. Then, every fiber of $f$ is equivalent to
the disjoint union of one of the fibers in the following list, a finite number of copies of
a fiber of the trivial circle bundle, and a finite number of copies of a fiber of the trivial
$I$ -bundle, where $I=[-1, 1]$ :

(1) fibers as depicted in Figure 2, $i.e.\overline{b0}^{0},$ $\overline{b0}^{1}$

, and $\tilde{bI}^{\mu}$ with $2\leq\mu\leq 10,$

(2) disconnected fibers
$\overline{bII}^{\mu,v}$ with $2\leq\mu\leq\nu\leq 10$ , where $\overline{bII}^{\mu,\nu}$ means the disjoint

union of $\tilde{b}I^{\mu}$ and $\tilde{b}I^{\nu},$

(3) the connected fibers $a\mathcal{S}$ depicted in Figure 3, i.e. $\overline{bII}^{\mu}$ with $11\leq\mu\leq 39,$
$\overline{bII}^{a},$

$\overline{bII}^{b},$
$\overline{bII}^{c},$ $\overline{bII}^{d},$ $\tilde{bII}^{e}$ and

$\overline{bII}^{f}$

In Figures 2 and 3, $\kappa$ denotes the codimension of the set of points in the target $N$

whose corresponding fibers are $C^{\infty}$ equivalent to the relevant one (see [6] for details).

Furthermore, the symbols $\overline{b0}^{*},$
$\tilde{bI}^{*}$ , and $\overline{bII}^{*}$ mean the names of the corresponding

singular fibers. Note that we have named the fibers so that each “connected fiber”
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$\kappa=0$

$\overline{b0}^{0}$ $O$ $\overline{b0}^{1}$

$||[$

$\kappa=1$

$\tilde{b}I^{2}$ $\bullet$ $臼^{}3 \int \tilde{b}I^{4} \tilde{b}I^{5} \iota 1-\iota-\iota 1_{1\underline{1} ,x_{1}^{1}}^{--}-$

$\tilde{bI}^{6}$ $\blacksquare$ $\tilde{bI}^{7}$ $\Theta$ $\overline{bI}^{8}$ $\iota\#_{I}^{\iota^{1}}1^{-}\underline{},$ $\tilde{b}I^{9}$

$\tilde{bI}^{10}$

FIGURE 2. List of the fibers of proper $C^{\infty}$ stable maps of 3-manifolds
with boundary into surfaces without boundary; 1

has its own number or letter, and a “disconnected fiber”’ has the name consisting of
the numbers of its “connected components”, with the regular fiber components being
ignored. Note also that each figure represents a map germ along the corresponding
fiber and not just the inverse image of a point.

Remark 2.4. Our classification result of singular fibers of stable maps of compact 3-
dimensional manifolds with boundary into surfaces has already been applied in com-
puter science for visual data analysis. More precisely, it helps to visualize characteristic
features of certain multi-field data (see Figure 4). For details, see [8, 9].

Remark 2.5. The list of the $C^{\infty}$ equivalence classes of singular fibers of proper stable
Morse functions on surfaces with boundary can be obtained in a similar fashion. The
result corresponds to those appearing in Figure 2 with $\kappa=0$ , 1. In fact, it is not
difficult to show that the suspensions of the fibers of such functions in the sense of
Definition 3.1 coincide with those appearing in the figure. However, in the following,
by abuse of notation, we use the symbols in Figure 2 with $\kappa=0$ , 1 for the fibers of
stable Morse functions as well.

3. UNIVERSAL COMPLEX

In this section we briefly recall the theory of universal complex of singular fibers. As
to the general theory, the reader is referred to [6, Part II].
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$\kappa=2$

$\overline{bII}^{11}$ $\overline{bII}^{12}$ $\overline{bII}^{13}$ $\tilde{bII}^{14}$

$\overline{bII}^{15}$ $\overline{bII}^{16}$ $\overline{bII}^{17}$
$/1,\iota|^{--}--K_{1}^{-}-\iota-$

$\overline{bII}^{18}$
$\backslash -/^{-}--\mathfrak{Q}_{1_{\underline{|}}}^{1}-$

$\overline{bII}^{19}$ $\overline{bII}^{20}$

$\otimes$
$\overline{bII}^{21}$

$\ovalbox{\tt\small REJECT}$

$\overline{bII}^{22}$

$\overline{bII}^{23}$ $\overline{bII}^{24}$ $\overline{bII}^{25}$

$\prime_{\mathfrak{l}X}^{-}\sim.-1^{-},-1^{-}$

$\overline{bII}^{26}$

$bII$ $bII$ $bII$

$\sim 27$ $\sim 28$
$\overline{bII}^{29}$

$\sim 30$

$\overline{bII}_{-}^{31,^{-\Theta_{-}^{-}\prime}},$

$\overline{bII}^{32}$ $\overline{bII}^{33}$

$\int$

$\overline{bII}^{35}$ $\overline{bII}^{38}$

$\infty$

$\overline{bII}^{39}$ $\overline{bII}^{a}$
$\overline{bII}^{b}$ $\prec$ $\overline{bII}^{c}$ $c\frac{1}{}-\underline{(}$

$\overline{bII}^{d}$

FIGURE 3. List of the fibers of proper $C^{\infty}$ stable maps of 3-manifolds
with boundary into surfaces without boundary; 2
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FIGURE 4. User interface for visualizing singular fibers

Throughout this section, $b$ is an $m$-dimensional manifold which is not necessarily

closed, and $N$ is an $n$-dimensional manifold without boundary. The codimension of
a smooth map $f:Marrow N$ is defined to be the difference $\dim N-\dim M\in \mathbb{Z}$ . To
construct the universal complex of singular fibers of $C^{\infty}$ maps, we fix an integer $\ell\in \mathbb{Z}$

for the codimension of the maps, and consider the following:

(1) a set $\tau$ of fibers of proper Thom mapsl of codimension $\ell$ , and
(2) an equivalence relation $\rho$ among the fibers in $\tau.$

We further assume that the set $\tau$ and the relation $\rho$ satisfy the following conditions.

