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ABSTRACT. It is proved that it is consistent that every forcing notions with
$R_{1,\aleph_{1}}$ has precaliber $\aleph_{1}$ , every Todor\v{c}evi\v{c} ordering for any second countable
Hausdorff space also has precaliber $\aleph_{1}$ , and there exists a non-special Aron-
szajn tree. This slightly extends the previous work [16, 18].

1. INTRODUCTION

Martin’s Axiom was introduced by Martin and Solovay to solve Suslin’s problem
in [5]. In $1980’ s$ , Todor\v{c}evi\v{c} investigated Martin’s Axiom from the view point of
Ramsey theory, and introduced the countable chain condition for partitions on the
set $[\omega_{1}]^{<\aleph_{0}}$ . In [13], Todor\v{c}evi\v{c} and Veli\v{c}ikovi6 proved that $MA_{\aleph_{1}}$ , which is Martin’s
Axiom for $\aleph_{1}$ many dense sets, is equivalent to the statement $\mathcal{K}_{<\omega}’$ that every ccc
partition $K_{0}\cup K_{1}$ on $[\omega_{1}]^{<\aleph_{0}}$ has an uncountable $K_{0}$-homogeneous set. Todor\v{c}evi\’{c}

also introduced many fragments of $MA_{\aleph_{1}}$ in his many papers e.g. [9, 13]. Some
of them are as follow$s^{(1)}:\mathcal{K}_{<\omega}$ is the statement that every ccc forcing notion has
precaliber $\aleph_{1}$ . For each $n\in\omega,$ $\mathcal{K}_{n}$ is the statement that every uncountable subset
of a ccc forcing notion has an uncountable $n$-linked subset, and $\mathcal{K}_{n}’$ is the statement
that every ccc partition $K_{0}\cup K_{1}=[\omega_{1}]^{n}$ has an uncountable $K_{0}$-homogeneous set.
$C^{2}$ is the statement that every product of ccc forcing notions has the countable chain
condition. We note that they have many applications. For example, $C^{2}$ implies
Suslin’s Hypothesis, every $(\omega_{1}, \omega_{1})$-gap is indestructible, and the bounding number
$b$ is greater than $\aleph_{1}$ , and $\mathcal{K}_{2}’$ implies that every Aronszajn tree is special. (For
other applications, see e.g. [3].) We also note the following diagram of implications
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(1) are defined by Todor\v{c}evi\v{c} in several papers, In [3, Definition 4.9] and [13, \S 2], $\mathcal{K}_{n}$ ’s

are defined as statements for ccc forcing notions, however in [4, \S 4] and [9, \S 7], $\mathcal{K}_{n}$ ’s are defined
as statements for ccc partitions. To separate them, we use notation as above. In [13], $\mathcal{K}_{<\omega}’$ above
is denoted by $\mathcal{H}.$

A forcing notion $\mathbb{P}$ has precaliber $\aleph_{1}$ if every uncountable subset $I$ of $\mathbb{P}$ has an uncountable
subset $I’$ of $I$ such that every finite subset of $I’$ has a common extension in $\mathbb{P}$ . A subset $I$ of a
forcing notion $\mathbb{P}$ is called $n$-linked if every member of the set $[I]^{n}$ has a common extension in $\mathbb{P}.$

A forcing notion $\mathbb{P}$ has property $K$ if every uncountable subset of $\mathbb{P}$ has an uncountable 2-linked
subset.
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between them:

The equivalence of $MA_{\aleph_{1}},$ $\mathcal{K}_{<\omega}$ and $\mathcal{K}_{<\omega}’$ are the theorem due to Todor\v{c}evi\v{c} and
Veli\v{c}kovi\’{c} [13]. Other implications follows from definitions or trivial argumrnts. It
is unknown whether any other implications hold in ZFC.

The author studied about this problem in [14, 15, 16, 17, 18]. In [16, 18], The
author introduced the following property on chain conditions [16, 18, Definition
2.6]: A forcing notion $\mathbb{P}$ has the property $R_{1,\aleph_{1}}$ if conditions of $\mathbb{P}$ are finite sets of
countable ordinals, the order $\leq p$ is equal to the superset relation $\supseteq$ , and for any
large enough regular cardinal $\theta$ , any countable elementary submodel $N$ of $H(\theta)$ , any
uncountable subset I of $\mathbb{P}$ which forms a $\Delta$-system with root $\nu$ and any $\sigma\in \mathbb{P}$ with
$\sigma\cap N=\nu$ , there exists an uncountable subset $I’$ of $I$ such that every condition
in $I’$ is compatible with $\sigma$ in $\mathbb{P}$ . It is proved that $\mathcal{K}_{2}(R_{1,\aleph_{1}})^{(2)}$ also implies that
Suslin’s Hypothesis holds, every $(\omega_{1}, \omega_{1})$-gap is indestructible and $b>\aleph_{1}$ . It is
also proved that it is consistent that every forcing notion with the property $R_{1,\aleph_{1}}$

has precaliber $\aleph_{1}$ and there exists a non-special Aronszajn tree. This says that
$\mathcal{K}_{<w}(R_{1,\aleph_{1}})$ doesn’t imply $MA_{\aleph_{1}}(R_{1,\aleph_{1}})$ .

