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1 Main results.

We consider a generalization of a system of first order quasilinear partial differential equations
(PDE) in 1 $+$ 1 space-time dimensions, such that the method of characteristic curve is effective.
We consider non-local (integration) terms and a system of infinitely many components (in fact,
equations for a measure valued function), and focus on solutions expressed by certain non-
Markovian point process. We first summarize in this section our latest results in [2], and then
post open problems in \S 2..

1.1 Differential equation with non-local term.

Throughout this paper we fix $T>0$ . Let $W\subset C^{1}([0,1]\cross[0, T];[0, \infty))$ be a set of non-negative
valued $C^{1}$ functions on $[0$ , 1$]$ $\cross[0, T]$ , and a Borel probability measure $\lambda$ supported on the Borel
measurable space $(W, \mathcal{B}(W))$ . $\mathcal{B}(W)$ is the a-algebra generated by open sets with the topology
from the space of continuous functions $C^{0}([0,1]\cross[0, T];[0, \infty))\supset C^{1}([0, 1] \cross[0, T];[0, \infty))$ with
the metric given by the supremum norm

(1) $\Vert w\Vert_{T}= \sup |w(y, t$

$(y,t)\in[0,1]\cross[0,T]$

For the probability space $(W, \mathcal{B}(W), \lambda)$ , the Borel sets are defined by the topology of the
space of continuous functions $w:[0$ , 1$]$ $\cross[0, T]arrow \mathbb{R}$ with maximum norm, and we assume

(2) $M_{W}:= \int_{W}\Vert w\Vert_{T}\lambda(dw)<\infty$ , and

(3) $C_{W}:= \sup_{w\in W}\Vert\frac{\partial w}{\partial y}\Vert_{T}<\infty.$

Denote the set of initial $(t=0)$ points in the space-time $[0, 1]\cross[0, T]$ , the set of upper stream
boundary $(y=0)$ points, and their union, the set of initial/boundary points, respectively by

$\Gamma_{b}=\{0\}\cross[0, T]=\{(0, s)|0\leqq s\leqq T\},$
(4)

$\Gamma_{i}=[0, 1 ] \cross\{0\}=\{(z, 0)|0\leqq z\leqq 1\}, \Gamma=\Gamma_{b}\cup\Gamma_{i}$ .

For $t\in[0, T]$ , denote the set of initial/boundary points up to time $t$ by

(5) $\Gamma_{t}=\{(z, s)\in\Gamma|t_{0}\leqq t\}=\Gamma_{i}\cup\{(0, to) \in\Gamma_{b}|0\leqq t_{0}\leqq t\},$

and the set of admissible pairs of the initial/boundary point $\gamma$ and time $t$ by

(6) $\triangle\tau:=\{(\gamma, t)\in\Gamma_{T}\cross[0, T]|\gamma\in\Gamma_{t}\}.$

Let $\mu_{0}=\mu_{0}(dw\cross dz)$ be a Borel probability measure on $(W\cross[0,1],$ $\mathcal{B}(W\cross[0,1$ We
assume that $\mu_{0}\ll\lambda\cross dz$ , where $dz$ denotes the standard Lebesgue measure on $[0$ , 1$]$ $\subset \mathbb{R}.$
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Theorem 1 ([2]) There exists a unique pair of functions $yc$ and $\mu\iota(dw\cross dz)$ , where $yc$ is a

function of $(\gamma, t)\in\Delta_{T}$ taking values in $[0$ , 1$]$ , and $\mu_{t}(dw\cross dz)$ is a function of $t\in[0, T]$ taking
values in the probability measures on $W\cross[O$ , 1$]$ , such that the following hold.

$yc((y0,0), t)$ is non-decreasing in $y0,$ $yc((0, t_{0}), t)$ is non-increasing in $t_{0}$ , and $yc(\gamma, t)$ is non-

decreasing in $t,$ $y_{C}(\gamma, t)$ and $\frac{\partial y_{C}}{\partial t}(\gamma, t)$ are continuous, and for each $t\in[0, T],$ $y_{C}(\cdot, t)$ : $\Gamma_{t}arrow$

$[0$ , 1 $]$ is surjective. Furthermore, $\int_{W}h(w)\mu_{t}(dw\cross[y, 1))$ is Lipschitz continuous in $(y, t)$ , for all

bounded measurable $h:Warrow \mathbb{R}$ , with Lipschitz constant uniform in $h$ satisfying $\sup|h(w)|\leqq 1,$

$w\in W$

and finally, the following equation of motion with initial/boundary conditions hold.

