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\S 1. Introduction
This is an expository article of [3]. First of all we shall begin with introducing

some notations. Let $D_{0}$ $:=\mathbb{R}^{3}\backslash \{0\}$ , and we put $\mathbb{R}_{+}:=[0, \infty$ ) for simplicity.
For every pair $\alpha,$

$\beta\in \mathbb{C}^{3}$ , the symbol $\alpha\cdot\beta$ denotes the inner product of them,
and we define $e_{x}$ $:=x/|x|$ for every $x\in D_{0}$ . Let us now consider the following
deterministic nonlinear integral equation:

$e^{\lambda t|x|^{2}}u(t, x)=u_{0}(x)+ \frac{\lambda}{2}\int_{0}^{t}dse^{\lambdas|x|^{2}}\int p(s, x, y;u)n(x, y)dy$

$+ \frac{\lambda}{2}\int_{0}^{t}e^{\lambda s|x|^{2}}f(s, x)ds$ , for $\forall(t, x)\in \mathbb{R}_{+}\cross D_{0}$ , (1)

where $u\equiv u(t, x)$ is an unknown function : $\mathbb{R}_{+}\cross D_{0}arrow \mathbb{C}^{3},$ $\lambda>0$ , and $u_{0}$ :
$D_{0}arrow \mathbb{C}^{3}$ is the initial data such that $u(t, x)|_{t=0}=u_{0}(x)$ . Moreover, $f(t, x)$ :
$\mathbb{R}_{+}\cross D_{0}arrow \mathbb{C}^{3}$ is a given function satisfying $f(t, x)/|x|^{2}=:\tilde{f}\in L^{1}(\mathbb{R}_{+})$ for each
$x\in D_{0}$ . The integrand $p$ in (1) is given by $p(t, x, y;u)=u(t, y)\cdot e_{x}\{u(t, x-y)-$

$e_{x}(u(t, x-y)\cdot e_{x}$ We assume that the integral kernel $n(x, y)$ is bounded and
measurable with respect to $dx\cross dy$ . On the other hand, we consider a Markov
kernel $K$ : $D_{0}arrow D_{0}\cross D_{0}$ . Actually, for every $z\in D_{0},$ $K_{z}(dx, dy)$ lies in the space
$\mathcal{P}(D_{0}\cross D_{0})$ of all probability measures on a product space $D_{0}\cross D_{0}$ . When the
kernel $k$ is given by $k(x, y)=i|x|^{-2}n(x, y)$ , then we define $K_{z}$ as a Markov kernel
satisfying that for any positive measurable function $h=h(x, y)$ on $D_{0}\cross D_{0},$

$\iint h(x, y)K_{z}(dx, dy)=\int h(x, z-x)k(x, z)dx$ . (2)

In [2] we have reported our new result, which asserts the existence and uniqueness
of probabilistic solutions to the nonlinear integral equation (1). That is to say, we
have succeeded in deriving a probabilistic representation of the solutions to (1) by
employing the star-product functional. As a matter of fact, the solution $u(t, x)$

can be expressed as the expectation of a star-product functional, which is nothing
but a probabilistic solution constructed by making use of suitable branching par-
ticle systems and branching models. The following is nothing but a probabilistic

数理解析研究所講究録

第 1952巻 2015年 1-8 1



representation of the solution in terms of tree-based star-product functional with

weight $(u_{0}, f)$ :
$M^{\langle u_{0},f\rangle} \star(\omega)=\prod-m_{2}m3, f](\omega)$ . (3)

For details of the definition, see the Section 4 in [2]. On the other hand, $M_{*}^{\langle U,F\rangle}(\omega)$

denotes the associated $*$ -product functional with weight $(U, F)$ , which is indexed

by the nodes $(x_{m})$ of a binary tree. Here $U=U(x)$ $($ resp. $F=F(t, x))$ is a non-

negative measurable function on $D_{0}$ (resp. $\mathbb{R}_{+}\cross D_{0}$ ) respectively, and also that
$F$ $x)\in L^{1}(\mathbb{R}_{+})$ for each $x$ . Indeed, in construction of $the*$-product functional,

the product in question is taken as ordinary multiplication $*$ instead of the star-

product $\star$ in the definition of star-product functional. Then we have:

THEOREM 1. (see also [3]) Suppose that $|u_{0}(x)|\leq U(x)$ for $\forall x$ and $|\tilde{f}(t, x)|$

$\leq F(t, x)$ for $\forall t,$ $x$ , and also that for some $T>0$ ( $T>>1$ sufficiently large),
$E_{T,x}[M_{*}^{\langle U,F\rangle}(\omega)]<\infty$ , a.e.-x Then there exists $a(u_{0}, f)$-weighted tree-based star
$\star$-product functional $M_{\star}^{\langle u0,f\rangle}(\omega)$ , indexed by a $\mathcal{S}et$ of node labels accordingly to

the tree structure which a binary critical branching process $Z^{K_{x}}(t)$ determines.

