BB FERTIFFC T Tk
51949 & 2015 4F 89-98

THE EXISTENCE OF A NON SPECIAL ARONSZAJN TREE
AND TODORCEVIC ORDERINGS

TERUYUKI YORIOKA (ikFigEzE, #RAS)

ABSTRACT. It is proved that it is consistent that every forcing notions with
R1,x, has precaliber ®1, every Todoréevié ordering for any second countable
Hausdorff space also has precaliber N;, and there exists a non-special Aron-
szajn tree. This slightly extends the previous work [16, 18].

1. INTRODUCTION

Martin’s Axiom was introduced by Martin and Solovay to solve Suslin’s problem
in [5]. In 1980’s, Todor&evi¢ investigated Martin’s Axiom from the view point of
Ramsey theory, and introduced the countable chain condition for partitions on the
set [wq]<R°. In [13], Todoréevié and Veli¢ikovié proved that MAy, , which is Martin’s
Axiom for R; many dense sets, is equivalent to the statement X, that every ccc
partition Ko U K7 on [w;]<® has an uncountable Ky-homogeneous set. Todoréevié
also introduced many fragments of MAy, in his many papers e.g. [9, 13]. Some
of them are as follows()): K, is the statement that every ccc forcing notion has
precaliber R;. For each n € w, K, is the statement that every uncountable subset
of a ccc forcing notion has an uncountable n-linked subset, and K/, is the statement
that every ccc partition Ko U K; = [w1]™ has an uncountable Ky-homogeneous set.
C? is the statement that every product of ccc forcing notions has the countable chain
condition. We note that they have many applications. For example, C? implies
Suslin’s Hypothesis, every (w;,w;)-gap is indestructible, and the bounding number
b is greater than N;, and X implies that every Aronszajn tree is special. (For
other applications, see e.g. [3].) We also note the following diagram of implications
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(I)They are defined by Todortevié in several papers. In [3, Definition 4.9] and [13, §2], Kx's
are defined as statements for ccc forcing notions, however in [4, §4] and [9, §7], K»’s are defined
as statements for ccc partitions. To separate them, we use notation as above. In [13], K., above
is denoted by H.

A forcing notion P has precaliber R; if every uncountable subset I of P has an uncountable
subset I’ of I such that every finite subset of I’ has a common extension in P. A subset I of a
forcing notion P is called n-linked if every member of the set [I]™ has a common extension in P.
A forcing notion P has property K if every uncountable subset of P has an uncountable 2-linked
subset.
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between them:

Kew Kpy1 —> Ky Ko c?

e

MAx,

AN

The equivalence of MAy,, K<, and K, are the theorem due to Todorcevié¢ and
Velickovié [13]. Other implications follows from definitions or trivial argumrnts. It
is unknown whether any other implications hold in ZFC.

The author studied about this problem in (14, 15, 16, 17, 18]. In [16, 18], The
author introduced the following property on chain conditions [16, 18, Definition
2.6): A forcing notion P has the property R; x, if conditions of IP are finite sets of
countable ordinals, the order <p is equal to the superset relation 2, and for any
large enough regular cardinal §, any countable elementary submodel N of H(6), any
uncountable subset I of P which forms a A-system with root v and any ¢ € P with
0 NN = v, there exists an uncountable subset I’ of I such that every condition
in I’ is compatible with o in P. It is proved that (R x,)® also implies that
Suslin’s Hypothesis holds, every (wi,w:)-gap is indestructible and b > R;. It is
also proved that it is consistent that every forcing notion with the property R; x,
has precaliber R; and there exists a non-special Aronszajn tree. This says that
K<w(R1,) doesn’t imply MAy, (Ryx,).

In this paper, we slightly develop this result by dealing with not only forcing
notions with Ry x, but also forcing notions defined due to Todoréevi¢ and Balcar-
Pazik-Thiimmel [10, 1], so called Todorcéevi¢ orderings. Namely, it is shown that
it is consistent that every forcing notion with the property R; x, has precaliber Xy,
Todoréevié orderings for second countable Hausdorff spaces also have precaliber R,
and there exists a non-special Aronszajn tree.

