Bounded arithmetic theory for the counting functions and
Toda’s theorem

Satoru Kuroda
Gunma Prefectural Women’s University

Abstract

In this paper we give a two sort bounded arithmetic whose provably total functions
coincide with the class $FP^#P$. Our first aim is to show that the theory proves Toda’s
theorem in the sense that any formula in Σ^B_∞ is provably equivalent to a Σ^B_0 formula
in the language of $FP^#P$. We also argue about some problems concerning logical
theories for counting classes.

1 Introduction

In this note, we argue about logical theories for the counting class $P^#P$. In [2], Toda proved
the celebrated result that $PH \subseteq P^#P$, thus the whole polynomial hierarchy collapses to
polynomial time with the aid of $#P$ oracles.

In the context of Bounded Reverse Mathematics, it is natural to ask whether there is a
minimal theory for $FP^#P$ which proves Toda’s theorem. Here, minimal intuitively means
that it provably defines all functions in $FP^#P$ and any such theory contains it.

Toda’s original proof is divide it into two part; firstly it is proved that PH is prob-
abilistically simulated in polynomial time with oracle access to $\oplus P$, then $BP \cdot \oplus P$ is
derandomized by the counting function.

In [1], Buss et.al. proved that the first part of Toda’s theorem can be formalized and
proved in their theory $APC^\oplus_{\#P}$ which extends T^1_2 by the modular counting quantifier and
surjective weak pigeonhole principle for $PV^\oplus_{\#P}$ functions.

Here we pose on the problem of whether a minimal theory for $P^#P$ proves the whole
Toda’s theorem. A candidate for such a theory is PV or S^1_2 extended by axioms stating that

for any PTIME relation $\varphi(\vec{X}, Y)$ and a term t we can compute $C_{\varphi}(\vec{X}) = \#Y <
t\varphi(\vec{X}, Y)$.

However, it seems that we need some extra concept for proving Toda’s theorem. The
main obstacle is that Toda’s proof requires a bijection defined by PV_2 functions, which is
not known to be formalized in our theory.

Below we will give a sketch of a partial result on the provability of the whole Toda’s
theorem together with some open problems.
2 A Theory for $P\# P$

First we overview complexity classes which are treated in this paper. Let FP denote the class of functions computable by some deterministic Turing machine within time bounded by a polynomial in the length of the input. The counting class $\# P$ consists of functions

$$F_M(X) = \text{the number of accepting path of } M \text{ on input } X$$

for some polynomial time bounded nondeterministic Turing machine M. $FP\# P$ is the class of functions which are computable by some polynomial time bounded deterministic Turing machine with oracle accesses to a function in $\# P$. A set A is in the parity class $\oplus P$ if

$$X \in A \iff \text{the number of accepting path of } M \text{ on input } X \text{ is odd}$$

Probabilistic classes also plays crucial roles in the proof of Toda’s theorem. A set A is in PP if there exist a nondeterministic polynomial time machine M and a polynomial $q(n)$ such that

$$X \in A \iff |\{W \in \{0,1\}^{|X|} : M(X,W) = 1\}| > 2^{q(|X|)}/2.$$

The language L_2 of two-sort bounded arithmetic comprises number variables x, y, z, \ldots and string variables X, Y, Z, \ldots together with function symbols $Z() = 0, x + y, x \cdot y, |X|$ and relation symbols $x \leq y, x \in X$.

The classes Σ_i^B and Π_i^B for $i \geq 0$ is defined inductively as follows:

- $\Sigma_i^B = \Pi_i^B$ consists of all L_2 formulas containing only bounded number quantifiers.
- Σ_i^B is the smallest class containing Π_i^B and closed under Boolean operations bounded number quantifications and positive occurrences of bounded existential string quantifiers.
- Π_i^B is the smallest class containing Σ_i^B and closed under Boolean operations bounded number quantifications and positive occurrences of bounded universal string quantifiers.

The L_2 theory T_0 consists of defining axioms for symbols in the language L_2 together with

$$\Sigma_0^B-COMP : \exists X \forall x < a(x \in X \leftrightarrow \varphi(x)), \varphi \in \Sigma_0^B.$$

We extend the language L_2 by a symbol expressing the cardinality of finite sets. Let L_C be the language L_2 extended by a function symbol $S(X)$, relation symbol $X <_s Y$ and an operator C. Defining axioms for $S(X)$ and $X <_s Y$ are

$$S(X) = Y \iff$$

$$\exists i < |X| \neg X(i) \rightarrow$$

$$(|X| = |Y| \land \forall i < |X|(i \leq i_{min} \rightarrow (X(i) \leftrightarrow Y(i))) \land (i > i_{min} \rightarrow (X(i) \leftrightarrow Y(i))))$$

$$\land \forall i < |X| \land (|X| + 1 = |Y| \land Y(|Y| - 1) \land i < |Y| - 1 \rightarrow \neg Y(i))$$