In this paper, we slightly develop this result by dealing with not only forcing
notions with $R_{1,\aleph_{1}}$ but also forcing notions defined due to Todor\v{c}evi\v{c} and Balcar-
Paz\’ak-Th\"ummel [10, 1], so called Todor\v{c}evi\v{c} ordertngs. Namely, it is shown that
it is consistent that every forcing notion with the property $R_{1,\aleph_{1}}$ has precaliber $\aleph_{1},$

Todor\v{c}evi\’{c} orderings for second countable Hausdorff spaces also have precaliber $\aleph_{1},$

and there exists a non-special Aronszajn tree.

2. PRELIMINARIES

2.1. Todor\v{c}evi\v{c} orderings. As said in [1], when a topological space is applied to
Todor\v{c}evi\v{c} ordering, it is natural to require it to be sequential and have the unique

limit property. A topological space $X$ is called sequential if for any $Z\subseteq X,$ $Z$ is
closed in $X$ iff for any $A\subseteq Z$ and $x\in X$ to which $A$ converges, $x$ belongs to $Z.$

A topological space $X$ has the unique limit property if any converging subset of
$X$ converges to the unique point. For example, Hausdorff spaces have the unique

limit property. For a subset $F$ of a topological space, let $F^{d}$ denote the first Cantor-
Bendixson derivative of $F$ , that is, the set of all accumulation points of $F.$

Definition 2.1 $($Todor\v{c}evi\v{c} $[10], see$ also $[1, 8 For a$ topological $space X_{Z}\mathbb{T}(X)$

is the set of all subsets of $X$ which are unions of finitely many converging sequences

(2)
$\mathcal{K}_{2}(R_{1,N_{1}})$ is the statement that every forcing notion with the property $R_{1,\aleph_{1}}$ has property

K.
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including their limit points, and for each $p$ and $q$ in $\mathbb{T}(X)$ , $q\leq_{\mathbb{T}(X)}p$ iff $q\supseteq p$ and
$q^{d}\cap p=p^{d.(3)}$

For $p,$ $q\in \mathbb{T}(X)$ , the statement $q\leq_{T(X)}p$ means that $q$ is an extension of $p$ (as
the subset relation) and the isolated points in $p$ are still isolated in $q.$ $\mathbb{T}(X)$ is called
Todor\v{c}evi\v{c} ordering for the space $X$ in [1, 8] (and [19]).

Todor\v{c}evi\v{c} orderings were firstly introduced by Todor\v{c}evi\v{c} in [10], The moti-
vation is to demonstrate a Borel definable ccc forcing which consistently does not
have property K. He defined it on a separable metric space. By generalizing it and
applying it to other topological spaces, Th\"ummel discovered a forcing notion which
has the $\sigma$-finite chain condition but does not have the a-bounded chain condition,
and so he solved the problem of Horn and Tarski [8]. (For Horn-Tarski’s problem,
see [2, 11 Right after Th\"ummel’s result, Todor\v{c}evi\v{c} introduced a Borel definable
solution of the problem of Horn and Tarski [12].

In [12], Todor\v{c}evi\v{c} introduced the Borel definable version of Todor\v{c}evi\v{c} order-
ings, which consists of all countable compact subsets whose first Cantor-Bendixson
derivative is finite. In [1], Balcar-Paz\’ak-Th\"ummel introduced a separative version
of Todor\v{c}evi\’{c} orderings, which consists of all functions $f$ from members $p$ of $T(X)$

into $\{0$ , 1 $\}$ such that $f^{-1}(1)$ is a finite set including $p^{d}$ as a subset, ordered by the
function-extension. In this paper, as in [19], we adopt the definition of Todor\v{c}evi\v{c}

orderings in Definition 2.1.