(a) The set $\tau$ is closed under adjacency relation, i.e. if a fiber is in $\tau$ , then so are
all nearby fibers.

(b) Each $\rho$-class is a union of $C^{0}$ equivalence classes.
(c) Let $f_{i}:1II_{i}arrow N_{i}$ be proper Thom maps and $q_{i}\in N_{i},$ $i=0$ , 1. Suppose that

the fibers over $q_{0}$ and $q_{1}$ are in $\tau$ and that they are equivalent with respect
to $\rho$ . Then, there exist open neighborhoods $U_{i}$ of $q_{i}$ in $N_{i},$ $i=0$ , 1, and a
homeomorphism $\varphi:U_{0}arrow U_{1}$ satisfying $\varphi(q_{0})=q_{1}$ and $\varphi(U_{0}\cap \mathcal{F}(f_{0}))=U_{1}\cap$

$\mathcal{F}(f_{1})$ , for each pclass $\mathcal{F}.$

In particular, the above conditions imply that for each proper Thom map $f:Marrow N$

and each $\rho$-class $\mathcal{F},$ $\mathcal{F}(f)$ is a $C^{0}$ submanifold of constant codimension unless it is not
empty, where

$\mathcal{F}(f)=$ { $q\in N|$ the fiber over $q$ belongs to the class $\mathcal{F}$}.

The codimension of $\mathcal{F}$ is defined to be that of $\mathcal{F}(f)$ in $N$ , and is denoted by $\kappa(\mathcal{F})$ .

We call a proper Thom map $f:Marrow N$ a $\tau$ -map if all of its fibers are in $\tau.$

For each $\kappa\in \mathbb{Z}$ , let $C^{\kappa}(\tau, \rho)$ be the formal $\mathbb{Z}_{2}$-vector space spanned by the $\rho$-classes
of codimension $\kappa$ in $\tau$ . If there are no such fibers, then we set $C^{\kappa}(\tau, \rho)=0.$

$1A$ Thom map is a $C^{\infty}$ stratified map with respect to Whitney regular stratifications such that it

is a submersion on each stratum and satisfies certain regularity conditions. See, for example, [2] for

more details.
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We can naturally define a $\mathbb{Z}_{2}$-linear map $\delta_{\kappa}:C^{\kappa}(\tau, \rho)arrow C^{\kappa+1}(\tau, \rho)$ by using adja-

cencies to obtain the cochain complex

$C(\tau, \rho)=(C^{\kappa}(\tau, \rho), \delta_{\kappa})_{\kappa},$

which is called the universal complex of singular fibers for $\tau$ -maps with respect to the

equivalence relation $\rho$ , and denote its cohomology group of dimension $\kappa$ by $H^{\kappa}(\tau, \rho)$ .

In order to formulate cobordisms and their invariants associated with cohomology

classes of the universal complex we need the following notion of suspension of a Thom
map.

Definition 3.1. For a proper Thom map $f:Marrow N$ , let us consider the product map

$f\cross id_{\mathbb{R}}:M\cross \mathbb{R}arrow N\cross \mathbb{R}.$

We call $f\cross id_{\mathbb{R}}$ and the fiber of $f\cross id_{\mathbb{R}}$ over a point $(q, 0)\in N\cross \mathbb{R}$ the suspension of
$f$ and the suspension of the fiber of $f$ over $q\in N$ , respectively.

Let $\tau$ be a set of fibers for proper Thom maps of codimension $\ell$ as above. For
a dimension pair $(m, n)$ with $n-m=\ell$ , let $\tau(m, n)$ denote the set of fibers in $\tau$

for proper Thom maps of manifolds of dimension $m$ into those of dimension $n$ . The
equivalence relation on $\tau(m, n)$ induced by $\rho$ is denoted by $\rho_{m,n}.$

In addition to conditions $(a)-(c)$ above, we assume the following two additional
conditions.

(d) The suspension of each fiber in $\tau(m, n)$ belongs also to $\tau(m+1, n+1)$ .
(c) If two fibers in $\tau(m, n)$ are equivalent with respect to $\rho_{m,n}$ , then their suspen-

sions are also equivalent with respect to $\rho_{m+1,n+1}.$

For each $\kappa\in \mathbb{Z}$ , the suspension induces the $\mathbb{Z}_{2}$-linear map

$s_{\kappa}:C^{\kappa}(\tau(m+1, n+1), \rho_{m+1,n+1})arrow C^{\kappa}(\tau(m, n), \rho_{m,n})$ ,

where for a $\rho_{m+1,n+1}$ -class $\mathcal{F},$ $s_{\kappa}(\mathcal{F})$ is the sum of all $\rho_{m,n}$-classes of codimension $\kappa$

whose suspensions are in $\mathcal{F}$ . Note that $s_{\kappa}$ is well-defined. We can show that the
system of $\mathbb{Z}_{2}$-linear maps $\{s_{\kappa}\}$ defines a cochain map

$\{s_{\kappa}\}:C(\tau(m+1, n+1), \rho_{m+1,n+1})arrow C(\tau(m, n), \rho_{m,n})$ .

