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1 Introduction

In this survey article we give expositions about the resent researches for the generic singu-

larities which appear on tangent surfaces in various geometric frameworks. Actually we give

the review of the recent paper [19] with the results appeared in [15][16][17][18].

Given a curve in Euclidean 3-space $E^{3}=R^{3}$ , the embedded tangent lines to the curve
draw a surface in $R^{3}$ , which is called the tangent surface (or tangent developable) to
the curve.

It is known that the tangent surfaces (tangent developables) are developable surfaces.
Developable surfaces which are locally isometric to the plane keep on interesting many math-
ematicians, for instance, Monge (1764), Euler (1772), Cayley (1845), Lebesgue (1899). See
[23] for details. Therefore the tangent surfaces are regarded as generalised solutions (with

singularities) of the Monge-Amp\‘ere equation

$\frac{\partial^{2}z}{\partial x^{2}}\frac{\partial^{2}z}{\partial y^{2}}-(\frac{\partial^{2}z}{\partial x\partial y})^{2}=0$

on spacial surfaces $z=z(x, y)$ . This property is related to “projective duality”’ : The projective

dual of a tangent surface collapse to a $cur^{v}ue$ (the dual curve). See [11].
Let $\gamma$ : $Rarrow R^{3}$ be an immersed curve. Then the tangent surface has the natural

parametrization
$Tan(\gamma)$ : $R^{2}arrow R^{3},$ $Tan(\gamma)(t, s)$ $:=\gamma(t)+s\gamma’(t)$ .

The tangent surface necessarily has singularities at least along $\gamma$ , “the edge of regression
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Example 1.1 Let $\gamma$ : $Rarrow R^{3},$ $\gamma(t)=(t, t^{2}, t^{3})$ . Then the tangent surface $Tan(\gamma)$ : $R^{2}arrow$

$R^{3}$ is given by $Tan(\gamma)=\gamma(t)+s\gamma’(t)=(t+s, t^{2}+2st, t^{3}+3st^{2})$ . For the Jacobi matrix we
have

$J_{F}=(\begin{array}{ll}1 12t+2s 2t3t^{2}+6st 3t^{2}\end{array})\sim(\begin{array}{ll}0 12s 2t6st 3t^{2}\end{array})$

and we have rank $J_{F}<2$ if and only if $s=0$ . Take the transversal $\{x_{1}=0\}$ , then, $s=-t,$
and we have $x_{2}=-t^{2},$ $x_{3}=-2t^{3}$ , the planar cusp.

It is known that the tangent surface to a generic curve $\gamma$ : $Rarrow R^{3}$ in $R^{3}$ has singularities
only along $\gamma$ and is locally diffeomorphic to the cuspidal edge or to the folded umbrella (also
called, the cuspidal cross cap), as is found by Cayley and Cleave (1980). Cuspidal edge
singularities appear along ordinary points where $\gamma’,$

$\gamma$ $\gamma$ are linearly independent, while
the folded umbrellas appear at isolated points of zero torsion where $\gamma’,$

$\gamma$ $\gamma$ are linearly
dependent but $\gamma’,$

$\gamma$ $\gamma$ are linearly independent.

cuspidal edge folded umbrella

The diffeomorphism equivalence is given by the commutative diagram:

$(R^{2}, (t_{0}, s_{0})) arrow^{F} (R^{3}, F(t_{0}, s_{0}))$

$t\downarrow 0 l\downarrow$

$(R^{2}, (t_{1}, s_{1})) arrow^{G} (R^{3}, G(t_{1}, s_{1}$
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More degenerate singularities of tangent surfaces are classified by Mond, Arnold, Scherbak
See [11].