Some of Todor\v{c}evi\v{c} orderings may not be ccc [1, Theorem 2.3], but many of them
are ccc, From the proof of [10], we note that for a space $X$ , if each of finite powers
of $X$ is hereditarily separable, then Todor\v{c}evi\v{c} ordering for $X$ has the ccc. In
[1, Definition 2.1], Balcar-Paz\’ak-Th\"ummel introduced the property of topological
spaces which is a sufficient condition to introduce Todor\v{c}evi\v{c} orderings to have
the ccc (see also [19]). In this paper, we use the following property of Todor\v{c}evi\’{c}

orderings.

Lemma 2.2. For a second countable Hausdorff space $X,$ $\mathbb{T}(X)$ is powerfully $ccc,$

that is, a finite support product of any number of copies of $\mathbb{T}(X)$ has the countable
chain condition.

Proof. It suffices to show that for any $n\in\omega$ , the finite support product $n\mathbb{T}(X)$ is
ccc, Let $I$ be an uncountable subset o$f^{n}\mathbb{T}(X)$ . By shrinking $I$ if necessary, we may
assume that for each $i<n$ , the set $\{p_{i}^{d};\langle p_{j};j<n\rangle\in I\}$ forms a $\triangle$-system with
root $d_{i}$ . Take a countable elementary submodel $N$ of $H(\theta)$ (for some large enough
regular cardinal $\theta$) such that $\{X, I\}\in N.$

Take $\langle p_{i};i<n\rangle$ and $\langle q_{i};i<n\rangle$ in $I^{(4)}$ such that for each $i<n,$

$\bullet$ $(p_{i^{d}}\backslash d_{i})\cap N=\emptyset$ , and

(3) definition is slightly different from the original one, in [10], which consists of all finite
sets $\sigma$ of convergent sequences in $X$ including their limit points such that for any $A,$ $B\in\sigma,$

$\lim(A)\not\in(B\backslash \{\lim(B)\})$ ,

ordered by the reverse inclusion. But essentially, both are same. In fact, both are forcing-

equivalent.
(4) the set $\{p_{i^{d}};\langle p_{j};j<n\rangle\in I\}$ forms an uncountable $\triangle$-system for each $i<n$ and $N$

is countable, we can find such a $\langle p_{i};i<n\rangle\in I$ . Similarly, since the set $N \cup\bigcup_{i<n}p_{i}$ is countable,

we can find such a $\langle q_{t};i<n\rangle\in I.$
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$\bullet(q_{i^{d}}\backslash d_{i})\cap(N\cup p_{i})=\emptyset.$

Since $X$ is second countable Hausdorff and $N$ is an elementary submodel, there
exists a sequence $\langle U_{i},$ $V_{i};i<n\rangle\in N$ of open subsets of $X$ such that for each $i<n,$

$\bullet U_{i}\cap V_{i}=\emptyset,$

$\bullet p_{i^{d}}\backslash d_{i}\subseteq U_{i},$

$\bullet$ $q_{i}^{d}\backslash d_{i}\subseteq V_{i}$ , and
$\bullet V_{i}\cap(p_{i}\backslash U_{i})=\emptyset.$

This can be done because the sets $p_{i^{d}}\backslash d_{i},$ $q_{i^{d}}\backslash d_{i}$ and $p_{i}\backslash U_{i}$ are finite and
$(q_{i^{d}}\backslash d_{i})\cap p_{i}=\emptyset$ . By the elementarity of $N$ , there exists $\langle q_{i}’;i<n\rangle\in I\cap N$ such

that for each $i<n,$ $(q_{i}’)^{d}\backslash d_{i}\subseteq V_{i}$ . Then for each $i<n,$

$q_{i}’\cup p_{i}\leq_{T(X)p_{i}}.$

Since $q_{i}’\subseteq N^{(5)}$ and $(p_{i^{d}}\backslash d_{i})\cap N=\emptyset$ for each $i<n$ , we notice that

$q_{i}’\cup p_{i}\leq_{T(X)q_{i}’}.$

Thus the condition $\langle q_{i}’\cup p_{i};i<n\rangle$ is a common extension of conditions $\langle p_{i};i<n\rangle$

and $\langle q_{i}’;i<n\rangle$ in $n\mathbb{T}(X)$ . $\square$

2.2. The chapter IX of [6]: Souslin Hypothesis Does Not Imply “Every
Aronszajn Tree Is Special. In this section, we summarize Shelah’s approach to
show the consistency that Suslin’s Hypothesis holds and there exists a non-special
Aronszajn tree. All of definitions and proofsin this section are in [6, IX. Souslin
Hypothesis Does Not Imply “Every Aronszajn $Ree$ Is Special].