/ ' ' /
’C<w Tt n+1 ,C'n. > o ,CZ

2. PRELIMINARIES

2.1. Todor&evié orderings. As said in [1], when a topological space is applied to
Todoréevié ordering, it is natural to require it to be sequential and have the unique
limit property. A topological space X is called sequential if for any Z C X, Z is
closed in X iff for any A C Z and z € X to which A converges, = belongs to Z.
A topological space X has the unique limit property if any converging subset of
X converges to the unique point. For example, Hausdorff spaces have the unique
limit property. For a subset F of a topological space, let F'¢ denote the first Cantor-
Bendixson derivative of F, that is, the set of all accumulation points of F'.

Definition 2.1 (Todoréevié [10], see also [1, 8]). For a topological space X, T(X)
is the set of all subsets of X which are unions of finitely many converging sequences

(Z)ICQ(RLNI) is the statement that every forcing notion with the property Ri,x, has property
K.



including their limit points, and for each p and q in T(X), ¢ <1(x)p if ¢ 2 p and
¢ Np=p?®

For p,q € T(X), the statement ¢ <r(x) p means that ¢ is an extension of p (as
the subset relation) and the isolated points in p are still isolated in gq. T(X) is called
Todoréevié ordering for the space X in [1, 8] (and [19]).

Todoréevié orderings were firstly introduced by Todoréevi¢ in [10]. The moti-
vation is to demonstrate a Borel definable ccc forcing which consistently does not
have property K. He defined it on a separable metric space. By generalizing it and
applying it to other topological spaces, Thiimmel discovered a forcing notion which
has the o-finite chain condition but does not have the o-bounded chain condition,
and so he solved the problem of Horn and Tarski [8]. (For Horn-Tarski’s problem,
see (2, 11].) Right after Thiimmel’s result, Todorcevi¢ introduced a Borel definable
solution of the problem of Horn and Tarski [12].

In [12], Todoréevié¢ introduced the Borel definable version of Todoréevié order-
ings, which consists of all countable compact subsets whose first Cantor-Bendixson
derivative is finite. In [1], Balcar-Paz4k-Thiimmel introduced a separative version
of Todorgevié¢ orderings, which consists of all functions f from members p of T(X)
into {0, 1} such that f~1(1) is a finite set including p? as a subset, ordered by the
function-extension. In this paper, as in [19], we adopt the definition of Todorcevié
orderings in Definition 2.1.

Some of Todorcevié¢ orderings may not be ccc [1, Theorem 2.3], but many of them
are ccc. From the proof of [10], we note that for a space X, if each of finite powers
of X is hereditarily separable, then Todorcevi¢ ordering for X has the ccc. In
[1, Definition 2.1], Balcar-Pazék-Thiimmel introduced the property of topological
spaces which is a sufficient condition to introduce Todorcevié orderings to have
the ccc (see also [19]). In this paper, we use the following property of Todorcevié
orderings.

Lemma 2.2. For a second countable Hausdorff space X, T(X) is powerfully ccc,
that is, a finite support product of any number of copies of T(X) has the countable
chain condition.

Proof. Tt suffices to show that for any n € w, the finite support product "T(X) is
ccc. Let I be an uncountable subset of "T(X). By shrinking I if necessary, we may
assume that for each 7 < n, the set {p,-d; (pj;g<my el } forms a A-system with
root d;. Take a countable elementary submodel N of H(§) (for some large enough
regular cardinal 6) such that {X,I} € N.
Take (p;;4 < n) and (g;;4 < n) in I™® such that for each i < n,
e (p%\d;)NN =0, and