Definition 3.2. Let

$c= \sum_{\kappa(\mathcal{F})=\kappa}n_{\mathcal{F}}\mathcal{F}$

be a $\kappa$-dimensional cochain of $C(\tau, \rho)$ with $n_{\mathcal{F}}\in \mathbb{Z}_{2}$ . For a $\tau$-map $f:Marrow N,$ $c(f)$

denotes the set of points $q\in N$ such that the fiber over $q$ is in $\mathcal{F}$ with $n_{\mathcal{F}}\neq 0$ . If $c$ is
a cocycle, then we can show that $c(f)$ is a $\mathbb{Z}_{2}$-cycle of closed support of codimension $\kappa$

in $N.$

It is known that if two cocycles $c$ and $c’$ are are cohomologous, then the $\mathbb{Z}_{2}$-cycles
$c(f)$ and $d(f)$ are $\mathbb{Z}_{2}$-homologous in $N$ for each $\tau$-map $f:Marrow N.$

Definition 3.3. Let $[c]$ be a $\kappa$-dimensional cohomology class of $C(\tau, \rho)$ represented
by a cochain $c$ . For a $\tau$-map $f:\lrcorner tlarrow N$ , define $[c(f)]\in H_{n-\kappa}^{c}(N;\mathbb{Z}_{2})$ to be the $\mathbb{Z}_{2^{-}}$

homology class represented by the $\mathbb{Z}_{2}$-cycle $c(f)$ of closed support. This is well-defined
by virtue of the above remark.
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Furthermore, define the $\mathbb{Z}_{2}$-linear map $\varphi_{f}:H^{\kappa}(\tau, \rho)arrow H^{\kappa}(N;\mathbb{Z}_{2})$ by $\varphi f([c])=$

$[c(f)]^{*}$ , where $[c(f)]^{*}\in H^{\kappa}(N;\mathbb{Z}_{2})$ is the Poincar\’e dual of $[c(f)]\in H_{n-\kappa}^{c}(N;\mathbb{Z}_{2})$ .

Let us introduce a geometric equivalence relation for $\tau$-maps.

Definition 3.4. Two $\tau$-maps $f_{i}:M_{i}arrow N,$ $i=0$ , 1, of compact manifolds with bound-
ary into a manifold without boundary are $\tau$ -cobordant if there exist a compact manifold
$X$ with corners and a $\tau$-map $F:Xarrow N\cross[O$ , 1$]$ that satisfy the following conditions:

(1) $\partial X=M_{0}\cup Q\cup M_{1}$ , where $M_{0}$ , ]$|_{i}l_{1}$ and $Q$ are codimension $0$ smooth submani-
folds of $\partial X,$ $M_{0}\cap M_{1}=\emptyset$ , and $\partial Q=(M_{0}\cap Q)\cup(M_{1}\cap Q)$ ,

(2) $X$ has corners along $\partial Q,$

(3) $F|_{M_{0}\cross[0,\epsilon)}=f_{0}\cross id_{[0,\epsilon)}$ and $F|_{M_{1}\cross(1-\epsilon,1]}=f_{1}\cross id_{(1-\epsilon,1]}$ , where $M_{0}\cross[0, \hat{c}$ ) and
$M_{1}\cross(1-\epsilon, 1]$ denote $the$ collar neighborhoods $($with corners) of $M_{0}$ and $M_{1}$

in $X$ , respectively.

In this case, we call the map $F$ a $\tau$ -cobordism between $f_{0}$ and $f_{1}.$

Note that the $\tau$-cobordism relation is an equivalence relation among the $\tau$-maps into
a fixed manifold $N$ . For a manifold $N$ , we denote by $Cob_{\tau}(N)$ the set of all equivalence
classes of $\tau$-maps of compact manifolds into $N$ with respect to the $\tau$-cobordism.

It is known that, for each cohomology class $[c]\in H^{\kappa}(\tau(m+1, n+1), \rho_{m+1,n+1})$ and
an $n$-dimensional manifold $N$ without boundary, we obtain the map

$I_{[c]}:Cob_{\tau}(N)arrow H^{\kappa}(N;\mathbb{Z}_{2})$

defined by $I_{[c]}(f)=\varphi_{f}([s_{\kappa*}c])$ , which does not depend on the choice of a represen-
tative $f$ of a given $\tau$-cobordism class, where $s_{\kappa*}:H^{\kappa}(\tau(m+1, n+1), \rho_{m+1,n+1})arrow$

$H^{\kappa}(\tau(m, n), \rho_{m,n})$ is the homomorphism induced by the suspension. In other words,
each element in

$H^{\kappa}(\tau(m+1, n+1), \rho_{m+1,n+1})$

induces a $\tau$-cobordism invariant for $\tau$-maps into an $n$-dimensional manifold $N$ through
suspenslon.

4. Co ORIENTABLE FIBERS

In this section, we consider fibers that are (strongly) co-orientable in the sense of [6,
Definition 10.5]. In the following, $\tau$ is a certain set of fibers and $\rho$ is an equivalence
relation for fibers in $\tau$ as in the previous section.

Definition 4.1. A $\rhorightarrow$-equivalence class $\tilde{\mathcal{F}}$ of fibers of $\tau$-maps is strongly $co$-orientable
if for a $\tau$-map $Marrow N$ and a point $q\in N$ whose fiber belongs to $\tilde{\mathcal{F}}$ , every local
homeomorphism around $q\in N$ preserving the adjacent equivalence classes necessarily
preserves the orientation of the normal direction to the submanifold corresponding to
$\tilde{\mathcal{F}}$ . For a $\rho\mapsto$-class of co-orientable fibers, it is $co$-oriented if the orientation of the above
normal direction is given.