Definition 2.3 (Shelah, [6, IX 3.3 Definition For an Aronszajn tree $T$ and a
subset $S$ of $\omega_{1},$

$T$ is called S-st-special if there exists a junction $f$ from the set
$\{t\in T;rk_{T}(t)\in S\}$ into $\omega$ such that for each $n\in\omega$ , the set $f^{-1}[\{n\}]$ forms an
antichain in $T.$

We note that if $S$ is uncountable and an Aronszajn tree $T$ is S-st-special, then
$T$ is still Aronszajn in the forcing extension where $S$ is still uncountable. And
then $T$ has an uncountable antichain, hence then $T$ is not a Suslin tree. For a
costationary subset $S$ of $\omega_{1}$ , if $T$ is a special Aronszajn tree, then there exists an
antichain $A$ through $T$ such that the set $rk_{T}[A]\backslash S^{(6)}$ is stationary. Therefore if $S$

is an uncountable costationary subset of $\omega_{1}$ and $\tau*$ satisfies the property

$(*)$ for every antichain $A$ through $\tau*$ , the set $rk_{T^{n}}[A]\backslash S$ is nonsta-
tionary,

then $\tau*$ is a non-special Aronszajn tree.
In [6, IX 4.8 Conclusion], Shelah introduced the iterated proper forcing which

forces that Suslin’s Hypothesis holds and there are a stationary and costationary

subset $S$ of $\omega_{1}$ and an S-st-special Aronszajn tree $\tau*$ which satisfies the property
$(*)$ . The S-st-speciality of $\tau*$ guarantees that $T^{*}$ is still Aronszajn in any proper
forcing extension. To guarantee the property $(*)$ of $\tau*$ , we shoot a club on $\omega_{1}$

for the complement of $rk_{T^{r}}[\dot{A}]$ which is disjoint from $S$ in some intermediate stage
of the iteration [6, IX 4.7, 4.8]. However, the iteration is required to be a proper
forcing. To do this, Shelah introduced the following preservation property.

(5) is a countable subset of $X.$

(6) $:=\{rk_{T}(t);t\in A\}.$
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Definition 2.4 (Shelah [6, IX 4.5 Definition Let $T$ be an Aronszajn tree and $S$

a subset of $\omega_{1}.$

A forcing notion $\mathbb{P}$ is $(T, S)$ -preserving if for a large enough regular cardinal $\theta,$ $a$

countable elementary submodel $N$ of $H(\theta)$ which has the set $\{\mathbb{P}, T, S\}$ and $p\in \mathbb{P}\cap N,$

there exists $q\leq \mathbb{P}p$ which is $(N, \mathbb{P})$ -generic such that if $\omega_{1}\cap N\not\in S$ , then

for any $x\in T$ of height $\omega_{1}\cap N,$

if $\forall A\in \mathcal{P}(T)\cap N(x\in Aarrow\exists y\in A(y<_{T}x$

then for every $\mathbb{P}$-name $A$ , which is in $N_{f}$ for a subset of $T,$

$q^{1}\vdash_{\mathbb{P}}lx\in\dot{A}arrow\exists y\in_{\lrcorner}\dot{4}(y<\taux)$ ”

If $\tau*$ is a Suslin tree, then for every countable elementary submodel $N$ of $H(\theta)$

(for some large enough regular cardinal $\theta$ ) and $x\in\tau*$ of height $\omega_{1}\cap N$ and $A\in$

$\mathcal{P}(T^{*})\cap N$ , if $x\in A$ , then there exists $y\in A$ such that $y<\tau*x^{(7)}$ . It follows
that $\tau*$ satisfies $(*)$ . So we start from a Suslin tree $\tau*$ and a stationary and
costationary subset $S$ of $\omega_{1}$ and make each Aronszajn tree to be S-st special and
$\tau*$ to be S-st-special which satisfies the property $(*)$ by the iterated proper forcing
extension such that each iterand is $(T^{*}, S)$-preserving and the whole iteration is

also $(T^{*}, S)$-preserving. For Aronszajn trees $T$ and $\tau*$ and a stationary subset $S$ of
$\omega_{1}$ , Shelah introduced the forcing notion $Q(T, S)$ which forces $T$ to be S-st special

and is $(T^{*}, S)$-preserving [6, IX 4.2, 4.3, 4.6]. Moreover, Shelah introduced the
new forcing iteration, so called a free limit iteration, which preserves the $(T^{*}, S)-$

preserving property [6, IX \S 1, \S 2 and 4.7].
The following is Shelah’s iterated forcing in $[$6, Chapter IX, 4.8 Conclusion$]^{}.$

We start in the ground model where $2^{\aleph_{0}}=\aleph_{1},$ $2^{\aleph_{1}}=\aleph_{2}$ , and there exists a Suslin
tree $\tau*$ . Let $S$ be a stationary and costationary subset of the set $\omega_{1}$ . We define an
$\aleph_{1}$ -free iteration $\langle P_{\xi},$ $Q_{\eta};\xi\leq\omega_{2}$ & $\eta<\omega_{2}\rangle$ such that