(7) $yc((y_{0}, t_{0}), t_{0})=y0, (y_{0}, t_{0})\in\Gamma,$

(8) $\mu_{t}(dw\cross[0,1))=\lambda(dw) , t\in[0, T],$

(9) $\mu_{t}(W\cross[y, 1))=1-y, (y, t) \in[0, 1 ] \cross[0, T],$

$\mu\iota(dw\cross[yc((y0, t_{0}), t), 1))=\mu_{t_{0}}(dw\cross[y0, 1))$

(10)
$- \int_{t_{0}}^{t}\int_{z\in[yc((y0,t_{0}),s),1)}w(z, s)\mu_{s}(dw\cross dz)ds,((y_{0}, t_{0}), t)\in\triangle\tau.$

$◇$

We have stated Lipschitz continuous broad solution in Theorem 1 which is a generalization of
Lipschitz solution in [1].

In terms of equation of motion for fluids, (10) is interpreted as the equation of motion of
incompressible fluid mixture of infinite components in a line segment, where each component is
labelled by its space-time dependent evaporation rate function $w\in W$ , and the motion of the
fluid mixture is driven by the evaporation. The choice of solution (with initial condition) (9)

implies incompressibility of the fluid, so that the fluid is pushed downstream in a way to keep

the density of total fluid constant. The boundary condition (8) implies conservation of fluid
components, so that the upperstream is filled by the evaporated fluid in such a way that each
fluid component is conserved.

Concerning (8), since quantity of fluid components (i.e. the measure $\lambda$ ) is conserved, explicit
$t$ dependence is absent if $\lambda$ is supported on functions constant in $t$ . We will discuss, as an open
problem in \S 2.2, the existence of solution $\mu_{t}$ which is constant in $t$ , in such cases.

We assumed that $\mu 0$ is absolutely continuous with respect to $\lambda\cross dz$ . Denote the density

function by $\sigma$ :

(11) $\mu_{0}(dw\cross dz)=\sigma(w, z)\lambda(dw)dz, (w, z)\in W\cross[O, 1 ].$

Then (8) and (9) for $t=0$ respectively implies

(12) $\int_{0}^{1}\sigma(w, z)dz=1,$ $w\in W$, and

(13) $\int_{W}\sigma(w, y)\lambda(dw)=1, y\in[0, 1 ].$

Note also that a substitution $y=yc(\gamma, t)$ in (9) implies $yc(\gamma, t)=1-\mu_{t}(W\cross[yc(\gamma, t),$ $1$ with
which (10) and (9) imply

(14) $y_{C}( \gamma, t)=y_{0}+\int_{t_{0}}^{t}\int_{W\cross[yc(\gamma,s),1)}w(z, s)\mu_{S}(dw\cross dz)ds.$
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To keep the integration in (14) finite, the assumption (2) on $(W, \lambda)$ is a natural limitation. It
turned out that to prove Theorem 1 under this weakest condition, it was unavoidable to obtain
an explicit formula for the solution given in \S 1.3 in terms of a process introduced in \S 1.2. In
\S 2.1 we will consider relaxing the other assumption (3), and raise as an open problem, its effect
on uniqueness of the solution.