(3)This definition is slightly different from the original one, in [10], which consists of all finite
sets o of convergent sequences in X including their limit points such that for any A, B € o,
lim(A) ¢ (B\ {lim(B)}),
ordered by the reverse inclusion. But essentially, both are same. In fact, both are forcing-
equivalent.
(4)Since the set {pid; (pj;j < n) € I} forms an uncountable A-system for each ¢ < n and N

is countable, we can find such a (p;;4 < n) € I. Similarly, since the set N U|J,.,, pi is countable,
we can find such a {g;;7 < n) € I.
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e (g*\d)N(NUp)=0.
Since X is second countable Hausdorff and NV is an elementary submodel, there
exists a sequence (U;, V;;1 < n) € N of open subsets of X such that for each i < n,

® U’i n ‘/t = 07

o pi\d; CU;,

L4 Qid\di g Wa and

o Vin(p \U;) = 0.
This can be done because the sets p;? \ d;, ¢;¢ \ d; and p; \ U; are finite and
(¢:%\ d;) N p; = 0. By the elementarity of N, there exists (gj;i < n) € IN N such
that for each i < n, (¢})?\ d; C V;. Then for each i < n,

4 Upi <1(x) Pi-
Since ¢ C N () and (pid \di) NN = 0 for each i < n, we notice that
9 Upi <t(x) 4-

Thus the condition (g} U p;;¢ < n) is a common extension of conditions (p;;i < n)
and (g};i < n) in "T(X). O

2.2. The chapter IX of [6]: Souslin Hypothesis Does Not Imply “Every
Aronszajn Tree Is Special. In this section, we summarize Shelah’s approach to
show the consistency that Suslin’s Hypothesis holds and there exists a non-special
Aronszajn tree. All of definitions and proofsin this section are in [6, IX. Souslin
Hypothesis Does Not Imply “Every Aronszajn Tree Is Special].

Definition 2.3 (Shelah, [6, IX 3.3 Definition|). For an Aronszajn tree T and a
subset S of wy, T is called S-st-special if there exists a function f from the set
{t € T;rkr(t) € S} into w such that for each n € w, the set f~1[{n}] forms an
antichain in T

We note that if S is uncountable and an Aronszajn tree T is S-st-special, then
T is still Aronszajn in the forcing extension where S is still uncountable. And
then T has an uncountable antichain, hence then T is not a Suslin tree. For a
costationary subset S of wy, if T is a special Aronszajn tree, then there exists an
antichain A through T such that the set rkp[A] \ S is stationary. Therefore if S
is an uncountable costationary subset of w; and T satisfies the property

(%) for every antichain A through T*, the set rkr.[A]\ S is nonsta-
tionary,
then T™ is a non-special Aronszajn tree.

In [6, IX 4.8 Conclusion], Shelah introduced the iterated proper forcing which
forces that Suslin’s Hypothesis holds and there are a stationary and costationary
subset S of w; and an S-st-special Aronszajn tree T* which satisfies the property
(*). The S-st-speciality of T* guarantees that T™ is still Aronszajn in any proper
forcing extension. To guarantee the property (*) of T, we shoot a club on w;
for the complement of rkz+[A] which is disjoint from S in some intermediate stage
of the iteration [6, IX 4.7, 4.8]. However, the iteration is required to be a proper
forcing. To do this, Shelah introduced the following preservation property.

(s)qg is a countable subset of X.

O)rkr (4] := {rkr(t); t € A}.



Definition 2.4 (Shelah [6, IX 4.5 Definition]). Let T be an Aronszajn tree and S
a subset of wy.

A forcing notion P is (T, S)-preserving if for a large enough regular cardinal 6, a
countable elementary submodel N of H(6) which has the set {P,T, S} andp € PNN,
there exists ¢ <p p which is (N,P)-generic such that if wi NN € S, then

for any x € T of height vy N N,
fYAeP(T)NN(zeA—3IyeAly<raz)),
then for every P-name A, which is in N, for a subset of T,

qlFp 2‘x€A—>3yeA(y<Ta:) ”.