$\bullet Q_{0}=Q(T^{*}, S)$ ,
$\bullet$ each $Q_{\eta}$ satisfies one of the following:

(1) $Q_{\eta}$ is proper and $(T^{*}, S)$-preserving of size $\aleph_{1},$

(2) for some $P_{\xi}$-name of an antichain A of $\tau*,$ $rk_{T^{*}}[\dot{A}]\cap S=\emptyset$ and $Q_{\eta}=$

$Q_{club}(\omega_{1}\backslash rk_{T^{*}}[4\dot{4}])$ , which shoots a club through the set $\omega_{1}\backslash rk_{T^{*}}[\dot{A}]$

by countable approximations,

In this extension (with some bookkeeping argument), $S$ is still stationary and co-
stationary, every Aronszajn tree is S-st special (hence not Suslin), and $T^{*}$ is an
S-st special Aronszajn tree which satisfies $(*)$ .

Combining Shelah’s iteration above, some bookkeeping device, theorems in [16,

18] and the next section, we can conclude the following.

Theorem 2.5. It is consistent that every forcing notions with $R_{1,\aleph_{1}}$ has precaliber
$\aleph_{1}$ , every Todor\v{c}evi\v{c} ordering for any second countable Hausdorff space also has
precaliber $\aleph_{1}$ and there exists a non-special Aronszajn tree.

(7)
$:=$ { $t\in T^{*};t\in A$ or for every $s\in T^{*}$ with $t<\tau*s,$ $s\not\in A$ }. Since $D$ is a dense subset

of $T^{*}$ and $T^{*}$ is Suslin, there exists $y\in D\cap N$ which is compatible with $x$ in $T^{*}$ . Then it have to

be true that $y<\tau*x$ . Since $x\in A$ , it have to be true that $y\in A.$

This statement is equivalent that there are no uncountable antichain through $T^{*}.$

(8) proof uses an $\aleph_{1}$ -free iteration. This is different from a countable support iteration.

But Schlindwein proved in [7] that the same proof works for a countable support iterations. So

our theorem can be shown by a countable support iteration.
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3, PROOF

Suppose that $S$ is a stationary subset of $\omega_{1},$
$X$ is a second countable Hausdorff

space and $I$ is an uncountable subset of $\mathbb{T}(X)$ . By shrinking $I$ if necessary, we may
assume that

$\bullet$ the size of $I$ is $\aleph_{1},$

$\bullet$ the set $\{p^{d};p\in I\}$ forms a $\Delta$-system with root $d,$

$\bullet$ for some $q\in \mathbb{T}(X)$ ,

$q|\vdash_{F(X)^{\langle}}I\cap\dot{G}$ is uncountable”’

Let $\vec{M}=\langle M_{\alpha};\alpha\in\omega_{1}\rangle$ be a sequence of countable elementary submodels of $H(\aleph_{2})$

such that $\{S, X, I\}\in M_{0}$ , and for every $\alpha\in\omega_{1},$ $\langle M_{\beta};\beta\in\alpha\rangle\in M_{\alpha}$ . By shrinking
$I$ if necessary again, we may assume that

$\bullet$ for each $p\in I$ and $\alpha\in\omega_{1}$ , if $p^{d}\cap(M_{\alpha+1}\backslash M_{\alpha})\neq\emptyset$ , then $p^{d}\subseteq M_{\alpha+1}\backslash M_{\alpha}.$

We have to notice then that it may happen that $I$ does not belong to $M_{0}$ . From
now on, we do not assume that $I\in M_{\alpha}$ for any $\alpha\in\omega_{1}.$

We define the forcing notion $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ which consists of pairs $\langle h,$ $f\rangle$ such
that

$\bullet$ $h$ is a finite partial function from $\omega_{1}$ into $\omega_{1},$

$\bullet$ for any $\alpha,$ $\beta\in dom(h)$ , $\alpha\leq h(\alpha)$ , and if $\alpha<\beta$ , then $h(\alpha)<\beta,$

$\bullet$ for any $\alpha\in dom(h)\cap S,$ $h(\alpha)=\alpha,$

$\bullet$ $f$ is a finite partial function from $I$ into $\omega,$

$\bullet$ for any $\alpha\in dom(h)$ and $p\in dom(f)$ ,

$p^{d}\cap(M_{h(\alpha)}\backslash M_{\alpha})=\emptyset,$

$\bullet$ for any $p\in dom(f)$ , the $set\cup f^{-1}[\{f(p)\}]$ is a common extension of mem-
bers of the set $f^{-1}[\{f(p)\}]$ in $\mathbb{T}(X)$ ,

ordered by extension, that is, for any $\langle h,$ $f\rangle$ and $\langle h’,$ $f’\rangle$ in $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ ,