In a higher dimensional space $R^{m},$ $m\geq 4$ , for an immersed curve $\gamma$ : $Rarrow R^{m}$ , we define
the tangent surface $Tan(\gamma)$ : $R^{2}arrow R^{m}$ by $Tan(\gamma)(t, s)$ $:=\gamma(t)+s\gamma’(t)$ . Then we have
generically that $\gamma’,$

$\gamma$ $\gamma$ are linearly independent and $Tan(\gamma)$ is locally diffeomorphic to the
(embedded) cuspidal edge in $R^{m}$ . See [14].

(embedded) cuspidal edge

$A$ (not necessarily immersed) $C^{\infty}$ curve $\gamma$ : $Rarrow R^{m}$ is called directed if there exists a
frame $u:Rarrow R^{m},$ $u(t)\neq 0$ , such that

$\gamma’(t)\in\langle u(t)\rangle_{R}, t\in R.$

It is the projection of a $C^{\infty}$ curve $\tilde{\gamma}:Rarrow PTR^{m}$ satisfying

$\gamma’(t)\in\tilde{\gamma}(t) , (t\in R)$ ,

where
PT$R^{m}=\{(x, \ell)|x\in R^{m}, \ell\subset T_{x}R^{m}, \dim(\ell)=1\}$

is the manifold consisting of all tangential lines.

A directed curve $t\mapsto(t^{2}, t^{3}, t^{4})$ in $R^{3}.$

Then the tangent surface Tan(7) : $R^{2}arrow R^{m}$ of a directed curve $\gamma$ is defined by

Tan$(\gamma)(t, s)$ $:=\gamma(t)+su(t)$

The right equivalence class of $Tan(\gamma)$ is independent of the choice of frame $u.$

Tangent surface Tan(7) of the directed curve.
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Then we have

Theorem 1.2 ([14]) The singularities of the tangent surface $Tan(\gamma)$ for a generic directed

curve $\gamma$ : $Rarrow R^{m}$ on a neighbourhood of the curve are only the cuspidal edge, the folded
umbrella, and swallowtail if $m=3$ , and the embedded cuspidal edge and the open swallowtail

if $m\geq 4.$

Swallowtail in $R^{3}$ , Open Swallowtail in $R^{4}.$

The notion of tangent surfaces ruled by “tangent lines” to directed curves is naturally

generalised in various ways:
– For a curve in a projective space, regard tangent projective lines as “tangent lines”’
– For a curve in a Riemannian manifold, regard tangent geodesics as tangent lines”’
– For a null curve of a semi (pseudo)-Riemannian manifold, regard tangent lines by null

geodesics.
– For a horizontal curve of a sub-Riemannian manifold, gerard tangent lines by abnormal

geodesics.

2 $A_{n}$-geometry

We would like to show generalisations (or specialisations) to the cases with additional geomet-

ric structures. In the paper [18], we have given a series of classification results of singularities

of tangent surfaces in $D_{n}$-geometry, i.e. the geometry associated with the group $O(n, n)$

preserving. In this occasion we will give a series of classification results of singularities of

tangent surfaces in $A_{n}$-geometry, i.e. the geometry associated to the group $PGL(n+1,R)$ .

Let $V=R^{n+1}$ be the vector space of dimension $n+1$ and consider a flag in $V$ of the

following type (a complete flag):

$V_{1}\subset V_{2}\subset V_{3}\subset\cdots\subset V_{n}\subset V, \dim(V_{i})=i.$

The set of such flags form a manifold of dimension $\frac{n(n+1)}{2}.$

A one-parameter family of flags (a curve on the flag manifold)

$V_{1}(t)\subset V_{2}(t)\subset V_{3}(t)\subset\cdots\subset V_{n}(t)\subset V$

is called admissible if the infinitesimal movement of $V_{1}(t)$ at $t_{0}$ belongs to $V_{2}(t_{0})$ , the in-

finitesimal movement of $V_{2}(t)$ at $t_{0}$ belongs to $V_{3}(t_{0})$ and so on, for any $t_{0}.$

