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1 What is $3D$-GRAPES?
$3D$-GRAPES is a free function graphing software made by Katsuhisa TOMODA.

GRAPES is an abbreviation for graph presentation and experiment system. $3D$-GRAPES

is a three-dimensional version of GRAPES. We can get it from the following homepage:

http: $//www$ . criced. tsukuba. ac. $jp/grapes/$

Figure 1. The opening scene of $3D$-GRAPES

Figure 1 above is the opening scene of $3D$-GRAPES. It has a graphic window and a

data panel. We can draw surfaces, lines, points, spheres, and graphs of functions. We

made some crystal structures by drawing spheres. (Figure2)

Figure 2. A hexagonal closed-packed structure
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2 Visualization of Fibonacci sequence by $3D$-GRAPES
Fibonacci sequence $\{F_{n}\}_{n=1,2},\cdots$ is a sequence of integers which satisfies the recurrence

relation
$F_{n+2}=F_{n+1}+F_{n}, F_{1}=F_{2}=1$

First few numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, $\cdots$ . Let $\varphi$ be the number $\frac{1+\sqrt{5}}{2}.$
$\varphi$

satisfies the quadratic equation $\varphi^{2}=\varphi+1$ , and it is called the golden ratio. Ratio of
consecutive Fibonacci numbers converges to the golden ratio $\varphi$ . Let

’
$s$ visualize this by

$3D$-GRAPES. Let $P_{n}$ be the point $(F_{n}, F_{n+1}, F_{n+2}). \lim_{narrow\infty}\frac{F_{n+1}}{F_{n}}=\varphi$ implies $\frac{F_{n+1}}{F_{n}}\sim\varphi$

and $\frac{F_{n+2}}{F_{n}+1}\sim\varphi$ for large $n$ . So sequence of points $P_{n}$ should be on the line $\varphi x=y=\frac{z}{\varphi}$

for large $n$ . In fact, points $P_{n}$ look hke on a line for even small $n$ . (Figure3)
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Figure 3. Points $P_{n}$

How can we show students the sequence $\frac{F_{n+1}}{F_{n}}$ converges to $\varphi$ visually? We used the

logarithm with base $\varphi$ . Let $Q_{n}$ be the point $(\log_{\varphi}F_{n}, \log_{\varphi}F_{n+1}, \log_{\varphi}F_{n+2})$ . $\frac{F_{n+1}}{F_{n}}\sim\varphi$

and $\frac{F_{n+2}}{F_{n+1}}\sim\varphi$ hold for large $n$ . This implies $\log_{\varphi}F_{n+1}-\log_{\varphi}F_{n}\sim\log_{\varphi}\varphi=1$ and

$\log_{\varphi}F_{n+2}-\log_{\varphi}F_{n+1}\sim\log_{\varphi}\varphi=1$ . So points $Q_{n}$ are nearly on the line $x=y-1=z-2$
for large $n$ . (Figure4)

$x$

Figure 4. Points $Q_{n}$ and the line $x=y-1=z-2$
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3 Visualization of inverse function by $3D$-GRAPES

In pre-calculus we teach students $f^{-1}(f(x))=x$ . In this chapter, we want to show

$f^{-1}(f(x))=x$ visually. We will show it in the case $f(x)=\sqrt{x}$ . Let $t=f(x)=\sqrt{x}.$

Then $f^{-1}(x)=x^{2}$ . We use $t$-axis instead of $z$-axis. (Figure5)

Figure 5. $x$-axis, $y$-axis and $t$-axis

Let A be any point on $x$-axis. Let $B$ be the point on the graph $t=\sqrt{x}$ such that

the $x$-coordinates of A and $B$ are the same. Let $C$ be the point on $t$-axis such that the
$t$-coordinates of $B$ and $C$ are the same. (Figure 6.7)

Figure 7. Graph of $t=f(x)=\sqrt{x}$ and points $A,$ $B,$ $C$ ( $3$-dimensional view)

Let $y=f^{-1}(t)=t^{2}$ . Points $D,$ $E$ are chosen as in Figure 8.
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Figure 8. Graphs of $t=f(x)=\sqrt{x}$ and $y=f^{-1}(t)=t^{2}$

Let $F$ be the point on $xy$-plane such that $x$-coordinates of A and $F$ are the same and
$y$-coordinates of $E$ and $F$ are the same.