Furthermore, the function $u(t, x)=E_{t,x}[M_{\star}^{\langle uf\rangle}0,(\omega)]$ gives a unique solution to the

integral equation (1). Here $E_{t,x}$ denotes the expectation with respect to a probability

m\’easure $P_{t,x}$ as the time-reversed law of $Z^{K_{x}}(t)$ .

\S 2. Unbiased estimator and linear integral equation

In this section we shall think of the following linear integral equation for a

while:

$u(x)= \int_{\overline{D}}u(y)k(x, dy)+g(x)$ , $x\in D$ ; $u(y)|_{\partial D}=\varphi(y)$ , $y\in\partial D$ , (4)

where $D$ is an open domain in a certain metric space $(M, \rho)$ . Here we suppose

that a function $\varphi$ is bounded on the boundary $\partial D$ . Let $\xi_{0}=x,$ $\xi_{1},$ $\xi_{2}$ , . . . , $\xi_{n},$

. . . be a Markov chain with a phase space $\overline{D}$ and a transition function $p(y, dz)$

being convergent to one on the boundary $\partial D$ : namely, $\xi_{n}arrow\xi_{\infty}\in\partial D$ holds

a.s. and $p(y, \{z\})=1$ holds for \’any $z\in\partial D$ . We assume further that (i) there

exists the Radon-Nikodym derivatives $k_{p}(y, z)=k(y, dz)/p(y, dz)$ ; (ii) when we

put $\zeta=\sup_{k}\prod_{i=0}^{k}|k_{p}(\xi_{i}, \xi_{i+1}$ then $for any x\in D, \mathbb{P}_{x}(\zeta<+\infty)=1$ and $\mathbb{E}_{x}[\zeta^{2}]$

$<+\infty$ ; (iii) an infinite product $\prod_{i=0}^{\infty}k_{p}(\xi_{i}, \xi_{i+1})$ converges $\mathbb{P}_{x}-a.s$ for any $x\in D$ ;

(iv) $\sum_{k=0}^{\infty}\mathbb{E}_{x}[g^{2}(\xi_{k})]<\infty.$

When we define a random variable $\eta$ as $\eta=\prod_{i=0}^{\infty}k_{p}(\xi_{i}, \xi_{i+1})\varphi(\xi_{\infty})+\sum_{k=0}^{\infty}\prod_{i=0}^{k-1}$

$k_{p}(\xi_{i}, \xi_{i+1})g(\xi_{k})$ , then $\eta$ is an unbiased estimator for one of the solutions to (4).

According to the theory by Ermakov, it is proven that if $g$ is a uniformly continuous

function on $D$ , then the function $u(x)=\mathbb{E}_{x}[\eta]$ is a unique bounded solution to the
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problem (4). Furthermore, as a matter of fact, it is also proved that

$\eta_{N_{0}(\epsilon)}^{*}=\prod_{i=0}^{N_{0}(\epsilon)-1}k_{p}(\xi_{i}, \xi_{i+1})\varphi(\xi_{N_{0}(\epsilon)}^{*})+\sum_{k=0}^{N_{0}(\epsilon)}g(\xi_{k})\sum_{i=0}^{k-1}k_{p}(\xi_{i}, \xi_{i+1})$ (5)

is a biased estimator of $u(x)$ with $N_{0}(\epsilon)$ $:= \min\{n : \xi_{n}\in\Gamma_{\epsilon}\}$ where $\Gamma_{\epsilon}$ is an inner
$\epsilon$-neighborhood of the boundary $\partial D$ for a sufficiently small positive number $\epsilon>0,$

and the random element $\xi_{N_{0}(\epsilon)}^{*}$ lies in the boundary $\partial D$ and $\rho(\xi_{N_{0}(\epsilon)},\xi_{N_{0}(\epsilon)}^{*})\leq\epsilon.$

In fact, the estimator $\eta_{N_{0}(\epsilon)}^{*}$ is realizable as far as $\mathbb{E}_{x}[N_{0}(\epsilon)]<\infty$ holds.