A curve in the projective space $P(V)=P(V^{n+1})$ arises an admissible curve if we regard

its osculating planes: the curve itself is given by $V_{1}(t)$ , the tangent line is given by $V_{2}(t)$ , the

osculating plane is given by $V_{3}(t)$ and so on.
We can define a distribution (a differential system) on the flag manifold such that a

curve on the flag manifold is admissible if and only if the curve is an integral curve to that

distribution. The distribution is one of Cartan’s canonical distributions defined from simple

Lie algebras, the central objects for the theory by Noboru Tanaka after E. Cartan.
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Let $n=2$ . Let $V_{1}(t)\subset V_{2}(t)\subset V=R^{3}$ be an admissible curve. For each $t_{0}$ , planes $V_{2}$

satisfying $V_{1}(t_{0})\subset V_{2}\subset V$ form the tangent line to the curve $\{V_{1}(t)\}$ at $t=t_{0}$ in $P(V)=P^{2}.$

Similarly lines $V_{1}$ satisfying $V_{1}\subset V_{2}(t_{0})$ form the tangent line to the dual curve $\{V_{2}(t)\}$ at
$t=t_{0}$ in $Gr(2, V)=P(V^{*})=P^{2*}$ , the dual projective plane. For a generic admissible curve,
we have the duality on “tangent maps

Let $n=3$ . Let $V_{1}(t)\subset V_{2}(t)\subset V_{3}(t)\subset V=R^{4}$ be an admissible curve. It induces a
curve in $P^{3}=P(R^{4})$ , a curve in $Gr(2, R^{4})$ and a curve in $P^{3*}=Gr(3, R^{4})$ naturally. Then
we have the following duality on their “tangent surfaces which are ruled by tangent lines
defined naturally by the flags:

For a generic admissible curve

$V_{1}(t)\subset V_{2}(t)\subset V_{3}(t)\subset\cdots\subset V_{n}(t)\subset V,$

we have the classification of singularities of tangent surfaces:

Theorem 2.1 $(A_{n}, n\geq 4)$ The classification list consists of $n+1$ cases for curves in Grass-
mannians:

$\overline{\frac{P^{n}Gr(2,V)Gr(3,V)Gr(4,V)\cdot..\cdot.Gr(n,V)}{CECECECECE}}$

OSW CE CE CE . . . CE
OM OSW CE CE . . . OFU
OFU CE OSW CE . . . OM
CE CE CE OSW . . . CE

: : : : :

CE CE CE CE . . . OSW
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The cuspidal edge (resp. open swallowtail, open Mond surface, open folded
umbrella) is defined as a diffeomorphism class of the tangent surface-germ to a curve of
type $(1, 2, 3, \cdots)$ $($resp. $(2, 3, 4, 5, \cdots),$ $(1,3,4,5, \cdots),$ $(1,2,4,5, \cdots))$ in an affine space. Their
normal forms are given as follows:

CE : $(R^{2},0)arrow(R^{m}, 0)$ , $m\geq 3,$

$(u, t)\mapsto(u, t^{2}-2ut, 2t^{3}-3ut^{2},0, \ldots, 0)$ .

OSW : $(R^{2},0)arrow(R^{m}, 0)$ , $m\geq 4,$

$(u, t)\mapsto(u, t^{3}-3ut, t^{4}-2ut^{2},3t^{5}-5ut^{3},0, \ldots, 0)$ .

OM : $(R^{2},0)arrow(R^{m}, 0)$ , $m\geq 4,$

$(u, t)\mapsto(u, 2t^{3}-3ut^{2},3t^{4}-4ut^{3},4t^{5}-5ut^{4},0, \ldots, 0)$ .

OFU : $(R^{2},0)arrow(R^{m}, 0)$ , $m\geq 4,$

$(u, t)\mapsto(u, t^{2}-2ut, 3t^{4}-4ut^{3},4t^{5}-5ut^{4},0, \ldots, 0)$ .

CE OSW OM OFU

The “stability” of the classification lists of singularities for flags of type $A_{n}$ when $narrow\infty$

(from $n\geq 4$ ) is observed.