If T* is a Suslin tree, then for every countable elementary submodel N of H(6)
(for some large enough regular cardinal §) and x € T of height w; NN and A €
P(T*) NN, if z € A, then there exists y € A such that y <p- z(". It follows
that T* satisfies (x). So we start from a Suslin tree T* and a stationary and
costationary subset S of w; and make each Aronszajn tree to be S-st-special and
T* to be S-st-special which satisfies the property (x) by the iterated proper forcing
extension such that each iterand is (T*, S)-preserving and the whole iteration is
also (T™*, S)-preserving. For Aronszajn trees T' and T™* and a stationary subset S of
w1, Shelah introduced the forcing notion Q(T', S) which forces T’ to be S-st-special
and is (T™*, S)-preserving [6, IX 4.2, 4.3, 4.6]. Moreover, Shelah introduced the
new forcing iteration, so called a free limit iteration, which preserves the (T, S)-
preserving property [6, IX §1, §2 and 4.7)].

The following is Shelah’s iterated forcing in [6, Chapter IX, 4.8 Conclusion](s).
We start in the ground model where 28 = R;, 2% = Ry, and there exists a Suslin
tree T™*. Let S be a stationary and costationary subset of the set w;. We define an
N;-free iteration (Pg, Qn; € < wp & 1 < wa) such that

o QOZQ(T*7S)> )
e each (), satisfies one of the following:
(1) Qy is proper and (T, S)-preserving of size Ny,
(2) for some P¢-name of an antichain A of T*, rkp«[A]N S =0 and Q,, =
Qcrub(wr \ rkT*[A]), which shoots a club through the set w; \ rkp- [A]
by countable approximations.

In this extension (with some bookkeeping argument), .S is still stationary and co-
stationary, every Aronszajn tree is S-st-special (hence not Suslin), and T™ is an
S-st-special Aronszajn tree which satisfies (x).

Combining Shelah’s iteration above, some bookkeeping device, theorems in [16,
18] and the next section, we can conclude the following.

Theorem 2.5. It is consistent that every forcing notions with Ry x, has precaliber
R, every Todoréevié ordering for any second countable Hausdorff space also has
precaliber Xy and there exists a non-special Aronszajn tree.

(MLet D := {t € T*;t € A or for every s € T* with t <7« s, s € A}. Since D is a dense subset
of T* and T* is Suslin, there exists ¥ € DN N which is compatible with z in T*. Then it have to
be true that y <px z. Since x € A, it have to be true that y € A.

This statement is equivalent that there are no uncountable antichain through T*.

(8)Shelah’s proof uses an R;-free iteration. This is different from a countable support iteration.
But Schlindwein proved in [7] that the same proof works for a countable support iterations. So
our theorem can be shown by a countable support iteration.
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3. PROOF

Suppose that S is a stationary subset of w;, X is a second countable Hausdorff
space and I is an uncountable subset of T(X). By shrinking I if necessary, we may
assume that

e the size of I is N,
e the set {p%p € I} forms a A-system with root d,
e for some ¢q € T(X),

q k) “IN G is uncountable”.

Let M = (Mg; 0 € wy) be a sequence of countable elementary submodels of H(Rz)
such that {S, X, I} € My, and for every a € w;, (Mp; 8 € o) € M. By shrinking
I if necessary again, we may assume that

o for each p € I and a € wy, if p? N (Ma41 \ My) # 0, then p? C Myq1 \ M.

We have to notice then that it may happen that I does not belong to Mp. From
now on, we do not assume that I € M, for any a € w;.

We define the forcing notion Q(T(X), I, M, S) which consists of pairs (h, f) such
that

e h is a finite partial function from w; into wy,

for any «, 8 € dom(h), @ < h(a), and if a < B, then h(a) < B,
for any a € dom(h)N S, h(a) = a,
f is a finite partial function from I into w,
for any a € dom(h) and p € dom(f),

pd N (Mh(a) \Ma) =0,

e for any p € dom(f), the set |J f~1[{f(p)}] is a common extension of mem-
bers of the set f~![{f(p)}] in T(X),

ordered by extension, that is, for any (h, f) and (h/, f') in Q(’]I’(X),I,M, S),
(h F) So(1(x),1,11.9) (W,f):<=> h2h& fDf.