\S 3. Principal result

Our result (Theorem 1) stated in Section 1 provides with a invaluable example
that a probabilistic solution to (1) has been constructed, but its analytical solu-
tion having an explicit representation has not known yet. Then the next question
might have been asked by someone else: (since you have an explicit solution, you
can simulate behaviors of the solution, is it correct?”’ In this moment we are not
confident that our solution (3) (also the expectation of (3)) is a realizable unbi-
ased estimator. A next thing to do should be to investigate whether a realizable
unbiased estimator for (1) exists or not. Then the result on construction of an
unbiased estimator of the solutions to (1) will be introduced. In fact, an answer
to the aforementioned question is as follows.

THEOREM 2. (cf. [3]) Let $\{\xi_{k}\}_{k=0}^{\infty}$ be a Markov chain with a phase space $(\mathbb{D}, \mathcal{G})$

and with a transition function $p(x, dy)$ . Then there exist a suitable sequence $\{\tau_{m}\}$

of random variables and a proper functional $M^{*}(\xi)=M^{*}(\tau_{m}, \{\xi_{k}\})$ of $\{\tau_{m}\}$ and
$\{\xi_{k}\}$ such that a random quantity $\zeta=M^{*}(\xi)$ is a realizable unbiased estimator of
the solutions to the integral equation (1), i.e., in other words, the function

$u(t, x):=\hat{E}_{t,x}[M^{*}(\xi)]=\hat{E}_{t,x}[M^{*}(\tau, \{\xi_{k}\})]$ (6)

satisfies (1), where $\hat{E}_{t,x}$ is the expectation with respect to $Q_{t,x}$ , and $Q_{t,x}$ is a proba-
bility measure on $(\mathbb{D}, \mathcal{G})$ induced by the probability law $P_{t,x}$ in Theorem 1.

\S 4. Sketch of the proof of theorem 2
The purpose of this section is to prove Theorem 2, our main result stated in

Section 3. That is, we shall construct a realizable unbiased estimator $\zeta=M^{*}(\xi)$

of the solutions to our deterministic nonlinear integral equation (1). Most known
Monte Carlo algorithms are based on the simulation of realizable processes, and
it is also clear that the Markov property of these processes is very important. It
is certain that construction of unbiased estimators is a significant issue, while it is
necessary for the process $\zeta=g(\eta)$ , a kind of representation, to be realizable.
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4.1. Markov chain and characterization equation

We shall start with defining of a branching Markov chain $\{\xi_{n}\}_{n}$ . First of all, we

put

$\mathbb{D}:=\bigoplus_{n=0}^{\infty}D_{0}^{n}, D_{0}^{0}=\Delta\not\in D_{0}^{n} (n=1,2, \ldots)$ , (7)

and let $D_{0}$ be equipped with the $\sigma$-field $\mathcal{G}$ generated by a natural a-algebra $\mathcal{B}(D_{0})$

and a single-point set $\{\Delta\}$ , where $\Delta$ is called an absorbing state in the theory of

Markov processes. Inspired by Ermakov’s theory, for each $x\in D_{0}$ we define $\{p_{n}\}$

by a probability measure $p(x, dy)$ $\in \mathcal{P}(\mathbb{D}, \mathcal{G})$ such that $p_{n}(x, A)$ $:=p(x, A)$ for

$A\subset D_{0}^{n}$ and $g(x)=p(x, \{\Delta\})$ as a measurable function. Here $p(x, dy)$ is called

a transition function of Markov chain $\{\xi_{n}\}$ . We assume that for every $A\in \mathcal{G},$

$p(x, A)$ is a $\mathcal{B}(D_{0})$-measurable function. Moreover, we set $r_{n}(x)$ $:=p_{n}(x, D_{0}^{n})$ , and

$q_{n}(x, dy)$ $:=p_{n}(x, dy)/r_{n}(x)$ , $n\geq 1$ , so that, $q_{n}(x, D_{0}^{n})=1$ . A family of measures
$\{p(x, dy), x\in D_{0}\}$ will be called a branching law. Practically, we set $G_{A}(x)=$