3 Affine connection and tangent surface

Now let us consider the case of directed curves in a Riemannian manifold, or more generally,
the case of directed curves in a manifold with any affine connection, which is not necessarily
projectively flat. For any directed curve, we have the well-defined tangent geodesic to each
point of the curve. If we regard it as the tangent line then we have the well-defined tangent
surface for the directed curve.

Theorem 3.1 ([19]) For any affine connection on a manifold of dimension $m\geq 3$ , the
singularities of the tangent surface to a generic directed curve on a neighbourhood of the
curve are only the cuspidal edge, the folded umbrella, and swallowtail if $m=3$ , and the
embedded cuspidal edge and the open swallowtail if $m\geq 4.$

Theorem 3.2 ([19])
Let $\nabla$ be any torsion-free affine connection on a manifold M. Let $\gamma$ : $Rarrow M$ be a $C^{\infty}$ curve.
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(1) Let $\dim(M)=3$ . If $(\nabla\gamma)(t_{0})$ , $(\nabla^{2}\gamma)(t_{0})$ , $(\nabla^{3}\gamma)(t_{0})$ are linearly independent at $t=t_{0}\in$

$R$ , then the tangent surface $Tan(\gamma)$ is locally diffeomorphic to the cuspidal edge at $(t_{0},0)\in R^{2}.$

If $(\nabla\gamma)(t_{0})$ , $(\nabla^{2}\gamma)(t_{0})$ , $(\nabla^{3}\gamma)(t_{0})$ are linearly dependent, and $(\nabla\gamma)(t_{0})$ , $(\nabla^{2}\gamma)(t_{0})$ , $(\nabla^{4}\gamma)(t_{0})$

are linearly independent, then the tangent surface $Tan(\gamma)$ is locally diffeomorphic to the folded
umbrella at $(f_{0},0)\in R^{2}$ . If $(\nabla\gamma)(t_{0})=0$ and $(\nabla^{2}\gamma)(t_{0})$ , $(\nabla^{3}\gamma)(t_{0})$ , $(\nabla^{4}\gamma)(t_{0})$ are linearly
independent, then the tangent surface $Tan(\gamma)$ is locally diffeomorphic to the swallowtail at
$(t_{0},0)\in R^{2}.$

(2) Let $\dim(M)\geq 4$ . If $(\nabla\gamma)(t_{0})$ , $(\nabla^{2}\gamma)(t_{0})$ , $(\nabla^{3}\gamma)(t_{0})$ are linearly independent at $t=$

$t_{0}\in R$ , then the tangent surface $Tan(\gamma)$ is locally diffeomorphic to the embedded cuspidal
edge at $(t_{0},0)\in R^{2}$ . If $(\nabla\gamma)(t_{0})=0$ and

$(\nabla^{2}\gamma)(t_{0}) , (\nabla^{3}\gamma)(t_{0}) , (\nabla^{4}\gamma)(t_{0}) , (\nabla^{5}\gamma)(t_{0})$

are linearly independent at $t=t_{0}\in R$ , then the tangent surface $Tan(\gamma)$ is locally diffeomor-
phic to the open swallowtail at $(t_{0},0)\in R^{2}.$

4 Degeneracy type of a curve

Let $\gamma$ : $Rarrow M$ be a $C^{\infty}$ curve and $t_{0}\in I$ . Define

$a_{1} := \inf\{k|k\geq 1, (\nabla^{k}\gamma)(t_{0})\neq 0\}.$

Note that $\gamma$ is an immersion at $t_{0}$ if and only if $a_{1}=1$ . If $a_{1}<\infty$ , then define

$a_{2}$ $:= \inf\{k|$ rank $((\nabla\gamma)(t_{0}),$ $(\nabla^{2}\gamma)(t_{0}),$