$\langle h,$ $f\rangle\leq_{Q(T(X),I,\vec{M},S)}\langle h’,$ $f’\rangle:\Leftrightarrow h\supseteq h$ & $f\supseteq f’.$

By a density argument, if $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ is proper, then $\mathcal{Q}(T(X), I,\vec{M}, S)$

adds an uncountable subset of $I$ which satisfies the finite compatibility prop-
erty. Therefore, under the approach due to Shelah in \S 2, it suffices to show that
$\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ is proper and $(T^{*}, S)$-preserving.

Lemma 3.1. $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ is proper.

Proof. Let $\theta$ be a large enough regular cardinal, a countable elementary submodel
$N$ of $H(\theta)$ which has the set $\{X,$ $I,$ $\vec{M},$ $S\},$ $\langle h,$ $f\rangle\in \mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ , and $\delta a$

countable ordinal not smaller than the ordinal $\omega_{1}\cap N$ (if $\omega_{1}\cap N\in S$ , then we
define $\delta$ $:=\omega_{1}\cap N$). We show that $\langle h\cup\{\langle\omega_{1}\cap N,$

$\delta$
$f\rangle$ is $(N, Q(\mathbb{T}(X),$ $I,\vec{M},$ $S$

generic.
Let $\langle h’,$ $f’\rangle\leq_{Q(T(X),I,\vec{M},S)}\langle h\cup\{\langle\omega_{1}\cap N,$

$\delta$
$f\rangle$ and $D$ a dense open subset of

$\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ . We will find a condition in $D\cap N$ which is compatible with
$\langle h’,$ $f’\rangle$ in $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ .

By extending the condition $\langle h’,$ $f’\rangle$ if necessary, we may assume that $\langle h’,$ $f’\rangle\in D.$

We note that $\langle h’rN,$ $f’rN\rangle$ is in $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)\cap N$ because $\omega_{1}\cap N\in dom(h’)$ .
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Let

$D’$ $:=\{\langle k,$ $g\rangle\in D;\langle k,$ $g\rangle\leq_{Q(T(X),I,\vec{M}_{)}S)}\langle h’rN,$ $f’rN\rangle$ & ran$(g)=ran(f’)\}.$

We note that $D’$ is in $N^{(9)},$ $\langle h’,$ $f’\rangle\in D’$ and $D’$ is dense in $\mathcal{Q}(\mathbb{Q}, I,\vec{M})$ below
$\langle h’[N,$ $f’rN\rangle$ . Since the product forcing ran $(f’)\mathbb{T}(X)$ of $\mathbb{T}(X)$ is ccc in the model
$N$ , by the elementarity of $N$ , there exists a countable subset $J$ o$f^{}\mathbb{T}(X)$ in $N$

such that
$\bullet$ $J$ is a subset of the set

$\{\langle\cup g^{-1}[\{n\}];n\in ran(f’)\rangle;\langle k, g\rangle\in D’\},$

$\bullet$ for every $\langle k,$ $g\rangle\in D’$ , there exists $\langle\mu_{n};n\in ran(f’)\rangle\in J$ such that for each
$n\in ran(f’)$ , $\mu_{n}and\cup g^{-1}[\{n\}]$ are compatible in $\mathbb{T}(X)$ .

Since $\langle h’,$ $f’\rangle\in D’$ , there exists $\langle\mu_{n};n\in ran(f’)\rangle\in J$ such that for each $n\in$

$ran(f’)$ , $\mu_{n}and\cup(f’)^{-1}[\{n\}]$ are compatible in $\mathbb{T}(X)$ . Since $\langle\mu_{n};n\in ran(f’)\rangle\in J$

holds in $N$ , there exists $\langle k,$ $9\rangle\in D’\cap N$ such that

$\langle\cup 9^{-1}[\{n\}];n\in ran(f’)\rangle=\langle\mu_{n};n\in ran(f’)\rangle.$

Then $\langle h’\cup k,$ $f’\cup g\rangle$ is a common extension of $\langle h’,$ $f’\rangle$ and $\langle k,$ $g\rangle$ in $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ .
$\square$

Lemma 3.2. For any Aronszajn tree $T,$ $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ is $(T, S)$ -preserving.