1.2 Point process with last-arrival-time dependent intensity.

Let $N=N(t)$ , $t\geqq 0$ , be a non-decreasing, right-continuous, non-negative integer valued stochas-
tic process with $N(0)=0$ , and for each $k\in \mathbb{Z}+$ define its k-th arrival time $\tau_{k}$ by

(15) $\tau_{k}=\inf\{t\geqq 0|N(t)\geqq k\},$ $k=1$ , 2, . . . , and $\tau_{0}=0.$

The arrival times $\tau_{k}$ are non-decreasing in $k$ , because $N$ is non-decreasing, and since $N$ is also
right-continuous, the arrival times are stopping times; if we denote the associated filtration by
$\mathcal{F}_{t}=\sigma[N(s), s\leqq t]$ , then $\{\tau_{k}\leqq t\}\in \mathcal{F}_{t},$ $t\geqq 0.$

Let $\omega$ be a non-negative valued bounded continuous function of $(s, t)$ for $0\leqq s\leqq t$ , and for
$k=1$ , 2, , . . assume that

(16) $P[t<\tau_{k}|\mathcal{F}_{\tau_{k-1}}]=\exp(-\Omega(\tau_{k-1}, t))$ on $t\geqq\tau_{k-1},$

where, for $t\geqq t_{0}$ put

(17) $\Omega(t_{0}, t)=\int_{t_{0}}^{t}\omega(t0, u)du.$

If $\omega$ is independent of the first variable, then (16) implies that $N$ is the (inhomogeneous) Poisson
process with intensity function $\omega$ . We are considering a generalization of the Poisson process
such that the intensity function depends on the latest arrival time.

A construction of the point process with last-arrival-time dependent intensity goes as follows.
Let $\omega$ : $[0, \infty)^{2}arrow[0, \infty)$ be a non-negative valued bounded continuous function of $(s, t)$ for
$0\leqq s\leqq t$ , for which we aim to construct a process satisfying (16). Let $\nu$ be a Poisson random
measure on $[0, \infty)^{2}$ , with unit constant intensity

$E[\nu([a, b]\cross[c, d])]=(b-a)(d-c) , b>a>0, d>c>0, k\in \mathbb{N}.$

Define a sequence of hitting times $\tau_{k},$ $k\in \mathbb{Z}+$ , inductively by $\tau_{0}=0$ , and, for $k=1$ , 2, . . .,

(18) $\tau_{k}=\inf\{t\geqq\tau_{k-1}|\nu(\{(\xi, u)\in[0, \infty)^{2}|0\leqq\xi\leqq\omega(\tau_{k-1}, u), \tau_{k-1}<u\leqq t\})>0\}.$

$\tau_{k}$ in (16), is defined by (18), and the process $N(t)$ is defined by the reciprocal relation to
(15): $N(t)= \max\{k\in \mathbb{Z}_{+}|\tau_{k}\leqq t\},$ $t\geqq$ O. $\{\tau_{k}\leqq t\}isin\mathcal{F}_{t}:=\sigma[\nu(A);A\in \mathcal{B}([0, \infty)^{2})$ , $A\subset$

$[0, \infty)\cross[0, t],$ $k\in \mathbb{N}]$ , and consequently $N$ is adapted to $\{\mathcal{F}_{t}\}$ . Basic formulas, for $N(t)$ to be
used in a proof of the main theorem, are in [3].

1.3 Flows and construction of solution.

Define the set of flows $\Theta_{T}$ on $[0$ , 1$]$ $\cross[0, T]$ by

$\Theta_{T}$ $:=\{\theta$ : $\Delta_{T}arrow[0$ , 1$]$ $|\theta((y_{0}, t_{0}), t_{0})=y_{0},$ $(y_{0}, t_{0})\in\Gamma_{T}$ , continuous,
(19) surjective and non-increasing in $\gamma$ for each $t\fbox{Error::0x0000},$

non-decreasing in $t$ for each $\gamma$ },

where, we define a total order $\succeq$ on the initial/boundary set $\Gamma_{T}$ by

(20) $s\leqq t, z\leqq y\Leftrightarrow(0, T)\succeq(0, t)\succeq(0, s)\succeq(0,0)\succeq(z, O)\succeq(y, 0)\succeq(1,0)$ .