where $i_{min} = \min\{j : \neg X(j)\}$, and

$$X <_s Y \iff |X| < |Y| \lor$$

$$(|X| = |Y| \land \exists i < |X| (\neg X(i) \land Y(i) \land \forall j < |X|(j > i \rightarrow (X(j) \leftrightarrow Y(j))))$$

and
Axioms $\text{Ax-}C[\varphi(X)]$ consists of the followings:

\[
\begin{align*}
C[\varphi(X)](0,0) \\
C[\varphi(X)](Y, Z) \land C[\varphi(X)](Y, Z') \rightarrow Z = Z' \\
C[\varphi(X)](Y, Z) \land \varphi(S(Y)) \rightarrow C[\varphi(X)](S(Y), S(Z)) \\
C[\varphi(X)](Y, Z) \land \neg \varphi(S(Y)) \rightarrow C[\varphi(X)](S(Y), Z)
\end{align*}
\]

Intuitively,

\[C[\varphi(X)](Y, Z) \Leftrightarrow |\{X_\leq Y : \varphi(X)\}| = Z.\]

Definition 1 The L_C theory $V \# C$ has the following axioms:

- **BASIC** axioms,
- **$\Sigma^B_0(L_C)$-COMP,**
- $MCV \equiv \exists Y \leq a + 2\delta_{MCV}(a, G, E, Y),$ where

\[
\begin{align*}
\delta_{MCV}(a, G, E, Y) &\equiv \\
\neg Y(0) \land Y(1) \land \forall x < a2 \leq x \rightarrow \\
Y(x) &\leftrightarrow [(G(x) \land \forall y < x(E(y, x) \rightarrow Y(y))) \lor (\neg G(x) \land \exists y < x(E(y, x) \land Y(y)))]
\end{align*}
\]

- $\text{Ax-}C[\varphi(X)]$ for $\varphi \in \Sigma^B_0(L_2)$

Theorem 1 A function is Σ^B_1 definable in $V \# C$ if and only if it is in $FP^{\# P}$.

3 Formalizing Toda's theorem

We augment the theory $V \# C$ by some axioms and show that Toda's theorem can be proven in the extended theory.

Definition 2 CPV is the theory $V \# C$ extended by the following axioms:

- **Σ^B_1-SIND:** $\varphi(0) \land \forall X(\varphi(X) \rightarrow \varphi(S(X))) \rightarrow \forall X \varphi(X)$.
- **Σ^B_{∞}-Implication:** for Σ^B_{∞}-formulas φ, ψ,

\[
\forall X < A(\varphi(X) \rightarrow \psi(X)) \land CX[\varphi(X)](A, Z) \land CX[\psi(X)](A, Z')
\]

\[
\rightarrow Z \leq Z'.
\]

- **Σ^B_{∞}-Surjection:** for Σ^B_{∞}-formula φ, ψ and $F \in PV_2$,

\[
\forall F : \varphi(X)_<A \rightarrow \psi(X)_<A : \text{onto} \land CX[\varphi(X)](A, Z) \land CX[\psi(X)](A, Z')
\]

\[
\rightarrow Z \geq Z'.
\]

Toda's theorem is formalized in bounded arithmetic as

Theorem 2 For any $\varphi(X) \in \Sigma^B_{\infty}$ there exists a Σ^B_0 formula $\psi(X, Y)$ and a PV predicate $P(Z)$ such that

\[
\begin{align*}
\varphi(B) \land CY[\psi(X, Y)](A, B, Z) &\rightarrow P(Z) \\
\varphi(B) \land CY[\psi(X, Y)](A, B, Z) &\rightarrow \neg P(Z)
\end{align*}
\]
The first part of the theorem is formalized as follows:

Theorem 3 (CPV) For any $\varphi(X) \in \Sigma_{\infty}^{B}$ there exists a Boolean PV function $F(X, Z, W)$ such that

1. $\varphi(X) \rightarrow Pr_{W}[\oplus_{Z}F(X, Z, W) = 1] \geq 3/4$
2. $\neg\varphi(X) \rightarrow Pr_{W}[\oplus_{Z}F(X, Z, W) = 1] \leq 1/4$

Note that we cannot compute the exact value of $Pr_{W}[\oplus_{Z}F(X, Z, W) = 1]$ since it counts $\oplus P$ predicate. Nevertheless, we can approximate it by $P\#P$ functions using Implication and Surjection axioms.

The first part of Toda’s theorem is proved using

Theorem 4 (Valiant-Vazirani in CPV) For any $\varphi(X, Y) \in \Sigma_{0}^{B}$ there exists $\tau(Y, Z) \in \Sigma_{0}^{B}$ such that

$$\exists Y < t\varphi(X, Y) \rightarrow Pr_{Z}[\exists!Y < t\varphi(X, Y) \land \tau(Y, Z)] > 1/8n$$

So NP predicates can be probabilistically reduced to PTIME predicates with unique solution. The construction depends only on the value t.