$\ldots,$
$(\nabla^{k}\gamma)(t_{0}))=2\}.$

We have $1\leq a_{1}<a_{2}$ . If $a_{i}<\infty,$ $1\leq i<\ell\leq m$ , then define $a_{\ell}$ inductively by

$ap$ $:= \inf\{k|$ rank $((\nabla\gamma)(t_{0}),$ $(\nabla^{2}\gamma)(t_{0}),$

$\ldots,$
$(\nabla^{k}\gamma)(t_{0}))=\ell\}.$

If $a_{m}<\infty$ , then we call the strictly increasing sequence $(a_{1}, a_{2}, \ldots, a_{m})$ of natural numbers
the type of $\gamma$ at $t_{0}.$

In the generic cascs, types for curves uniquely determine the local diffeomorphism classes
of tangent surfaces.

5 Generalised frontals

Definition 5.1 Let $n\leq m=\dim(M)$ . A $c\infty$ map-germ $f$ : $(R^{n},p)arrow M$ is called a
frontal, in a generalised sense, if there exists a $C^{\infty}$ frame $V_{1},$ $V_{2}$ , . . . , $V_{n}$ : $(R^{n},p)arrow TM$

along $f$ and a $C^{\infty}$ fUnction-germ $\sigma$ : $(R^{n},p)arrow R$ such that

$( \frac{\partial f}{\partial t_{1}}\wedge\frac{\partial f}{\partial t_{2}}\wedge\cdots\wedge\frac{\partial f}{\partial t_{n}})(t)=\sigma(t)(V_{1}\wedge V_{2}\wedge\cdots\wedge V_{n})(t)$ ,

as germs of $n$-vector fields $(R^{n},p)arrow\wedge^{n}T1I\ell$ over $f$ . Here $t_{1},$ $t_{2}$ , . . . , $t_{n}$ are coordinates on
$(R^{n},p)$ .

For $n=1$ , a frontal was called a directed curve.
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A frame of swallowtail in $R^{3}.$

The singular locus (non-immersive locus) $S(f)$ of $f$ coincides with the zero locus $\{\sigma=0\}$

of $\sigma$ . We call $\sigma$ a signed area density function or briefly an $s$-function of the frontal
$f$ associated with the frame. We say that frontal $f$ : $(R^{n},p)arrow M$ has a non-degenerate

singular point at $p$ if the signed area density function $\sigma$ of $f$ satisfies that $\sigma(p)=0$ and
$d\sigma(p)\neq$ O. The condition is independent of the choice of $V_{1},$ $V_{2}$ , . . . , $V_{n}$ and $\sigma$ . If $f$ has

a non-degenerate singular point at $p$ , then $f$ is of corank 1 such that the singular locus
$S(f)\subset(R^{n},p)$ is a regular hypersurface. The above notions are generalisations of those

introduced in the case $n=2,$ $\dim(M)=3$ by Kokubu, Rossman, Saji, Umehara, Yamada

(2005) and Fujimori, Saji, Umehara, Yamada (2008).

The following is one the keys to show the above theorems:

Proposition 5.2 Let $\gamma$ : $Rarrow 1I_{i}f$ be a $C^{\infty}$ curve, $t_{0}\in R$ , and $k\geq 1$ . Suppose that
$(\nabla^{i}\gamma)(t_{0})=0,$ $1\leq i<k$ and that $(\nabla^{k}\gamma)(t_{0})$ , $(\nabla^{k+1}\gamma)(t_{0})$ are linearly independent. Then the

germ of tangent surface $Tan(\gamma)$ is a frontal with non-iegenerate singular point at $(t_{0},0)$ and

with the singular locus $S(\nabla-Tan(\gamma))=\{s=0\}$ . Moreover $Tan(\gamma)$ is diffeomorphic to an

“opening”of a plane-to-plane map-germ $(R^{2},0)arrow(R^{2},0)$ of Thom-Boardman type $\Sigma^{1^{k},0}.$

We also need the characterisation of swallowtails (resp. the characterisation of cuspidal

cross caps (folded umbrella)) found by Kokubu, Rossman, Saji, Umehara, Yamada (2005)

(resp. Fujimori, Saji, Umehara, Yamada (2008)).
We briefly give the coordinate-free characterisations of cuspidal edge and cuspidal cross

cap by Fujimori, Saji, Umehara, Yamada (2008).