11



Let $\theta\in\Theta_{T}$ . For each $w\in W$ and $z\in[0$ , 1) define $\omega=\omega_{\theta,w,z}$ , a non-negative valued
continuous function of $(s, t)$ satisfying $0\leqq s\leqq t\leqq T$ , by

(21) $\omega_{\theta,w,z}(s, t)=\{\begin{array}{l}w(\theta((z, 0), t), t) , if s=0,w(\theta((O, s), t), t) , if s>0.\end{array}$

Let $\{N_{\theta,w,z}|z\in[0, 1), w\in W\}$ be a set of processes, with each $N_{\theta,w,z}$ being a point process $N$

introduced in \S 1.2 with the intensity function in (16) determined by $\omega=\omega_{\theta,w,z}.$

The quantity in (17) for the choice (21) is

(22) $\Omega_{\theta,w,z}(0, t)=\int_{0}^{t}w(\theta((z, 0), u), u)du, and\Omega_{\theta,w}(s, t)=\int_{S}^{t}w(\theta((0, s), u), u)du.$

Let $\mu 0$ be as in Theorem 1, and define a function $\varphi_{\theta}(dw, \gamma, t)$ on $(\gamma, t)\in\Delta_{T}$ taking values
in the measures on $W$ , by

(23) $\varphi_{\theta}(dw, \gamma, t)=\int_{z\in[y_{0},1)}P[N_{\theta,w,z}(t)=N_{\theta,w,z}(t_{0})]\mu_{0}(dw\cross dz) , \gamma=(y_{0}, t_{0})\in\Gamma,$

and define a map $G:\Theta_{T}arrow\Theta_{T}$ by

(24) $G(\theta)(\gamma, t)=1-\varphi_{\theta}(W, \gamma, t) , \gamma=(y_{0}, t_{0})\in\Gamma, (\gamma, t)\in\Delta_{T}.$

Theorem 2 ([2]) The function $yc$ in Theorem 1 is the unique fixed point of $G$ in (24), and
$\mu_{t}$ in Theorem 1 is a measure valued junction of $(\gamma, t)\in\Delta_{T}$ uniquely determined by $\mu_{t}(dw\cross$

$[yc(\gamma, t), 1))=\varphi_{y_{C}}(dw, \gamma, t)$ , where $\varphi_{y_{C}}$ is obtained by the substitution $\theta=yc$ in (23). ◇

See [2] for proofs of Theorem 1 and Theorem 2.
Explicit formula of $G$ in (24) is found using the properties of the process introduced in \S 1.2;

(25) $G( \theta)((y_{0},0), t)=1-\int_{W\cross[y0,1)}e^{-\Omega_{\theta,w,z}(0,t)}\sigma(w, z) \lambda(dw)dz,$

for $\gamma=(y_{0},0)\in\Gamma_{i}$ , and for $\gamma=(0, t_{0})\in\Gamma_{b}\cap\Gamma_{t}$

$G( \theta)((0, t_{0}), t)=1-\int_{W\cross[0,1)}e^{-\Omega_{\theta,w,z}(0,t)}\sigma(w, z)$ $\lambda(dw)dz$

(26)
$- \int_{W\cross[0,1)}\sum_{k\geqq 1}\int_{0\leqq u_{1}\leqq\cdots\leqq u_{k}\leqq t_{0}}w(\theta((z, 0), u_{1}), u_{1})e^{-\Omega_{\theta,w,z}(0,u_{1})}$

$\cross\prod_{i=2}^{k}(w(\theta((0, u_{i-1}), u_{i}), u_{i})e^{-\Omega_{\theta,w}(u_{t-1_{\rangle}}u_{i}))}\cross e^{-\Omega_{\theta,w}(u_{k_{\rangle}}t)}\prod_{i=1}^{k}du_{i}\sigma(w, z)\lambda(dw)dz.$

2 Open problems.

I came across several questions, while trying to generalize [3] to [2]. I welcome answers!

2.1 Lipschitz continuity condition and uniqueness of solution.

In the beginning we assumed bounded Lipschitz constant condition (3) for the intensity func-
tions, in addition to (2). The latter is a natural condition for (14) to make sense, while the
naturality of the former condition (3) is less obvious. We have a following result on this point.
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Theorem 3 ([2]) Under the condition (2) and

(27) $C_{W}’:= \sup \sup |w(y, t)-w(y’, t <\infty,$
$w\in W(y,t) , (y’,t’)\in[O, 1]\cross[0,T]$

replacing (3), the map $G:\ominus\tauarrow\ominus\tau$ defined by (25) and (26) has a fixed point. ◇