By a density argument, if Q(T(X), I, M,S) is proper, then Q(T(X),I,M,S)
adds an uncountable subset of I which satisfies the finite compatibility prop-
erty. Therefore, under the approach due to Shelah in §2, it suffices to show that
Q(T(X), I, M, S) is proper and (T*, S)-preserving.

Lemma 3.1. Q(T(X),I,]\Zf, S) is proper.

Proof. Let 6 be a large enough regular cardinal, a countable elementary submodel
N of H(9) which has the set {X,1,M,5}, (h,f) € Q(T(X),1,M,S), and 6 a
countable ordinal not smaller than the ordinal wy N N (if w; NN € S, then we
define 6 := wy N N). We show that (kU {{w; N N, 8}, ) is (N, Q(T(X), I, M, S))-
generic.

Let (0, f') <gerx).1.01,5) (AU {{w1 NN, ¥8)}, f) and D a dense open subset of
Q(T(X),I,M,S). We will find a condition in D N N which is compatible with
(W, f"y in Q(T(X),I,M,S).

By extending the condition (h/, f’) if necessary, we may assume that (b', f') € D.
We note that (h'[N, f'IN) is in Q(T(X),I,M,S)N N because w; N N € dom(h’).



Let
D = { (k,g) € D; (k, g) < omx).1,11.5) (R'IN, f'IN) & ran(g) = ran(f’)}.

We note that D' is in N®) (', f’) € D’ and D’ is dense in Q(Q, I, ]\71) below
(WIN, f'IN). Since the product forcing "#*(/)T(X) of T(X) is ccc in the model
N, by the elementarity of N, there exists a countable subset J of *»(f ')T(X )in N
such that

e J is a subset of the set
{{Uglin}in € ran(s")}; (k,9) € D'},
o for every (k,g) € D', there exists (un;n € ran(f’)) € J such that for each

n € ran(f’), u, and g ![{n}] are compatible in T(X).

Since (h', f') € D', there exists (un;n € ran(f’)) € J such that for each n €
ran(f'), un and |J(f')1[{n}] are compatible in T(X). Since {(un;n € ran(f’)) € J
holds in NN, there exists (k,g) € D’ N N such that

<Ug'1[{n}];n € ran(f’)> = (fn;n € ran(f’)).

Then (A’ U k, f' U g) is a common extension of (k' f') and (k, g) in Q(T(X), I, M, S).

O

Lemma 3.2. For any Aronszajn tree T, Q(T(X),1, M, S) is (T, S)-preserving.

Proof. Let T, 6, N be as in the statement of the definition of the (7', S)-preservation,
(moreover we suppose M € N) and (h, f) € Q(T(X),I,M,S) N N. Suppose that
w1 NN &S, because if wy NN € S, then the condition (h U {{w1 N N,w1 N N)}, f)
is as desired.

Let -

d:=sup{F(wiNN)+1;Fe (**w)NN}.
Since IV is countable, § is a countable ordinal. We will show that the condition
(hU{{wr NN,8)}, f) of Q(Q,I,M,S) is our desired one.

As seen in the proof of the previous lemma, the condition (h U {{w1 N N, d)}, f)
is (N, Q(T(X),I,M,S))-generic. Suppose that z € T of height wy N N such that
for any subset A € N of T, if x € A, then there is y € A such that y <r z. Let
A € N be a Q(T(X),I, M, S)-name for a subset of T. We will show that

(hU {{w1 NN,0}, ) o). nits) ‘T E Aordyec Ay <r ).
Let (B, ') <g(q.1.57,9) (U {{w1 N N,6)}, f), and assume that
(h/, f/) !yg(’n‘(x),]’]\z’s) “(I? ¢ A 77.
By strengthening (h’, ') if necessary, we may assume that

<”J7WmmmmMm“$€A”

(g)ran(f’) is a finite subset of w.
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We note that (h/[N, f'[N) isin N (because wiNN € dom(h')), and by the definition
of Q(T(X), 1, M, S), for every p € dom(f’), if ran(p) ¢ N, then

(pd\d)ﬂMazw.