Let $f$ : $(R^{2},p)arrow M^{3}$ be a frontal with a non-degenerate singular point $p$ with a frame
$V_{1},$ $V_{2}$ . Take an annihilator $L:(R^{2},p)arrow T^{*}lIT\backslash \zeta$ of $V_{1},$ $V_{2}$ , a kernel field $\eta$ : $(R^{2},p)arrow TM$

of the differential $f_{*}$ , and a parametrisation $c:(R, t_{0})arrow(R^{2}, p)$ of the singular locus $S(f)$ .
Suppose $V_{2}(p)\not\in f_{*}(T_{p}R^{2})$ . Then define

$\psi(t)=\langle L(c(t), (\nabla_{\eta}^{f}V_{2})(c(t))\rangle.$

In terms of the function $\psi$ , the characterisations are given:
$f$ is diffeomorphic to the cuspidal edge if and only if $\psi(t_{0})\neq 0.$

$f$ is diffeomorphic to the cuspidal cross cap (or the folded umbrella) if and only if $\psi(t_{0})=$

$0,$ $\psi’(t_{0})\neq 0.$

6 Geometric structures on spaces

Now we recall the classification of simple Lie algebras over the complex numbers by Dynkin

diagrams [4]:
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$A_{n}$ $sl(n+1, \mathbb{C})$

Bn so$(2n+1, C)$

$c_{n}$ $sp(2n, \mathbb{C})$

$D_{n}$ so$(2n, C)$

$E_{6}$

$E_{7}$

$E_{8}$

$F_{4}$

mo $G_{2}$

Dynkin diagrams of simple Lie algebras $/C$

We also recall the relations on several Dynkin diagrams with few vertices:

$A$

$\downarrow A \downarrow$

$A$2 $C_{2}=B_{2}$
$G_{2}$

$\mapstoarrow \infty arrow \Leftrightarrow$

We recall the generic singularities of “tangent maps” of planar fronts in $A_{2}$-geometry
(planar projective geometry):
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Then the classification of singularities of tangent surfaces looks like an (opening” $ofA_{2}$

theory. However, we need to construct explicit geometric model and perform detailed calcu-

lation to realise the exact list of the classification.

7 Distribution and its integral curves

The notion of “tangent surfaces” is generalised in various ways. For an integral curve in a

sub-Riemannian manifold, we regard tangent abnormal geodesics as tangent lines.

Let $M$ be a $C^{\infty}$ manifold and $\mathcal{D}\subset TM$ a subbundle of the tangent bundle $TM$ . Often
$\mathcal{D}$ is called a distribution or a differential system on $M.$

Definition 7.1 A $C^{\infty}$ curve $\gamma$ : $Rarrow M$ is called $\mathcal{D}$-integral if

$\gamma’(t)\in \mathcal{D} (t\in R)$ .

Moreover $\gamma$ : $Rarrow M$ is called $\mathcal{D}$-directed if there exists a $C^{\infty}$ mapping $u:Rarrow \mathcal{D}$ such that

the following diagram commutes:

$u$ : $R$ $arrow$
$\mathcal{D}$

$\gamma\searrow 0 \swarrow\pi$

$M$

and that

$\{\begin{array}{l}u(t)\neq 0,\gamma’(t)\in\langle u(t)\rangle_{R}, t\in R.\end{array}$

Let $(M, \mathcal{D}, g)$ be a sub-Riemannian manifold. Here $\mathcal{D}\subset TM$ is $a$ (completely non-

integrable) distribution, and $g$ is a Riemannian metric on $\mathcal{D}$ . Regarding the problem on

length minimising on $\mathcal{D}$-integral curves $\gamma$ : $[a, b]arrow M,$

$\ell(\gamma)=\int^{b}\sqrt{9_{\gamma(t)}(\gamma’(t),\gamma’(t))}dt,$

we have two kinds of geodesics (extremals), normal geodesics and abnormal geodesics.