For each $\kappa\in \mathbb{Z}$ , let $CO^{\kappa}(\tau, \rho)$ be the formal free $\mathbb{Z}$-module spanned by the $\rho\mapsto$-classes of
co-oriented fibers of codimension $\kappa$ in $\tau$ . Here, a $\rho$-class with the reversed co-orientation
is identified with the $(-1)$-times the original class. If there are no such fibers, then we
set $CO^{\kappa}(\tau, \rho)=0.$
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We can naturally define a $\mathbb{Z}$-module homomorphism $\delta_{\kappa}:CO^{\kappa}(\tau, \rho)arrow CO^{\kappa+1}(\tau, \rho)$

by using adjacencies and co-orientations to obtain the cochain complex

$C\mathcal{O}(\tau, \rho)=(CO^{\kappa}(\tau, \rho), \delta_{\kappa})_{\kappa},$

which is called the universal complex of $co$-orientable fibers for $\tau$ -maps with respect
to the equivalence relation $\rho$ , and we denote its cohomology group of dimension $\kappa$ by
$H^{\kappa}(C\mathcal{O}(\tau, \rho);\mathbb{Z})$ .

As in the previous section, for each $\kappa\in \mathbb{Z}$ , the suspension induces the $\mathbb{Z}$-module
homomorphism

$s_{\kappa}:CO^{\kappa}(\tau(m+1, n+1), \rho_{m+1,n+1})arrow CO^{\kappa}(\tau(m,n), \rho_{m,n})$ .

We can also show that the system of homomorphisms $\{s_{\kappa}\}$ defines a cochain map

$\{s_{\kappa}\}:C\mathcal{O}(\tau(m+1, n+1), \rho_{m+1,n+1})arrow C\mathcal{O}(\tau(m, n), \rho_{m_{\rangle}n})$ .

5. UNIVERSAL COMPLEX FOR STABLE MAPS OF $n$-DIMENSIONAL MANIFOLDS WITH

BOUNDARY INTO $(n-1)$-DIMENSIONAL MANIFOLDS

In order to discuss more specific cases, for a positive integer $n$ , let $bS_{pr}(n, n-1)$

be the set of fibers for proper $C^{0}$ stable Thom maps of $n$-dimensional manifolds with
boundary into $(n-1)$-dimensional manifolds without boundary. We put

$bS_{pr}= \bigcup_{n=1}^{\infty}bS_{pr}(n, n-1)$ .

Remark 5.1. If the dimension pair $(n, n-1)$ is in the nice range, then $C^{0}$ stable maps
are $C^{\infty}$ stable (for example, see [1]), and consequently they are Thom maps. For
example, this is the case if $n\leq 8.$

Furthermore, let $\rho_{n,n-1}(2)$ be the $C^{0}$ equivalence relation modulo two regular fibers
for fibers in $bS_{pr}(n, n-1)$ : i.e., two fibers in $bS_{pr}(n, n-1)$ are $\rho_{n,n-1}(2)$ -equivalent if they
become $C^{0}$ equivalent after we add some regular fibers to each of them with the numbers
of added components having the same parity. Note that, under this equivalence, for

$n=2$ , 3, we do not distinguish the fibers of types
$\overline{b0}^{0}$

with
$\overline{b0}^{1}$

Therefore, in the

following, we denote both of them by $\overline{b0}.$

We denote by $\rho(2)$ the equivalence relation on $bS_{pr}$ which is induced by $p_{n,n-1}(2)$ ,
$n\geq 1$ . Note that the set $bS_{pr}$ and the equivalence relation $\rho(2)$ satisfy conditions
$(a)-(e)$ described above.

For a $C^{0}$ equivalence class $\tilde{\mathcal{F}}$ of singular fibers, denote by $\tilde{\mathcal{F}}_{o}$ (or $\tilde{\mathcal{F}}_{e}$ ) the equivalence

class with respect to $\rho_{n,n-1}(2)$ which consists of singular fibers of type $\tilde{\mathcal{F}}$ with an odd
number $\underline{(re}sp$ . even number) of regular fiber components. For $n=2$ , 3, we denote by
$\overline{b0}_{o}$ and $b0_{e}$ the equivalence class with respect to $\rho_{n,n-1}(2)$ which consist exclusively of
an odd (resp. even) number of regular fiber components.

We will also consider a certain restricted class of stable maps. For a positive integer
$n$ , let $\mathcal{A}S_{pr}(n, n-1)$ be the set of fibers for proper admissible $C^{0}$ stable Thom maps
of $n$-dimensional manifolds with boundary into $(n-1)$-dimensional manifolds without
boundary, where a $C^{0}$ stable map $f:Marrow N$ of a manifold with boundary into
a manifold without boundary is admissible if it is a submersion on a neighborhood
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of $\partial M$ . In particular, a stable map $f:Marrow N$ of a 3-dimensional manifold with
boundary into a surface without boundary is admissible if and only if it has no definite
$\Sigma_{1,0}^{2,0}$ points nor indefinite $\Sigma_{1,0}^{2,0}$ points.

Note that stable Morse functions on compact surfaces and their suspensions are
always admissible.

Furthermore, set

$\mathcal{A}S_{pr}=\bigcup_{n=1}^{\infty}\mathcal{A}S_{pr}(n, n-1)$ .

Note that the above set together with the equivalence relation induced by $\rho(2)$ , which

we still denote by $\rho(2)$ by abuse of notation, satisfy conditions $(a)-(e)$ mentioned before.

6. UNIVERSAL COMPLEX OF CO-ORIENTABLE SINGULAR FIBERS OF STABLE MAPS

By analyzing the adjacencies of fibers, we easily get the following.