The notations in the definition of $G$ are introduced in (13), (12), (4), (5), (6), (19), and (22).
Note that $G(\theta)\in\Theta_{T}$ holds with the assumption (27) which is weaker than (3). It is easy to see
that $\ominus\tau\subset C^{0}(\triangle\tau;[0,1])$ is a bounded, closed, and convex set. According to the Schauder fixed
point theorem, compactness of $G$ : $\Theta_{T}arrow\Theta_{T}$ therefore implies Theorem 3. Since $C^{0}(\triangle\tau;[0,1])$

is a bounded set with respect to the supremum norm, the Arzela-Ascoli theorem implies that
the following implies compactness of $G$ , under the conditions as in Theorem 3.

Lemma 4 (i) The map $G:\Theta_{T}arrow\Theta_{T}$ is continuous, and

(ii) the functions in the image set $G(\ominus\tau)$ are equicontinuous. ◇

A proof of Lemma 4 is in [2, Appendix].
In view of Theorem 3, the assumption (3) would be more crucial for the uniqueness of the

solution than for the existence. Considering the fluid picture, breakdown of uniqueness, if it ever
does, would likely to occur for an $(unstable’$ initial condition, that $is, the$ evaporation rate $w(y, t)$

is increasing in $y$ , so that once a small portion of the fluid components begin to move in the
downstream direction (larger $y$ ), the amount of evaporation increases. (Turning the argument
in the other direction, I conjecture that if $W$ contains only those functions $w(y, t)$ which are
non-increasing in $y$ , then we have a proof of uniqueness without the assumption (3).) We give
a candidate initial condition. We will focus on uniqueness of the fixed point for (25). I have no
idea on how to deal with (26).

Fig. 1

Fix $\delta\in(0, \frac{1}{2})$ , and let $w_{a}^{*}$ and $A_{a}$ be positive valued measurable functions of $a\in[\delta$, 1 $]$ . For
the probability space $(W, \mathcal{B}(W), \lambda)$ we choose $W=\{w_{a}|a\in\{0\}\cup[\delta$ , 1 with

(28) $w_{0}(y, t)=0$ , and $w_{a}(y, t)=w_{a}^{*}f( \frac{y-a}{A_{a}})$ , $\delta\leqq a\leqq 1,$

and
(29) $\lambda(dw_{a})=1_{[\delta,1]}da+\delta\delta_{0}(da) , a\in\{0\}\cup[\delta, 1$

where $\delta_{0}$ is the unit measure concentrated on $0$ , and $f$ : $\mathbb{R}arrow[0$ , 1 $]$ is a $C^{1}$ function satisfying

(30) $f(z)=0, z\leqq 0, 0<f(z)<1, 0<z<1, f(z)=1, z\geqq 1,$
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and we performed a change in the integration variable $w\mapsto a$ by $w=w_{a}$ . We choose the density

function $\sigma_{a}(y)=\sigma(w_{a}, y)$ of the initial data defined by $\sigma_{a}(y)dy\lambda(dw_{a})=\mu_{0}(da\cross dy)$ , as

(31) $\sigma_{a}(y)=\{\begin{array}{ll}\frac{1}{\delta_{1}}\phi(\frac{1}{\delta}(y-a+\delta \delta\leqq a\leqq 1,\overline{\delta^{2}}(\delta-y)_{+}+\frac{1}{\delta^{2}}(y-(1-\delta))_{+}, a=0,\end{array}$

where $\phi(z)=\{$
1, $0\leqq z<1$ ,

and we used a notation $x+:= \frac{1}{2}(x+|x|)$ . The assumptions
$0,$ $z<0$ or $z\geqq 1,$

(13), (12), (2), and $\lambda(W)=1$ hold, if

(32) $M_{w}:= \int_{\delta}^{1}w_{a}^{*}da<\infty.$

Substituting (29) and (31) in (25), and using (22), we have for $0\leqq y_{0}<1$ and $0\leqq t\leqq T,$

$y_{C}((y0,0), t)=G(yc)((y_{0},0), t):=I_{1}(y_{0}, t)-I_{2}(y_{C})(y_{0}, t)$ , where