Note that in Riemannian geometry, where $\mathcal{D}=TM$ , all geodesics are normal. Moreover it is

known that abnormal geodesics are defined only by the distribution $\mathcal{D}.$

8 $G_{2}$-Cartan distribution

Let $M$ be a 5-dimensional manifold and $\mathcal{D}\subset TM$ a distribution of rank 2. Then $\mathcal{D}$ is called a

Cartan distribution if it has growth $(2, 3, 5)$ , namely, if rank $(\mathcal{D}^{(2)})=3$ and rank $(\mathcal{D}^{(3)})=5,$

where, we define in terms of Lie bracket, $\mathcal{D}^{(2)}=\mathcal{D}+[\mathcal{D}, \mathcal{D}]$ and $\mathcal{D}^{(3)}=\mathcal{D}^{2}+[\mathcal{D}, \mathcal{D}^{2}]$ . It is

known that, for any point $x$ of $\Lambda l$ and for any direction $\ell\subset \mathcal{D}_{x}$ , there exists an abnormal

geodesic, which is unique up to parametrisations, through $x$ with the given direction $\ell.$
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Then, for a given $\mathcal{D}$-directed curve $\gamma$ , we define abnormal tangent surface of $\gamma$ , which is
ruled by abnormal geodesics through points $\gamma(t)$ with the directions $u(t)$ .

On $R^{5}$ with coordinates $(\lambda, v, \mu, \tau, \sigma)$ , define the distribution $\mathcal{D}\subset TR^{6}$ generated by the
pair of vector fields

$\eta_{1} = \frac{\partial}{\partial\lambda}+\nu\frac{\partial}{\partial\mu}-(\lambda\nu-\mu)\frac{\partial}{\partial\tau}+\nu^{2}\frac{\partial}{\partial\sigma},$

$\eta_{2} = \frac{\partial’}{\partial\nu}-\lambda\frac{\partial}{\partial\mu}+\lambda^{2}\frac{\partial}{\partial\tau}-(\lambda\nu+\mu)\frac{\acute{\zeta})}{\partial\sigma}.$

Then $\mathcal{D}$ is a Cartan distribution and it has maximal symmetry of dimension 14, maximal
among all Cartan distributions, which is of type $G_{2}$ , one of simple Lie algebras. The distri-
bution $\mathcal{D}\subset TR^{6}$ is also defined by $\{\beta_{1}=0,$ $\beta_{2}=0,$ $\beta_{3}=0$ , where

$\beta_{1} := -\nu d\lambda+\lambda d\nu+d\mu=0,$

$\beta_{2} := (\lambda\nu-\mu)d\lambda-\lambda^{2}d\nu+d\tau=0,$

$\beta_{3} := -\nu^{2}d\lambda+(\lambda\nu+\mu)d\nu+d\sigma=0.$

Theorem 8.1 $([16], G_{2})$

For a generic $G_{2}$ -Cartan directed curve $\gamma$ : $Rarrow R^{5}$ , the tangent surfaces at any point
$t_{0}\in R$ is classified. up to local diffeomorphisms, into embedded cuspidal edge, open Mond
surface, and generic open folded pleat.

cuspidal edge open Mond GPFP $(2, 3, 5, \ldots)$

Note that the work is closely related to the rolling ball problem [1][3][2].

9 Null curves in a semi-Riemannian manifold

Let $(M, g)$ be a semi-Riemannian manifold with an indefinite metric $g$ . Denote by $C\subset TM$

the null cone field associated with the indefinite metric $g$ , i.e. $C$ is the set of null vectors,

$C=\{u\in TM|u\in T_{x}M, g_{x}(u, u)=0\}.$

Definition 9.1 A $C^{\infty}$ curve $\gamma$ : $Rarrow M$ is called a null curve if

$\gamma’(t)\in C (t\in R)$ .