Lemma 6.1. Those equivalence classes with respect to $\rho_{3,2}(2)$ which are strongly co-

orientable a$re\overline{b0}_{*}-4,6-4,8\tilde{b}I_{*}^{2},\tilde{b}I_{*}^{3},\tilde{bI}_{*}^{4}-6,8-13’\sim 22\tilde{b}I_{*}^{6},\tilde{bI}_{*}^{8},\overline{bII}_{*}^{2,3\prime}\overline{bII}_{*}^{2,4}-23-24a$

’
$\overline{bII_{*}^{2,6}-}b$

’

$\overline{bII}_{*}^{2,8},$ $\overline{bII}_{*}^{3,4},$

$\overline{bII}_{*}^{3,6}-f$

’

$bII_{*}$ , $bII_{*}$ , $bII_{*}$ , $bII_{*}$ , $bII_{*},$ $bII_{*},$ $bII_{*},$ $bII_{*},$ $bII_{*},$ $bII_{*},$
$\overline{bII}_{*}^{c},$

$\overline{bII}_{*}^{d},$
$\tilde{bII}_{*}^{e},$

$bII_{*},$

$where*denote\mathcal{S}O$ or $e$ . The other equivalence classes are not strongly $co$-orientable.

Let us fix a co-orientation for each co-orientable equivalence class of codimension one
in such a way that the co-orientation points from $b0_{e}$ to $\overline{b0}_{o}$ . For each co-orientable
equivalence class of codimension two, we fix a co-orientation as in Figures 5, 6 and
7. (For those equivalence classes which do not appear in the figures, we fix their
co-orientations in a similar fashion.)

FIGURE 5. Co-orientations for $\overline{bII}_{*}^{2_{)}3}$

FIGURE 6. Co-orientations for $\overline{bII}_{*}^{a}$

Then, for the universal complex $C\mathcal{O}(bS_{pr}(3,2), \rho_{3,2}(2))$ of co-orientable fibers, the
coboundary homomorphism is given by the following formulas. Recall that the cochain
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FIGURE 7. Co-orientations for $\overline{bII}_{*}^{d}$

complex is defined over $\mathbb{Z}.$

$\delta_{0}(\overline{b0}_{o})$ $=$
$\tilde{b}I_{o}^{2}+\tilde{bI}_{e}^{2}+\tilde{b}I_{o}^{3}+\tilde{b}I_{e}^{3}+\tilde{b}I_{o}^{4}+\tilde{b}I_{e}^{4}+\tilde{bI}_{o}^{6}+\tilde{bI}_{e}^{6}+\tilde{b}I_{o}^{8}+\tilde{b}I_{e}^{8},$

$\delta_{0}(\overline{b0}_{e})$
$=$

$-\tilde{bI}_{o}^{2}-\tilde{bI}_{e}^{2}-\tilde{b}I_{o}^{3}-\tilde{bI}_{e}^{3}-\tilde{b}I_{o}^{4}-\tilde{b}I_{e}^{4}-\tilde{b}I_{o}^{6}-\tilde{b}I_{e}^{6}-\tilde{b}I_{o}^{8}-\tilde{b}I_{e}^{8},$

$\delta_{1}(\tilde{b}I_{o}^{2})$

$=$
$\overline{bII}_{o}^{2,3}-\overline{bII}_{e}^{2,3}+\overline{bII}_{o}^{2,4}-\overline{bII}_{e}^{2,4}+\overline{bII}_{o}^{2,6}-\tilde{bII}_{e}^{2,6}+\tilde{bII}_{o}^{2,8}$

$-\overline{bII}_{e}^{2,8}-\overline{bII}_{e}^{a}-\overline{bII}_{e}^{b}+\overline{bII}_{o}^{d},$

$\delta_{1}(\tilde{b}I_{e}^{2})$

$=$
$\overline{bII}_{o}^{2,3}-\overline{bII}_{e}^{2,3}+\overline{bII}_{o}^{2,4}-\overline{bII}_{e}^{2,4}+\overline{bII}_{o}^{2,6}-\overline{bII}_{e}^{2,6}+\overline{bII}_{o}^{2,8}$

$-\overline{bII}_{e}^{2,8}+\overline{bII}_{o}^{a}+\overline{bII}_{o}^{b}-\overline{bII}_{e}^{d},$

$\delta_{1}(\tilde{b}I_{o}^{3})$

$=$
$-\overline{bII}_{o}^{2,3}+\overline{bII}_{e}^{2,3}+\overline{bII}_{o}^{3,4}-\overline{bII}_{e}^{3,4}+\overline{bII}_{o}^{3,6}-\overline{bII}_{e}^{3,6}+\overline{bII}_{o}^{3,8}$

$-\overline{bII}_{e}^{3,8}+\overline{bII}_{e}^{13}+\overline{bII}_{o}^{22}-\overline{bII}_{o}^{a},$

$\delta_{1}(\tilde{bI}_{e}^{3})$

$=$
$-\overline{bII}_{o}^{2,3}+\overline{bII}_{e}^{2,3}+\overline{bII}_{o}^{3,4}-\overline{bII}_{e}^{3,4}+\overline{bII}_{o}^{3,6}-\overline{bII}_{e}^{3,6}+\overline{bII}_{o}^{3,8}$

$-\overline{bII}_{e}^{3,8}-\overline{bII}_{o}^{13}-\overline{bII}_{e}^{22}+\overline{bII}_{e}^{a},$

$\delta_{1}(\tilde{bI}_{o}^{4})$

$=$
$-\overline{bII}_{o}^{2,4}+\overline{bII}_{e}^{2,4}-\overline{bII}_{o}^{3,4}+\overline{bII}_{e}^{3,4}+\overline{bII}_{o}^{4,6}-\overline{bII}_{e}^{4,6}+\tilde{bII}_{o}^{4,8}-\overline{bII}_{e}^{4,8}$

$-\overline{bII}_{e}^{13}-\overline{bII}_{o}^{22}+\overline{bII}_{o}^{23}+\overline{bII}_{o}^{24}-\overline{bII}_{e}^{24}-\overline{bII}_{o}^{b}-\overline{bII}_{o}^{f}$