(33)

$I_{1}(y_{0}, t)=\{\begin{array}{ll}1-\delta+y_{0}-\frac{1}{2\delta}y_{0}^{2}, 0\leqq y_{0}<\delta,\frac{1}{2}, \delta\leqq y_{0}\leqq 1-\delta,y_{0}+\frac{1}{2\delta}(1-y_{0})^{2}, 1-\delta<y_{0}<1,\end{array}$

$I_{2}(y_{C})(y_{0}, t$ $)= \int_{y0}^{1}dz\int_{z\vee\delta}^{1\wedge(z+\delta)}dae$

$-w_{a}^{*} \int_{0}^{t}f(\frac{1}{A_{a}}(yc((z, 0), u)-a)du_{dz}.$

It follows from $w_{a}(z)\sigma_{a}(z)=0$ for all $z$ and $a$ that there is a constant flow $y_{C}((y_{0},0), t)=y_{0}$

for all $y0$ and $t$ . The problem is to decide if there are $\delta\in(0, \frac{1}{2})$ , $A_{a},$ $w_{a}^{*}$ , and $f$ , satisfying (32)

and (30) such that (33) holds for a non-constant flow, continuously increasing in $t$ and $y_{0}.$

Suppose we are on the side that such fixed point $yc$ exists, how could we prove it? $A$

standard way is to apply the Schauder’s fixed point theorem as in Theorem 3, with set of

functions (domain of $G$ ) $\Theta_{T}$ replaced by $\tilde{\Theta}_{T}$ which excludes the constant flow. A candidate set

might perhaps look like

(34) $\overline{\Theta}_{T}:=\{\theta:\in\Theta_{T}|\theta(y, t)\geqq y+\epsilon t, t\leqq\epsilon(1-y)^{M}, 0\leqq y<1\},$

for some $\epsilon>0$ and $M>0$ . The set (34) excludes the constant flow, is a bounded, closed, and

convex set. Since we are restricting the domain of $G$ , the compactness of the map $G$ stated in

Lemma 4 is preserved, if (27) holds. This requires boundedness of $w_{a}^{*}$ , so we may as well put

$w_{a}^{*}=1,$ $\delta\leqq a\leqq 1$ . If this works, it only remains to prove, for some set of $\delta,$ $A_{a},$ $f,$ $\epsilon,$ $M,$

(35) $G(\tilde{\Theta}_{T})\subset\overline{\Theta}_{T}$ $($ ? $)$ .

2.2 Stationary solution.

The boundary condition (8) is designed as a necessary condition for (10) to have a stationary

solution for $\mu_{t}(dw,$ $[y,$ $1$ in the case when $W$ is supported on intensity functions $w$ which are
$\partial\mu_{t}$

constant in $t$ . Here, a stationary solution means a solution satisfying $\overline{\partial t}=0,$ $t\in[0, T]$ , in

(10). Dropping $t$ from the notations $w(y, t)$ and replacing $\mu_{t}$ by $\mu_{0}$ and using (11), we have

$\int_{y0}^{y_{C}((y0,t_{0}),t)}\sigma(w, z)\lambda(dw)dz=\int_{t_{0}}^{t}\int_{z\in[yc((y0,t_{0}),s),1)}w(z)\sigma(w, z)$ $\lambda(dw)dzds,$ $w\in W.$
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Differentiating by $t$ , and using (14) with (11), and finally replacing $y_{C}((y_{0}, t_{0}), t)$ by $y$ , we have

(36) $( \int_{W\cross[y,1)}w(z)\sigma(w, z)\lambda(dw)dz)\sigma(w, y)$ $= \int_{y}^{1}w(z)\sigma(w, z)$ $dz,$ $(w, y)$ $\in W\cross[0$ , 1 $)$ .

The question is to decide whether (36) has a solution $\sigma$ : $W\cross[O, 1$ ) $arrow[0, \infty$ ) which is measurable
and satisfies (13) and (12). For simplicity, we assume in the following

(37) $\inf w(y)>0, w\in W.$
$y\in[0,1]$

We can reduce the unknown from a function $\sigma$ on $W\cross[O$ , 1$]$ to that on $[0$ , 1$]$ , as follows. Put

(38) $\tilde{u}(w, y)=\int_{y}^{1}w(z)\sigma(w, z)dz$ and $v(y)= \int_{W}\tilde{u}(w, y)\lambda(dw)$ .