Valiant-Vazirani theorem yields

Theorem 5 (CPV) For any $\varphi(X, Y) \in \Sigma_{0}^{B}$ there exists a PV-function $F(X, Y, Z)$ such that

$$\exists Y < t\varphi(X, Y) \rightarrow Pr_{Z}[\oplus_{Y}F(X, Y, Z) = 1] > 1/8n$$

The following combinatorial property is the key to the proof of V-V:

Lemma 1 (Valiant-Vazirani Lemma in CPV) Let $n \geq 1$ and $S \subseteq \{0, 1\}^{n}$ be such that $2^{k-2} \leq |S| \leq 2^{k-1}$ where $k \leq n$. For a pairwise independent hash function family $\mathcal{H}_{n,k}$

$$Pr_{h \in \mathcal{H}_{n,k}}[\exists!x \in Sh(x) = 0^{k}] \geq 1/8.$$

Proof. Use the inclusion-exclusion principle

$$Pr[\exists x \in Sh(x) = 0^{k}] \geq \sum_{x \in S} Pr[h(x) = 0^{k}] - \sum_{x < x' \in S} Pr[h(x) = 0^{k} \land h(x') = 0^{k}]$$

and the union bound

$$Pr[\exists x \in Sh(x) = 0^{k}] \leq \sum_{x < x' \in S} Pr[h(x) = 0^{k} \land h(x') = 0^{k}].$$

To prove these principles we construct a PV_{2} surjection and use Surjection axiom.

Given n and $k \leq n$ we define a family of pairwise independent hash functions

$$\mathcal{H}_{n,k} = \{h_{A,b}(x) = Ax + b \mod 2 : A \in \{0, 1\}^{n \times k}, b \in \{0, 1\}^{k}\}.$$

Let $S_{X} = \{Y \in \{0, 1\}^{n} : \varphi(X, Y)\}$ and k be such that $2^{k-2} \leq |S| \leq 2^{k-1}$
By Valiant-Vazirani Lemma,
\[Pr_{h \in \mathcal{H}_{n,k}}[\exists! Y \in S_X h(Y) = 0^k] > 1/8. \]
So first take \(1 \leq k \leq n \) randomly and then pick \(h \in \mathcal{H}_{n,k} \) yields a formula such that
\[\exists Y \varphi(X, Y) \rightarrow Pr_{h \in \mathcal{H}_{n,k}}[\exists! Y \varphi(X, Y) \wedge ||h(Y) = 0^k|| > 1/8n. \]

Theorem 6 (CPV) For any \(\varphi(X) \in \Sigma^B_\infty \) there exists a Boolean PV function \(F(X, Z, W) \) such that
1. \(\varphi(X) \Rightarrow Pr_W[\bigoplus_Z F(X, Z, W) = 1] \geq 3/4 \)
2. \(\neg \varphi(X) \Rightarrow Pr_W[\bigoplus_Z F(X, Z, W) = 1] \leq 1/4 \)

(Proof Sketch).

We construct \(F \) by structural induction on \(\varphi \). We only sketch the case for the formula \(\exists Y < t \psi(X, Y) \). In this case, we iteratively apply Valiant-Vazirani Theorem \(O(n) \) times and take conjunction of them. Then if \(\exists Y < t \psi(X, Y) \) is true then with high probability \(\bigoplus_Y F(X, Y, W) = 1 \). We also note that Valiant-Vazirani theorem does not use any information from the propositional formula \(\phi \) except for the number of variables in it.

The second part is easily formalized in CPV.

Theorem 7 (CPV) \(BP \cdot \oplus P \subseteq P^{#P} \)

(Proof Sketch).

The probabilistic reduction \(F(X, Z, W) \) is actually a PTIME function on two inputs and we can derandomize it using "Toda polynomial"

Lemma 2 There exists a PTIME function \(T(\phi, l) \) such that
\[\phi \in \oplus SAT \Rightarrow #T(\phi, l) \equiv -1 \text{ mod } 2^l \]
\[\phi \notin \oplus SAT \Rightarrow #T(\phi, l) \equiv 0 \text{ mod } 2^l \]

Using this we compute
\[
\sum_w #T(f(\phi, w), |w| + 2) = \sum_{w, \phi \in \oplus P} #T(f(\phi, w), |w| + 2) + \sum_{w, \phi \notin \oplus P} #T(f(\phi, w), |w| + 2)
\]
Computing RHS requires \(\mathcal{B}(\Sigma^B_1) \) counting.

4 Final Remarks

We conjecture that the theory the provably total functions of CPV are \(FP^{#P} \). It is likely that the proof of Toda’s theorem does not require counting over \(\oplus P \) predicates. Instead, the proof may be formalized using counting over \(\Sigma^B_1 \), i.e. \(\Sigma^B_1 \) formulas where \(\exists X < t \) is replaced by \(\exists! X < t \). The circuit-based proof of Toda’s theorem by Kannan et. al. establishes a probabilistic simulation of constant-depth exp-size circuits by exp-size XOR circuits. Formalization of the circuit proof may yield an alternative proof of our result in a different theory.

Finally, we give an idea of weaken the theory CPV as an open problem:

Problem 1 Does \(PV + \mathcal{B}(\Sigma^B_1) \)-counting prove Toda’s Theorem?
References