$p_{2}(x, A)= \frac{1}{2}$ for $A\in D_{0}^{2}$ and $p_{0}(x, D_{0}^{0})= \frac{1}{2}$ , and let $\{\tau_{m}\}$ be a sequence of random

variables such that under $\xi_{p(m)}=x_{m}$ , they are mutually independent and have

an exponential distribution with parameter $\lambda|x_{m}|^{2}$ , when $p(m)$ : $\mathcal{V}arrow \mathbb{N}_{0}$ is a

lexicographically numbering mapping. At each time $\mathcal{T}_{m}$ , random particles $\xi_{p(m)}$

are governed by

$p_{2}^{[x_{m"}]}(\xi_{p(m)},\xi_{p(m’)}, A)=K_{x_{m"}}((dx_{m}, dx_{m’})\in\Phi^{-1}(A)\cross\Phi^{-1}(A))$ , $\forall A\in D_{0}^{2}$ (8)

with $|m|=|m’|=\ell$ when $|m"|=\ell-1$ for $m,$ $m’,$ $m”\in \mathcal{V}$ , where $\Phi$ is a mapping

from $D_{0}$ to $\mathbb{D}$ . Then a process $\eta_{t}$ may be described in the following way: a process

stays for a random time $\tau_{1}$ at the initial state $\eta_{p(1)}=\xi_{p(1)}=x_{1}$ , then if jumps

into states $\xi_{p(11)}$ and $\xi_{p(12)}$ where the process stays for a time $\tau_{p(11)}$ and $\tau_{p(12)}$

respectively, and so forth. Here note that $\tau_{1}(\omega)=\inf\{t\geq 0;\xi_{p(1)}\neq\xi_{p(11)}$ and $\xi_{p(1)}$

$\neq\xi_{p(12)}\}$ and also that for $a>0,$ $x_{0}\in D_{0}$ and a measurable set $A\subset \mathbb{D}$

$\mathbb{E}_{x}[e^{-a\tau}1, \eta_{\tau_{1}}\in A|\eta_{\tau_{1}-}]=p(\eta_{\tau_{1}-}, A)\mathbb{E}_{x}[e^{-a\tau_{1}}|\xi_{\tau_{1}-}]$ (9)

holds on the set $\{\tau_{1}<+\infty\}$ . Set $F(x)= \prod_{i=1}^{n}f(x_{i})$ for $x=(x_{1}, x_{2}, \ldots, x_{n})$ and

$F(\Delta)=0.$

LEMMA 3. Set $\tau$ $:= \max\{k : \xi_{k}\neq\Delta\}$ . Then the junction $v(x)=\mathbb{E}_{x}[F(\xi_{\tau})$ ,

$\mathcal{T}<\infty]$ satisfies the equation

$v(x)=g(x)f(x)+ \iint_{D_{0}^{2}}p_{2}(x, dy)v(y_{1})v(y_{2})$ with $v_{0}=gf$ and $y=(y_{1}, y_{2})$ .

(10)
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Proof. Since $\tau\geq 1$ , then by a property of conditional expectation we can get

$v(x)=\mathbb{E}_{x}[F(\xi_{\tau}), \tau<\infty]=\mathbb{E}_{x}[F(\xi_{\tau}), \tau=1]+\mathbb{E}_{x}[F(\xi_{\tau}), 1<\tau<\infty]$

$=g(x)f(x)+ \sum_{n=1}^{\infty}\int_{D_{0}^{n}}p_{n}(x, dy^{n})\prod_{i=1}^{n}v(y_{i})$ (11)

with $y^{n}=(y_{1}, y_{2}, \ldots, y_{n})$ . Because we made use of the Markov property in the
above calculation. The definition of $p_{n}(x, dy)$ reminds us of the validity that the
last integral term in the above (11) can be rewritten into the double integral
$\iint_{D_{0}^{2}}p_{2}(x, dy)v(y_{1})v(y_{2})$ with $y=(y_{1}, y_{2})$ . Thus we attain the expression (10). $\square$

When the corresponding quantity consists of an infinite number of Markov
chains, the estimator generated by them itself is not realizable since it depends
upon the infinite trajectories of the Markov chain. Generally speaking, the branch-
ing process is a purely discontinuous one, that is, the changing of a state of the
process occurs only at a branching instant. Hence, the branching process must
be realizable, in particular the process considered in this section itself must be
realizable at least.