$\delta_{1}(\tilde{b}I_{e}^{4})$

$=$
$-\overline{bII}_{o}^{2,4}+\overline{bII}_{e}^{2,4}-\overline{bII}_{o}^{3,4}+\overline{bII}_{e}^{3,4}+\overline{bII}_{o}^{4,6}-\overline{bII}_{e}^{4,6}+\overline{bII}_{o}^{4,8}-\overline{bII}_{e}^{4,8}$

$+\overline{bII}_{o}^{13}+\overline{bII}_{e}^{22}-\overline{bII}_{e}^{23}+\overline{bII}_{o}^{24}-\tilde{bII}_{e}^{24}+\overline{bII}_{e}^{b}+\tilde{bII}_{e}^{f},$

$\delta_{1}(\tilde{b}I_{o}^{6})$

$=$
$-\overline{bII}_{o}^{2,6}+\overline{bII}_{e}^{2,6}-\overline{bII}_{o}^{3,6}+\overline{bII}_{e}^{3_{)}6}-\overline{bII}_{o}^{4,6}+\overline{bII}_{e}^{4,6}+\overline{bII}_{o}^{6,8}$

$-\overline{bII}_{e}^{6,8}-\overline{bII}_{e}^{c}-\overline{bII}_{o}^{d}-\tilde{bII}_{e}^{e}-\overline{bII}_{e}^{f},$

$\delta_{1}(\tilde{b}I_{e}^{6})$

$=$
$-\overline{bII}_{o}^{2,6}+\overline{bII}_{e}^{2_{\}}6}-\overline{bII}_{o}^{3,6}+\overline{bII}_{e}^{3,6}-\overline{bII}_{o}^{4,6}+\overline{bII}_{e}^{4,6}+\overline{bII}_{o}^{6,8}$

$-\overline{bII}_{e}^{6,8}+\overline{bII}_{o}^{c}+\overline{bII}_{e}^{d}+\overline{bII}_{o}^{e}+\overline{bII}_{o}^{f},$

$\delta_{1}(\tilde{b}I_{o}^{8})$

$=$
$-\overline{bII}_{o}^{2,8}+\overline{bII}_{e}^{2,8}-\overline{bII}_{o}^{3,8}+\overline{bII}_{e}^{3,8}-\overline{bII}_{o}^{4,8}+\overline{bII}_{e}^{4,8}-\overline{bII}_{o}^{6,8}$

$+\overline{bII}_{e}^{6,8}-\overline{bII}_{o}^{23}-\overline{bII}_{o}^{24}+\overline{bII}_{e}^{24}-\overline{bII}_{o}^{c}-\overline{bII}_{o}^{e},$

$\delta_{1}(\tilde{b}I_{e}^{8})$

$=$
$-\overline{bII}_{o}^{2,8}+\overline{bII}_{e}^{2,8}-\overline{bII}_{o}^{3_{)}8}+\overline{bII}_{e}^{3,8}-\overline{bII}_{o}^{4,8}+\overline{bII}_{e}^{4,8}-\overline{bII}_{o}^{6,8}$

$+\overline{bII}_{e}^{6,8}+\overline{bII}_{e}^{23}-\overline{bII}_{o}^{24}+\overline{bII}_{e}^{24}+\overline{bII}_{e}^{c}+\overline{bII}_{e}^{e}.$

Note that in a particular case, similar formulas have been obtained in [7, \S 6].
Then, by a straightforward computation, we get the following.
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Proposition 6.2. The cohomology groups of the universal complex

$C\mathcal{O}(bS_{pr}(3,2), \rho_{3,2}(2))$

of $co$-orientable fibers for proper stable maps of 3-manifolds with boundary into surfaces
without boundary, are described as follows:

(1) $H^{0}(C\mathcal{O}(b\mathcal{S}_{pr}(3,2), \rho_{3,2}(2));\mathbb{Z})\cong \mathbb{Z}$ , generated by $[\overline{b0}_{o}+\overline{b0}_{e}],$

(2) $H^{1}(C\mathcal{O}(bS_{pr}(3,2), \rho_{3,2}(2));\mathbb{Z})\cong \mathbb{Z}$ , generated by

$\gamma_{1}=[\tilde{b}I_{o}^{2}+\tilde{b}I_{e}^{3}+\tilde{b}I_{e}^{4}+\tilde{b}I_{o}^{6}+\tilde{b}I_{e}^{8}]=-[\tilde{b}I_{e}^{2}+\tilde{b}I_{o}^{3}+\tilde{b}I_{o}^{4}+\tilde{b}I_{e}^{6}+\tilde{b}I_{o}^{8}].$

Note that the ranks of $CO^{i}(bS_{pr}(3,2), \rho_{3,2}(2))$ , $i=0$ , 1, 2, are equal to 2, 10 and 40,
respectively.

Suppose that we have a stable Morse function $f:Varrow W$ of a compact surface
$V$ with boundary into a 1-dimensional manifold without boundary. Furthermore,
we assume that $W$ is oriented. Using the orientation of $W$ , we can co-orient each
co-orientable singular fiber (of codimension 1) of $f$ . In this way, we can define a $bS_{pr^{-}}$

cobordism invariant for such stable Morse functions as above for each cohomology class
of the universal complex.

Unfortunately, it turns out that the $bS_{pr}$-cobordism invariant $s_{1*}\gamma_{1}$ is trivial, which
can be proved by using the same argument as in [6, Lemma 14.1]. This reflects the
fact that any two stable Morse functions on compact surfaces are $bS_{pr}$-cobordant.

For admissible maps, we get the following.