Proof. Let $T,$ $\theta,$ $N$ be as in the statement of the definition of the $(T, S)$-preservation,
(moreover we suppose $\vec{M}\in N$ ) and $\langle h,$ $f\rangle\in \mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)\cap N$ . Suppose that
$\omega_{1}\cap N\not\in S$ , because if $\omega_{1}\cap N\in S$ , then the condition $\langle h\cup\{\langle\omega_{1}\cap N,$ $\omega_{1}\cap N$ $f\rangle$

is as desired.
Let

$\delta :=\sup\{F(\omega_{1}\cap N)+1;F\in(^{\omega_{1}}\omega_{1})\cap N\}.$

Since $N$ is countable, $\delta$ is a countable ordinal. We will show that the condition
$\langle h\cup\{\langle\omega_{1}\cap N,$ $\delta$

$f\rangle$ of $\mathcal{Q}(\mathbb{Q}, I,\vec{M}, S)$ is our desired one.

As seen in the proof of the previous lemma, the condition $\langle h\cup\{\langle\omega_{1}\cap N,$
$\delta$

$f\rangle$

is $(N, \mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S))$-generic. Suppose that $x\in T$ of height $\omega_{1}\cap N$ such that
for any subset $A\in N$ of $T$ , if $x\in A$ , then there is $y\in A$ such that $y<\tau x$ . Let
$\dot{A}\in N$ be a $\mathcal{Q}(T(X), I,\vec{M}, S)$-name for a subset of $T$ . We will show that

$\langle h\cup\{\langle\omega_{1}\cap N,$ $\delta$

$f\rangle|\vdash_{Q(T(X)_{)}I,\vec{M},S)}(x\not\in\dot{A}$ or $\exists y\in\dot{A}(y<\tau^{x)}$ “

Let $\langle h’,$
$f’\rangle\leq_{\mathcal{Q}(\mathbb{Q}_{)}I,\vec{M},S)}\langle h\cup\{\langle\omega_{1}\cap N,$

$\delta$
$f\rangle$ , and assume that

$\langle h’, f’\rangle|\mu_{Q(T(X),I,\vec{M},S)}x\not\in\dot{A},\}$

By strengthening $\langle h’,$ $f’\rangle$ if necessary, we may assume that

$\langle h’, f’\rangle|\vdash_{Q(T(X),I,\vec{M},S)^{\langle}}x\in_{A}\dot{4},,$

(9) is a finite subset of $\omega.$
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We note that $\langle h’rN,$ $f’|N\rangle$ is in $N$ $($because $\omega_{1}\cap N\in dom(h’))$ , and by the definition
of $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ , for every $p\in dom(f’)$ , if ran$(p)\not\in N$ , then

$(p^{d}\backslash d)\cap M_{\delta}=\emptyset.$

Let $\gamma\in\omega_{1}\cap N$ be such that for every $p\in dom(f’)$ , if the set $p^{d}\backslash d$ intersects $N,$

then $p^{d}\subseteq M_{\gamma}^{(10)}$ . Since $X$ is second countable Hausdorff and $N$ is an elementary

submodel, there exists a finite set $\mathcal{U}$ of pairwise disjoint open subsets of $X$ in $N$

such that for each $n\in ran(f’)$ , the finite set $(\cup(f’)^{-1}[\{n\}])^{d}$ is separated by $\mathcal{U}.$

We define a function $F$ with the domain

$\{t\in T_{1}ht_{T}(t)>\max(dom(h’rN$

such that for each $t\in T$ of height larger than max(dom(h’ $tN$

$F(t)$ $:= \sup\{\beta\in\omega_{1}$ ; there exists $\langle k,$
$g\rangle\in \mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ such that

$\bullet$ min(dom(k)) $=rk_{T}(t)$ ,
$\bullet k(rk_{T}(t))=\beta,$

$\bullet$ $\langle(h’rN)\cup k,$ $(f’rN)\cup g\rangle$ is a condition of $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ ,
$\bullet$ for each $p\in dom(g)$ , $(p^{d}\backslash d)\cap M_{\gamma}=\emptyset,$

$\bullet$ ran $(g)=ran(f’\backslash N)$ ,
$\bullet$ for each $n\in ran(f’\backslash N)$ , the set $(\cup g^{-1}[\{n\}])^{d}\backslash d$ is separated
by $\mathcal{U}$ , and

$\bullet\langle(h’rN)\cup k, (f’rN)\cup g\rangle|\vdash_{Q(T(X),I,\vec{M},S)} t\in\dot{A} \}.$