4.2. Construction of unbiased estimator

In this section, based upon the Markov chain described in the previous section,
we are going to construct an unbiased estimator of the solutions to integral equa-
tion (1), that is realizable. We shall write the number of the elements in $\mathcal{N}(\omega)$ of
a realized tree structure $\Omega$ by $N_{e}(\omega)$ , and shall rewrite it and make an ordinary
numbering in a lexicographical manner for those quantities $–m^{1}m$

[2]), tagged with labels $m\in \mathcal{V}$ , so that, we define

$\varphi_{p(m)}(\xi)\equiv\varphi_{p(m)}(t_{p(m)}, \xi_{p(m)}, \omega)=\{\begin{array}{l}\tilde{f}(t_{m}(\omega), x_{m}(\omega)) if \omega\in N_{+}(\omega) ,u_{0}(x_{m}(\omega)) if \omega\in N_{-}(\omega) ,\end{array}$ (12)

where we put $t_{p(m)}$ $:=\tau_{m}$ . For simplicity, for $\varphi_{p(m)}(\xi)=(\varphi_{p(m)}^{1}(\xi),$ $\varphi_{p(m)}^{2}(\xi)$ ,
$\varphi_{p(m)}^{3}(\xi))$ , we write it as $\varphi_{k}^{i}(\xi);i=1$ , 2, 3; $k=1$ , 2, . . . , $N_{e}(\omega)$ by the abuse
of notation. Based upon our theory stated and explained in [2], we write the
objective functional of Markov chain as

$M^{*}( \xi)\equiv M^{*-}(\tau_{m}, \{\xi_{n}\})=\prod_{i=1}^{N_{e}(\omega)}\star[\xi_{i}]^{-}-(i)(\varphi_{p(m)}(\xi))$ . (13)

This symbolic expression indicates the $\star$-product of $N_{e}(\omega)+1$ pieces of functionals
$—(i)(\varphi_{p(m)}(\xi))$ of $(\tau_{m}, \{\xi_{n}\})$ , with pivoting point $\xi_{i}$ , that is realized explicitly by a
finite combination of ordinary functions $\tilde{f}$ and $u_{0}$ . Each $\star_{[\xi_{i}]}$ -operation between
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terms $—(i)(\varphi_{p(m)}(\xi))$ ’s should be succeedingly executed in a lexicographical manner
with respect to the original label $m\in \mathcal{V}$ , just described as in [2] (see also [3]). For

brevity’s sake we illustrate the typical case by a simple example, to see how it goes

or what it looks like. Let us now consider a simple case of $\Xi_{(i)}(\varphi_{p(m)}(\xi))$ involved

with $\varphi_{p(m)}(\xi)$ and $\varphi_{p(m’)}(\xi)$ with pivoting $\xi_{p(m")}$ . Then we have immediately

$—(i)(\varphi_{p(m)}\langle\xi))=i\alpha(\xi_{p(m")})\cross\beta(\varphi_{p(m)}(\xi), \xi_{p(m")})\cross\gamma(\xi_{p(m")}, \varphi_{p(m’)}(\xi))$

$= \frac{i\sum_{j=1}^{3}\varphi_{k}^{j}(\xi)\xi_{k"}^{j}}{\sqrt{(\xi_{k’}^{1},)^{2}+(\xi_{k’}^{2},)^{2}+(\xi_{k’}^{3},)^{2}}}\cross\{\frac{\sum_{j=1}^{3}\xi_{k"}^{j}\varphi_{k’}^{J}(\xi)}{(\xi_{k’}^{1},)^{2}+(\xi_{k’}^{2},)^{2}+(\xi_{k’}^{3},)^{2}}$ . $\xi_{k"}-\varphi_{k’}(\xi)\}$ (14)

where we put $p(m)=k,$ $p(m’)=k’$ and $p(m”)=k$ and both particles with labels

$m$ and $m’$ belong to the same $\ell$-th generation of descendants since we have $|m|=$

$|m’|=P$ when $|m"|=\ell-1.$

We define a new probability measure $Q_{t,x}$ on $(\mathbb{D}, \mathcal{G})$ by $Q_{t,x}(A)$ $:=P_{t,x}(\Phi^{-1}(A))$ ,

for every $A\in \mathbb{D}$ , for each $(t, x)\in[0, T]\cross D_{0}$ , when a m\’apping $\Phi$ : $D_{0}arrow \mathbb{D}$ is given.