Moreover $\gamma$ : $Rarrow M$ is called null-directed if there exists a $C^{\infty}$ mapping $u:Rarrow C$ such
that

$u$ : $R$ $arrow$ $C$

$\gamma\searrow O \swarrow\pi$

$\Lambda I$

and that

$\{\begin{array}{l}u(t)\neq 0,\gamma’(t)\in\langle u(t)\rangle_{R}, t\in R.\end{array}$
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Define the “null” tangent surface of a null-directed curve $\gamma$ as the ruled surface by null

geodesics through points $\gamma(t)$ with the directions $u(t)$ .

Let $M=R^{p,q}$ be the $R^{p+q}$ with the metric of signature $(p, q)$ ,

$(x|y)=-x_{1}y_{1}-\cdots-x_{p}y_{p}+x_{p+1}y_{p+1}+\cdots+x_{p+q}y_{p+q}.$

Then we have the generic classification of singularities of tangent surfaces by null geodesics

in $R^{1,2}$ :

Theorem 9.2 $(B_{2}=C_{2}, [6][15])$

The singularities of tangent surface Tan(7) for a generic null directed curve $\gamma$ : $Rarrow R^{1,2}$

are cuspidal edges, swallowtails and Scherbak surfaces.

Swallowtail $(2, 3, 4)$ Scherbak surface $(1, 3, 5)$

Now consider a curve in $R^{2,2}$ . The $D_{3}$-evolute of the curve is defined by the envelope of

the 1-parameter of normals along the curve.

$\cross R$

The tangent surface is embedded as (the closure of) a stratum in $D^{3}$-evolute. The

Kazaryan’s bi-umbrella appears as a transversal section of the evolute.
Then we have the classification result on singularities of tangent surfaces:

Theorem 9.3 $(D_{3}, [18])$ The singularities of tangent surface $Tan(\gamma)$ for a generic null di-

rected curve $\gamma$ : $Rarrow R^{2,2}$ are embedded cuspidal edges and open swallowtails.

embedded cuspidal edge $(1, 2, 3, \ldots)$ , open swallowtail $(2, 3, 4, 5)$
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For generic singularities of tangent surfaces by null geodesics in $R^{2,3}$ , we have:

Theorem 9.4 Theorem $(B_{3}, [18])$ The singularities of tangent surface $Tan(\gamma)$ for a generic
null directed curve $\gamma$ : $Rarrow R^{2,3}$ are embedded cuspidal edges, open swallowtails, open Mond

surfaces and unfurled folded umbrellas.

embedded cuspidal edge, open swallowtail, open Mond surface
$(1,2,3, \ldots)$ (2,3,4,5, . . . ) (1,3,4,5, . . . )

The unfurled folded umbrella is the singularities of the tangent surface of a curve of
type $(1, 2, 4, 6, 7)$ .

$t\mapsto(t+\cdots, t^{2}+\cdots, t^{4}+\cdots, t^{6}+\cdots, t^{7}+\cdots)$

For the generic singularities of tangent surfaces by null geodesics in $R^{3,3}$ , we have:

Theorem 9.5 $(D_{4}, [17])$ The singularities of tangent surface $Tan(\gamma)$ for a generic null di-
rected curve $\gamma$ : $Rarrow R^{3,3}$ (the projection of a generic “Engel integral”’ curve) are embedded
cuspidal edges, open swallowtails and open Mond surfaces.

cuspidal edge, open swallowtail, open Mond surface

10 Type of a curve and singularity of tangent surface

Several types for curves uniquely determine the local diffeomorphism classes of tangent sur-
faces.
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These characterisations are confirmed in the flat case so far. To confirm these character-
isation of singularities in non-flat case is an interesting problem.
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