Figure 9. Point $F$ on $xy$-plane

As figure OBA and ODE are congruent, so $OA=OE$ . It means $F$ is on the line $y=x.$

Thus $f^{-1}(f(x))=x$ holds for $f(x)=\sqrt{x}$ . (Figure 10)

Figure 10. $f^{-1}(f(x))=x$ holds for $f(x)=\sqrt{x}$
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4 Visualization of limits of trigonometric functions

by $3D$-GRAPES

In this chapter, we visualize $\lim_{\thetaarrow 0}\frac{\sin\theta}{\theta}=1$ . To prove this, we usually use the inequality

$\sin\theta<\theta<\tan\theta$ . But there is another way. Suppose that A be the point $(1, 0,0)$ , $B$ be
a point on $xy$-plane such that $OB=1$ . A and $B$ are on the unit circle on $xy$-plane. Let
$\angle AOB=\theta$ (rad). Then the coordinate of $B$ is $(\cos\theta,\sin\theta, 0)$ and $A^{\wedge}B=\theta$ . Let $C$ be the
point $(\cos\theta, \sin\theta, \sin\theta)$ , then $C$ is right above $B$ and on the plane $y=z.($Figure 1 $1)$

Figure 11. Plane $y=z$ and points $A,$ $B,$ $C$

If $\theta$ is very small, ABC looks like an isosceles triangle. So, if $\theta\sim 0$ , then $\sin\theta\sim\theta.$

(Figure 12)

Figure 12. ABC looks like an isosceles triangle
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5 Ellipse and hyperbola on $xy$-plane

In this chapter, we consider ellipse and hyperbola on $xy$-plane. Before drawing curves,
let

’
$s$ consider the following problem.

Problem : Find the Maximum and minimum value of $y$ such that

$y=(2- \frac{\sqrt{2}}{2})\sin^{2}\theta+\sqrt{2}\sin\theta\cos\theta+(2+\frac{\sqrt{2}}{2})\cos^{2}\theta (0\leqq\theta<2\pi)$

The solution is as follows.
Solution: As

$y=(2- \frac{\sqrt{2}}{2})\sin^{2}\theta+\sqrt{2}\sin\theta\cos\theta+(2+\frac{\sqrt{2}}{2})\cos^{2}\theta (0\leqq\theta<2\pi)$

$=(2- \frac{\sqrt{2}}{2})\frac{1-\cos 2\theta}{2}+\frac{\sqrt{2}}{2}\sin 2\theta+(2+\frac{\sqrt{2}}{2})\frac{1+\cos 2\theta}{2}$

$=2+ \frac{\sqrt{2}}{2}\sin 2\theta+\frac{\sqrt{2}}{2}\cos 2\theta=2+\sin(2\theta+\frac{\pi}{4})$

so maximum is 3 and minimum is 1.

As you see in the solution of the problem, if $x^{2}+y^{2}=1$ , the quadratic form can be
written as

$ax^{2}+bxy+cy^{2}=k+m\sin(2\theta+\alpha)$

for some $k,$ $m,$ $\theta,$ $\alpha$ . We consider a curve in space such that

$x=\cos\theta, y=\sin\theta, z=k+m\sin(2\theta+\alpha)$

What does this curve look like? For example, curve

$x= \cos\theta, y=\sin\theta, z=2+2\sin(2\theta+\frac{\pi}{4})$

is shown in Figure 13.

Figure 13. The curve $x=\cos\theta,$ $y=\sin\theta,$ $z=2+2 \sin(2\theta+\frac{\pi}{4})$
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And curve $x=\cos\theta,$ $y=\sin\theta,$ $z=2+\sin 2\theta$ is shown in Figure 14. By comparing
two graphs, we can see if $\alpha$ changes, the curve rotates around the $z$-axis.

Figure 14. The curve $x=\cos\theta,$ $y=\sin\theta,$ $z=2+\sin 2\theta$

Furthermore curve $x=\cos\theta,$ $y=\sin\theta,$ $z=1.6+2\sin 2\theta$ is shown in Figure 15. By
comparing these graphs, we can see if $k$ changes, the curve goes up or goes down.

Figure 15. The curve $x=\cos\theta,$ $y=\sin\theta,$ $z=1.6+2\sin 2\theta$

Let
’

$s$ draw the curve $ax^{2}+bxy+w^{2}=1$ on $xy$-plane. By substituting $x=r\cos\theta$

and $y=r\sin\theta$ , we get

$x= \frac{\cos\theta}{\sqrt{k+m\sin(2\theta+\alpha)}}, y=\frac{\sin\theta}{\sqrt{k+m\sin(2\theta+\alpha)}}, z=0$

For example, curve $x=\cos\theta,$ $y=\sin\theta,$ $z=2+\sin 2\theta$ and ellipse are shown in Figure

16.
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Figure 16. Curve and ellipse

When the $z$-coordinate of the point on the curve is minimum, the foot is on the major
axis of the ellipse. And when the $z$-coordinate of the point on the curve is maximum,

the foot is on the minor axis of the ellipse. What will happen if we decrease $k$?

As $k$ decrease, the ellipse on the plane becomes larger. When the curve touched down,

ellipse is no longer ellipse but two parallel lines.(Figure 17)

Figure 17. When the curve touched down

Furthermore, if there is a point on the curve under $xy$-plane, then $ax^{2}+bxy+cy^{2}=1$

is a hyperbola.(Figure 18)
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Figure 18. $ax^{2}+bxy+w^{2}=1$ is a hyperbola

Every time we demonstrate these changes of shape, they amaze audience. We are
going to continue making $3D$ visualization of mathematical themes.
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