Proposition 6.3. The cohomology groups of the universal complex

$C\mathcal{O}(\mathcal{A}S_{pr}(3,2), \rho_{3,2}(2))$

of $co$-orientable fibers for proper admissible stable maps of $3-manifold_{\mathcal{S}}$ with boundary
into surfaces without boundary, are described as follows:

(1) $H^{0}(C\mathcal{O}(\mathcal{A}S_{pr}(3,2), \rho_{3,2}(2));\mathbb{Z})\cong \mathbb{Z}$ , generated by $[\overline{b0}_{o}+\overline{b0}_{e}],$

(2) $H^{1}(C\mathcal{O}(\mathcal{A}S_{pr}(3,2), \rho_{3,2}(2));\mathbb{Z})\cong \mathbb{Z}$ , generated by

$\gamma_{2}=[\tilde{b}I_{o}^{2}+\tilde{b}I_{e}^{3}+\tilde{bI}_{e}^{4}+\tilde{b}I_{o}^{6}+\tilde{b}I_{e}^{8}]=-[\tilde{bI}_{e}^{2}+\tilde{bI}_{o}^{3}+\tilde{bI}_{o}^{4}+\tilde{bI}_{e}^{6}+\tilde{bI}_{o}^{8}]$

Note that the ranks of $CO^{i}(\mathcal{A}S_{pr}(3,2), \rho_{3,2}(2))$ , $i=0$ , 1, 2, are equal to 2, 10 and 34,
respectively.

Unfortunately, it turns out again that the $\mathcal{A}S_{pr}$-cobordism invariant $s_{1*}\gamma_{2}$ is trivial,
which is shown by using the same argument as in [6, Lemma 14.1].

This supports the following conjecture.

Conjecture 6.4. The $\mathcal{A}\mathcal{S}_{pr}$ -cobordism group of stable Morse functions on compact

surfaces with boundary with values in $\mathbb{R}$ is isomorphic to $\mathbb{Z}_{2}.$

Note that the $\mathcal{A}S_{pr}$-cobordism classes as above form an abelian group, where the
addition is given by the disjoint union, and the inverse element of a given map $f$ is
given by $-f$ . Then, for each cohomology class of the universal complex of co-orientable
fibers with coefficients in $\mathbb{Z}$ , the associated cobordism invariant gives a homomorphism
into $\mathbb{Z}$ . Therefore, if the answer to the above conjecture is affirmative, then such a
homomorphism must necessarily vanish.
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7. SUBCOMPLEXES CORRESPONDING TO ORIENTABLE MANIFOLDS

We can naturally define the subcomplex $C(bS_{pr}(3,2)^{ori}, \rho_{3,2}(2))$ of the universal com-
plex $C(bS_{pr}(3,2), \rho_{3,2}(2))$ with $\mathbb{Z}_{2}$-coefficients which is generated by the classes of fibers
of maps of orientable manifolds. In this case, its cohomology classes give $bS_{pr}$-cobordism
invariants of maps of orientable manifolds with respect to orientable cobordisms.

Remark 7.1. If the source 3-manifold is orientable, then the singular fibers of types
$\tilde{b}I^{9},$ $\tilde{bI}^{10},$ $\overline{bII}^{26}\overline{bII}^{27},$ $\overline{bII}^{28},$ $\overline{bII}^{29},$ $\overline{bII}^{30},$ $\overline{bII}^{31},$ $\overline{bII}^{32},$ $\overline{bII}^{33},$ $\overline{bII}^{34},$ $\overline{bII}^{35},$ $\overline{bII}^{36},$

$\overline{bII}^{37}$

$\tilde{bII}^{38}$

, and
$\overline{bII}^{39\prime}$

never appear. Thus, the above-mentioned complex is obtained by just
ignoring these fibers.

Then, using results of [12], we get the following.

Proposition 7.2. The cohomology groups of $C(bS_{pr}(3,2)^{ori}, \rho_{3,2}(2))$ are described as
follows:

(1) $H^{0}(C(bS_{pr}(3,2)^{ori}, \rho_{3,2}(2)))\cong \mathbb{Z}_{2}$ , generated by $[\overline{b0}_{o}+\overline{b0}_{e}],$

(2) $H^{1}(C(bS_{pr}(3,2)^{ori}, \rho_{3,2}(2)))\cong \mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$ , generated by

$\beta = [\tilde{b}I^{6}+\tilde{b}I^{7}+\tilde{b}I^{8}]=[\tilde{bI}^{2}+\tilde{bI}^{3}+\tilde{bI}^{4}+\tilde{bI}^{7}],$

$\gamma = [\tilde{b}I_{o}^{2}+\tilde{bI}_{e}^{3}+\tilde{bI}_{e}^{4}+\tilde{bI}_{o}^{6}+\tilde{bI}_{e}^{8}]=[\tilde{bI}_{e}^{2}+\tilde{b}I_{o}^{3}+\tilde{bI}_{o}^{4}+\tilde{bI}_{e}^{6}+\tilde{bI}_{o}^{8}].$

By the same reason as before, these cohomology classes give rise to trivial cobordism
invariants.

For admissible maps, we can also consider the subcomplex $C(\mathcal{A}S_{pr}(3,2)^{ori}, \rho_{3,2}(2))$

of the universal complex $C(\mathcal{A}S_{pr}(3,2), \rho_{3,2}(2))$ with $\mathbb{Z}_{2}$-coefficients which is generated
by the classes of fibers of maps of orientable manifolds. In this case, its cohomology
classes give $\mathcal{A}S_{pr}$-cobordism invariants of maps of orientable manifolds with respect to
orientable cobordisms.

Then, using results of [12], we get the following.