Then we denote by $\hat{E}_{t,x}$ the expectation with respect to the probability measure
$Q_{t,x}$ . By employing the conditional expectation, we obtain, for every $0\leq t\leq T$

and $x\in E_{c}$ , with the event $F_{0}$ indicating no branching

$u(t, x)=\hat{E}_{t,x}[M^{*}(\xi)]=\hat{E}_{t,x}[M^{*}(\tau_{m}, \{\xi_{n}\})]$

$=\hat{E}_{t,x}[M^{*}(\tau_{m}, \{\xi_{n}\}), \tau_{1}\leq 0]+\hat{E}_{t,x}[M^{*}(\tau_{m}, \{\xi_{n}\}), \tau_{1}>0, F_{0}]$

$+\hat{E}_{t,x}$ [ $M^{*}(\tau_{m}, \{\xi_{n}\})$ , $\tau_{1}>0$ , branching occurs]. (15)

We need the following series of lemmas.

LEMMA 4. For every $0\leq t\leq T$ and $x\in E_{c}$ , we have

$\hat{E}_{t,x}[M^{*}(\tau_{m}, \{\xi_{n}\}, \tau_{1}\leq 0]=u_{0}(x)\cdot\exp\{-\lambda|x|^{2}t\}$ . (16)

Proof In this case, branching time never lives in $[0, T]$ with $T>$ O. Hence,

clearly a simple computation yields at once to

$\hat{E}_{t,x}[M^{*}(\tau_{m}, \{\xi_{n}\}), \tau_{1}\leq 0]=\hat{E}_{t,x}[\prod_{i=1}^{N_{e}(\omega)}\star_{1\xi_{i}]^{-}}^{-}-(i)(\varphi_{p(m)}(\xi)), \tau_{1}\leq 0]$

$=\hat{E}_{t,x}[\varphi_{p(\phi)}(t_{p(\phi)}, \xi_{p(\phi)}, \omega), \tau_{1}\leq 0]=u_{0}(x)\cdot P_{t,x}(t_{\phi}\leq 0)=u_{0}(x)\cdot e^{-\lambda|x|^{2}t}$ , (17)

where we have used a similar argument as in Section 7 of [3]. $\square$

LEMMA 5. For every $0\leq t\leq T$ and $x\in E_{c}$ , we have

$\hat{E}_{t,x}$ [ $M^{*}(\tau_{m}, \{\xi_{n}\})$ , $\tau_{1}>0$ , no branching] $= \int_{0}^{t}\frac{\lambda|x|^{2}\tilde{f}(s,x)}{2}\cdot\exp\{-\lambda|x|^{2}(t-s)\}ds.$
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Proof. As to this case, $\tau=t-s$ is distributed in the exponential distribution
with parameter $\lambda|x|^{2}>0$ when $t_{\phi}=s\in[0, T]$ . Taking it into account the situation
that extinction occurs at some time between $0$ and $t$ , we can obtain easily

$\hat{E}_{t,x}$ [ $M^{*}(\tau_{m}, \{\xi_{n}\})$ , $\tau_{1}>0$ , no branching] $=\hat{E}_{t,x}[\varphi_{p(\phi)}(t_{p(\phi)}, \xi_{p(\phi)}, \omega), \tau_{1}>0, F_{0}]$

$= \hat{E}_{t,x}[\tilde{f}(\tau_{\phi}, \xi_{p(\phi)}, \omega), \tau_{1}>0, F_{0}]=\frac{1}{2}\cross\int_{0}^{t}ds\lambda|x|^{2}e^{-\lambda|x|^{2}(t-s)}\cross\tilde{f}(s, x)$ ,

since by the condition the branching occurs at time $t_{\phi}=s$ , under the probability
$\frac{1}{2}$ $($which comes from $the$ constraint $p_{0}(x, D_{0}^{0})= \frac{1}{2}$ ). This finishes the proof. $\square$

Likewise, we can get the following lemma which play an essential role in con-
struction of unbiased estimator of the solutions to integral equation (1).