Then $F$ belongs to $N$ . Let

$B := \{t\in T;rk_{T}(t)>\max(dom(h’rN)) \ F(t)= \omega_{1}\},$

which is also in $N$ . We define a function $F’$ with the domain

$[ \max(dom(h’|N))+1, \omega_{1})$

such that for a countable ordinal $\beta$ larger than max(dom(h’ $rN$

$F’(\beta)$ $:= \sup\{F(t)+1;t\in T\backslash B$ & $rk_{T}(t)\in(\max(dom(h’rN$ $\beta]\}.$

This $F’$ is a function from $\omega_{1}$ into $\omega_{1}$ and also in $N$ . Hence $F’(\omega_{1}\cap N)<\delta$ by the

definition of $\delta$ . Since $\langle h’,$ $f’\rangle|\vdash_{Q(T(X),I,\vec{M},S)}$
“ $x\in\dot{A}$ “ and $h’(rk_{T}(x))=h’(\omega_{1}\cap N)=$

$\delta,$ $F(x)\geq\delta$ holds. Therefore $x$ have to belong to $B$ . Thus by our assumption, there
exists $y\in B$ such that $y<\tau x.$

Take $\epsilon\in\omega_{1}$ such that $f’\subseteq M_{\epsilon}$ . Let

$E:=\{\langle k,$ $g\rangle\in \mathcal{Q}(\mathbb{Q}, I,\vec{M}, S)$ ;

$\bullet$ min(dom(k)) $=rk_{T}(y)$ ,
$\bullet$ $\langle(h’rN)\cup k,$ $(f’rN)\cup 9\rangle$ is a condition of $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ ,
$\bullet$ for each $p\in dom(g)$ , $(p^{d}\backslash d)\cap M_{\gamma}=\emptyset,$

$\bullet$ ran$(g)=ran(f’)$ ,
$\bullet$ for each $n\in ran(f’)$ , the set $(\cup g^{-1}[\{n\}])^{d}\backslash d$ is separated by

$\mathcal{U}$ , and
$\bullet\langle(h’[N)\cup k,$ $(f’rN)Ug\rangle|\vdash_{Q(T(X),I,\vec{M},S)}y\in\dot{A}$

”
$\}.$

(10)Then for every $p\in dom(f’)$ , $(p^{d}\backslash d)\cap M_{\gamma}=\emptyset$ iff $(p^{d}\backslash d)\cap M_{\delta}=\emptyset.$
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We note that $E$ is in $N$ , and the set

$\{k(rk_{T}(y));\langle k, g\rangle\in E\}$

is uncountable because $F(y)=\omega_{1}$ . So there exists $\langle k,$ $9\rangle\in E$ such that for each
$p\in dom(g)$ , $(p^{d}\backslash d)\cap M_{\epsilon}=\emptyset$ . Then for each $n\in ran(f’\backslash N)$ ,

$((\cup g^{-1}[\{n\}])^{d}\backslash d)\cap(\cup(f’\backslash N)^{-1}[\{n\}])=\emptyset.$

Since $X$ is second countable Hausdorff and $N$ is an elementary submodel, there
exists disjoint open subsets $U$ and $V$ of $X$ in $N^{(11)}$ such that for each $n\in ran(f’\backslash N)$ ,

$(\cup(f’\backslash N)^{-1}[\{n\}])^{d}\backslash d\subseteq U,$

$(\cup g^{-1}[\{n\}])^{d}\backslash d\subseteq V$

and
$V\cap((\cup(f’\backslash N)^{-1}[\{n\}])\backslash U)=\emptyset.$

By the elementarity of $N$ , we can find $\langle k’,$ $g’\rangle\in E$ such that

$(\cup(g’)^{-1}[\{n\}])^{d}\backslash d\subseteq V.$

Then for each $n\in ran(f’\backslash N)$ , the set

$\cup(f’)^{-1}[\{n\}]\cup\cup(g’)^{-1}[\{n\}]\leq_{\mathbb{T}(X)}\cup(f’)^{-1}[\{n\}].$

Since $g’\subseteq N$ and $(\cup(f’\backslash N)^{-1}[\{n\}])^{d}\cap N=\emptyset$ , we note that for each $n\in ran(f’\backslash$

$N)$ , the set

$\cup(f’)^{-1}[\{n\}]\cup\cup(g’)^{-1}[\{n\}]\leq_{T(X)}\cup(g’)^{-1}[\{n\}].$

Therefore $\langle k’\cup h’,$ $g’\cup f’\rangle$ is an extension of $\langle h’,$ $f’\rangle$ in $\mathcal{Q}(\mathbb{T}(X), I,\vec{M}, S)$ and

$\langle k’\cup h_{9’}’\cup f’\rangle|\vdash_{Q(F(X),I,\vec{M},S)}y\in\dot{A}$
”

$\square$
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