Let v € w; N N be such that for every p € dom(f’), if the set p? \ d intersects N,
then p¢ C M,(19). Since X is second countable Hausdorff and N is an elementary
submodel, there exists a finite set U of pairwise disjoint open subsets of X in N

such that for each n € ran(f’), the finite set (U(f’)‘l[{n}])d is separated by U.
We define a function F* with the domain
{t € T; htr(t) > max(dom(h'[N))}
such that for each t € T of height larger than max(dom(h'[N)),
F(t) := sup {ﬂ € wy; there exists (k,g) € Q(T(X), 1, M,S) such that
e min(dom(k)) = rkp(t),
o K(rkr(t)) = 5, )
o (WIN)UK,(f'IN)Uyg) is a condition of Q(T(X),I,M,S),
o for each p € dom(g), (p?\ d) N M, =0,
o ran(g) = ran(f' \ N),
e for each n € ran(f’\ N), the set (U g“l[{n}])d\d is separated
by U, and
o (WIN)YUK,(f'IN)U) Foumixy 1ttt €A }
Then F belongs to N. Let
B := {t € T;rkr(t) > max(dom(h'[N)) & F(t) = w1},
which is also in N. We define a function F’ with the domain
[max(dom(h'[N)) + 1,w1)
such that for a countable ordinal 3 larger than max(dom(h’[N)),
F'(B) :=sup {F(t)+ 1;t € T\ B & rkp(t) € (max(dom(h'|N)), 5]} .
This F' is a function from w; into w; and also in N. Hence F'(wy NN) < § by the
definition of 8. Since (h', f') IFgep(x),1,47,5) % € A” and K/ (rkp(z)) = R (wrniNN) =
d, F(z) > & holds. Therefore = have to belong to B. Thus by our assumption, there
exists y € B such that y <r z.
Take € € w; such that f' C M,. Let
E:={(k,9) € QQ.1, M,5);
min(dom(k)) = rkr(y),
((W'IN)UK,(f'IN)Ug) is a condition of Q(T(X), I, M,S),
o for each p € dom(g), (p®\d) N M, =0,
ran(g) = ran(f’),
e for each n € ran(f’), the set (Jg™* [{n}])d \ d is separated by
U, and
o ((WIN) UK, (f'IN)U Q) b oy pits) “Y E A }-

(10)Then for every p € dom(f"), (p%\ d) N My =0 iff (p? \ d) N Ms = 0.
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We note that E is in N, and the set

{k(rkr(y)); (k, 9) € E}

is uncountable because F(y) = wy. So there exists (k,g) € E such that for each
p € dom(g), (p*\ d) N M, = 0. Then for each n € ran(f’\ N),

((Ustemn) ) o (U \ ) np)) =0

Since X is second countable Hausdorff and N is an elementary submodel, there
exists disjoint open subsets U and V of X in N(*1) such that for each n € ran(f’\N),

U\ m= 1) \ac o,
(Us™ttnn) Nacv

and
v (U \ M7 inl) \U) = 0.
By the elementarity of N, we can find (k’,¢’) € E such that
(Ue)1np) \acv.
Then for each n € ran(f’' \ N), the set
UG et v U6 {nd] <o UG 7 iR

Since ¢’ € N and (U(f' \ N)~[{n}])* N N = 0, we note that for each n € ran(f’\
N), the set

U@ in v U@) 7 [{nl] <o Ue) 7 [{nd):
Therefore (k' UK/, g’ U f') is an extension of (&, f') in Q(T(X),I, M,S) and
(KUK, g UF) Fomuxyaits “vEA.

O
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