LEMMA 6. We have

$\hat{E}_{t,x}$ [ $M^{*}(\tau_{m}, \{\xi_{n}\})$ , $\tau_{1}>0$ , branching occurs] $= \int_{0}^{t}ds\frac{\lambda|x|^{2}}{2}\exp\{-\lambda|x|^{2}(t-s$

$\cross\int\int_{D_{0}^{2}}\hat{E}_{t,x}[M^{*}(\xi)]\star_{[x]}\hat{E}_{t,x}[M^{*}(\xi)]p_{2}^{[x]}(\xi_{p(m)}, \xi_{p(m’)}, dy\cross dz)$ (18)

with $y=x_{m}(\omega)$ and $z=x_{rn’}(\omega)$ , for every $0\leq t\leq T$ and $x\in E_{c}.$

Proof. By the Markov property applied at time $t_{\phi}$ , we have

$\hat{E}_{t,x}$ [ $M^{*}(\tau_{m}, \{\xi_{n}\})$ , $\tau_{1}>0$ , branching occurs] $=\hat{E}_{t,x}[\hat{E}_{t_{\phi},x(t_{\phi})}[M^{*}(\tau_{m}, \{\xi_{n}\})$ , $\tau_{1}>0$

If branching occurs at time $t_{\phi}=\mathcal{S}(0\leq s\leq t)$ , then the time interval $\tau=t-s$

is exponentially distributed with parameter $\lambda|x|^{2}>0$ , so that, the time variable
$s$ ranges over $(0, t)$ , and its probability for branching occurrence is given by an
integral with respect to $s$ over $(0, t)$ . In addition to that, the number $\frac{1}{2}$ comes out
from the restraint $G_{A}(x)= \frac{1}{2}$ , which means the probability that the parent particle
at $x(t_{\phi})$ produces two offsprings that jump into the locations, for instance, $y$ and $z.$

Then, by virtue of independence of Markov families, the expectation separates into
a form of product of two expectations at branching time $s$ just like $\hat{E}_{s,y}[M^{*}(\xi)]\star_{[x]}$

$\hat{E}_{s,z}[M^{*}(\xi)]$ , and those offspring particles are governed by the probability measure
$p_{2}^{[x]}(\xi_{p(m)}, \xi_{p(m’)}, dy\cross dz)$ . Consequently, summing up all of them, we can deduce

$\hat{E}_{t,x}$ [$M^{*}(\tau_{m}, \{\xi_{n}\})$ , $\tau_{1}>0$ , branching occurs] $= \frac{1}{2}\cross\int_{0}^{t}ds\lambda|x|^{2}\cdot\exp\{-\lambda|x|^{2}(t-s$

$\cross\int\int_{D_{0}^{2}}\hat{E}_{s,y}[M^{*}(\xi)]\star_{[x]}\hat{E}_{s,z}[M^{*}(\xi)]p_{2}^{[x]}(\xi_{p(m)}, \xi_{p(m’)}, dy\cross dz)$

with $y=x_{m}(\omega)$ and $z=x_{m’}(\omega)$ , for every $0\leq t\leq T$ and $x\in E_{c}.$ $\square$
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Combining the above-obtained results: Lemmas 4, 5 and 6, we obtain therefore

$u(t, x)=\hat{E}_{t,x}[M^{*}(\tau_{m}, \{\xi_{n}\})]$

$=u_{0}(x) \cdot\exp\{-\lambda|x|^{2}t\}+\int_{0}^{t}\frac{\lambda|x|^{2}\tilde{f}(s,x)}{2}\exp\{-\lambda|x|^{2}(t-s)\}ds$

$+ \int_{0}^{t}ds\frac{\lambda|x|^{2}}{2}e^{-\lambda|x|^{2}(t-s)}\int\int_{D_{0}^{2}}\hat{E}_{s,y}[M^{*}(\xi)]\star_{[x]}\hat{E}_{s,z}[M^{*}(\xi)]p_{2}^{[x]}(\xi_{p(m)}, \xi_{p(m’)}, dy\cross dz)$ .

(19)

Recall that $u(s, y)=\hat{E}_{s,y}[M^{*}(\xi)]$ and $u(s, z)=\hat{E}_{s,z}[M^{*}(\xi)]$ . And besides, from (8)

the transition function in (19) can be rewritten into the Markov kernel $K_{x}(dy, dz)$ .

Recall (10). Then the last term in (19) is changed into a form

$\int_{0}^{t}ds\frac{\lambda|x|^{2}}{2}e^{-\lambda|x|^{2}(t-s)}\int p(s, x, y;u)n(x, y)dy,$

where we made use of the integral formula (2). This implies that $u(t, x)=$

$\hat{E}_{t,x}[M^{*}(\tau_{m}, \{\xi_{n}\})]$ satisfies the nonlinear integral equation (1), that is to say, $\zeta$

$=M^{*}(\xi)$ gives a realizable unbiased estimator of the solutions to (1). This com-

pletes the proof of Theorem 2.
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