Proposition 7.3. The cohomology groups of the universal complex

$C(\mathcal{A}S_{pr}(3,2)^{ori}, \rho_{3,2}(2))$

for admissible stable maps of orientable 3-manifolds with boundary to surfaces without
boundary with respect to the $C^{0}$ equivalence modulo two regular fiber components are
described as follows:

(1) $H^{0}(C(\mathcal{A}S_{pr}(3,2)^{ori}, \rho_{3,2}(2)))\cong \mathbb{Z}_{2}$ , generated by $[\overline{b0}_{o}+\overline{b0}_{e}],$

(2) $H^{1}(C(\mathcal{A}S_{pr}(3,2)^{ori}, \rho_{3,2}(2)))\cong \mathbb{Z}_{2}\oplus\mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$ , generated by

$\alpha = [\tilde{b}I^{2}+\tilde{b}I^{3}+\tilde{b}I^{4}+\tilde{b}I^{5}],$

$\beta = [\tilde{b}I^{2}+\tilde{b}I^{3}+\tilde{b}I^{4}+\tilde{b}I^{7}]=[\tilde{b}I^{6}+\tilde{b}I^{7}+\tilde{b}I^{8}],$

$\gamma = [\tilde{b}I_{o}^{2}+\tilde{b}I_{e}^{3}+\tilde{b}I_{e}^{4}+\tilde{b}I_{o}^{6}+\tilde{b}I_{e}^{8}]=[\tilde{b}I_{e}^{2}+\tilde{b}I_{o}^{3}+\tilde{b}I_{o}^{4}+\tilde{b}I_{e}^{6}+\tilde{b}I_{o}^{8}].$

The non-trivial example given in [12, Corollary 4.9] is a stable Morse function on $D^{2},$

which is orientable. Therefore, we see that $\mathcal{S}_{1*}\alpha$ again induces a non-trivial $\mathbb{Z}_{2}$-invariant
of the orientable $\mathcal{A}\mathcal{S}_{pr}$-cobordisms of stable Morse functions on compact orientable
surfaces.
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We can also consider the subcomplex $C\mathcal{O}(bS_{pr}(3,2)^{ori}, \rho_{3,2}(2))$ of the universal com-
plex $C\mathcal{O}(bS_{pr}(3,2), \rho_{3,2}(2))$ with coefficients in $\mathbb{Z}$ which is generated by the classes of
fibers of maps of orientable manifolds. In this case as well, its cohomology classes give
$bS_{pr}$-cobordism invariants of maps of orientable manifolds with respect to orientable
cobordisms.

Then, using the coboundary formulas in \S 6, we get the following.

Proposition 7.4. The cohomology groups of the universal complex

$C\mathcal{O}(bS_{pr}(3,2)^{ori}, \rho_{3,2}(2))$

of $co$-orientable fibers for proper stable maps of 3-manifolds with boundary into surfaces
without boundary, are described as follows:

(1) $H^{0}(C\mathcal{O}(bS_{pr}(3,2), \rho_{3,2}(2));\mathbb{Z})\cong \mathbb{Z}$ , 9enerated by $[\overline{b0}_{o}+\overline{b0}_{e}],$

(2) $H^{1}(C\mathcal{O}(bS_{pr}(3,2), \rho_{3,2}(2));\mathbb{Z})\cong \mathbb{Z}$ , generated by

$\gamma_{1}=[\tilde{b}I_{o}^{2}+\tilde{b}I_{e}^{3}+\tilde{b}I_{e}^{4}+\tilde{b}I_{o}^{6}+\tilde{b}I_{e}^{8}]=-[\overline{b}I_{e}^{2}+\tilde{b}I_{o}^{3}+\overline{b}I_{o}^{4}+\tilde{b}I_{e}^{6}+\tilde{b}I_{o}^{8}].$

Finally, for the subcomplex

$C\mathcal{O}(\mathcal{A}S_{pr}(3,2)^{ori}, \rho_{3,2}(2))$

of the universal complex $C\mathcal{O}(\mathcal{A}\mathcal{S}_{pr}(3,2), \rho_{3,2}(2))$ with coefficients in $\mathbb{Z}$ which is gener-
ated by the classes of fibers of maps of orientable manifolds, we have the following.

Proposition 7.5. The cohomology groups of the universal complex

$C\mathcal{O}(\mathcal{A}S_{pr}(3,2)^{ori}, \rho_{3,2}(2))$

of $co$ -orientable fibers for proper admissible stable maps of orientable $3-manif_{C)}lds$ with
boundary into surfaces without boundary, are described as follows:

(1) $H^{0}(C\mathcal{O}(\mathcal{A}S_{pr}(3,2)^{ori}, \rho_{3,2}(2));\mathbb{Z})\cong \mathbb{Z}$ , generated by $[\overline{b0}_{o}+\overline{b0}_{e}],$

(2) $H^{1}(C\mathcal{O}(\mathcal{A}S_{pr}(3,2)^{ori}, \rho_{3,2}(2));\mathbb{Z})\cong \mathbb{Z}$ , generated by

$\gamma_{2}=[\overline{b}I_{o}^{2}+\tilde{b}I_{e}^{3}+\tilde{b}I_{e}^{4}+\tilde{b}I_{o}^{6}+\tilde{b}I_{e}^{8}]=-[\tilde{b}I_{e}^{2}+\tilde{b}I_{o}^{3}+\tilde{b}I_{o}^{4}+\tilde{b}I_{e}^{6}+\tilde{b}I_{o}^{8}]$

We can show again that all these cohomology classes in Propositions 7.4 and 7.5 give
trivial cobordism invariants.

These results support the following conjecture.

Conjecture 7.6. The orientable $\mathcal{A}\mathcal{S}_{pr}$ -cobordism group of stable Morse functions on
compact orientable surfaces with boundary with values in $\mathbb{R}$ is isomorphic to $\mathbb{Z}_{2}.$
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