Then (36) implies $\frac{\tilde{u}’(w,y)}{\tilde{u}(w,y)}=-\frac{w(y)}{v(y)}$ which further implies

(39)
$\tilde{u}(w, y)=C(w)e^{-}\int_{0}^{y}\frac{w(z)}{v(z)}dz$

for some function $C:Warrow[O, \infty$ ). With (38) we further have

(40)
$v(y)= \int_{W}C(w)e^{-\int_{0}^{y}\frac{w(z)}{v(z)}dz}\lambda(dw)$

.

A boundary condition $\tilde{u}(w, 1)=0$ is implied from (38), which, with (37), further implies

(41) $v(1-)=0.$

Note that (38), (39), and (40) imply $\int_{W}\sigma(w, y)d\lambda(dw)=1$ , so that (13) holds. On the other
hand, (12) implies with a similar argument,

(42) $C(w)=( \int_{0}^{1}\frac{1}{v(z)}e^{-\int_{0}^{z}\frac{w(x)}{v(x)}dx}dz)^{-1}$

This and (40) imply

(43)
$v(y)=H(v)(y):= \int_{W}\frac{e^{-\int}\lambda(dw)}{\int_{0}^{1_{\frac{1}{v(z}}\frac{(x)}{(x)}dx_{dz}}}, y\in[0,1)$ .

We will define $H(v)(1)$ $:=0$ to save any further remarks on compactness issues at $y=1$ . If
we have a non-increasing, continuous, non-negative function $v$ : $[0, 1$ ) $arrow[0, \infty$ ) which satisfies
(43) and (41), then (43) and (42) determine (39) and $\sigma$ is given by differentiating (38), which
satisfies (36), (13), and (12).

Note that (42), (1), and (37) imply
$\frac{1}{C(w)}=\int_{0}^{1}\frac{1}{v(z)}e^{-\int_{0}^{z}\frac{w(x)}{v(x)}dx}dz\geqq\frac{1}{\Vert w\Vert_{T}}$

. This with

(43) and (2) further imply
(44) $H(v)(y)\leqq M_{W}<\infty.$
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Let $D$ be the set of non-increasing, continuous functions $f$ : $[0, 1]arrow[0, M_{W}]$ , satisfying
$f(1)=0$ . Then $D$ is bounded, closed, and convex. Moreover, (43) and (44) imply $H(D)\subset D.$

Therefore, if we can prove the compactness of the map $H$ , namely, the continuity of the map
$H$ and the equicontinuity of the functions in the image set $H(D)$ , the Schauder’s fixed point

theorem implies existence of $v$ , and consequently, of a stationary solution to the original PDE.

If $W$ is supported on constant $w’ s$ , then there is a stationary solution to the original problem.

For $w\in W$ let $w^{*}\in[0, \infty$ ) $\backslash \{O\}$ be its (constant) value. Then (42) and (41) imply

(45)
$\frac{1}{C^{*}(w^{*})}:=\frac{1}{C(w)}=-\frac{1}{w^{*}}\int_{0}^{1}\frac{d}{dz}(e^{-w^{*}\int_{0}^{z}\frac{1}{v(x)}dx})dz=\frac{1}{w}*,$

and (40) further implies, with $\lambda^{*}(dw^{*})=\lambda(dw)$ the image measure of $\lambda$ , supported on $[0, \infty$ ),

$v(y)=-v(y) \frac{d}{dy}(\int_{0}^{\infty}e^{-w^{*}\int_{0}^{y}\frac{dz}{v(z)}}\lambda^{*}(dw^{*}))$

.

Dividing by $v(y)$ and integrating, we have a formula which is expressed as

(46) $\int_{0}^{y}\frac{dz}{v(z)}=\varphi^{-1}(1-y)$ ,

where $\xi=\varphi^{-1}(x)$ is the inverse function of $\varphi(\xi)=\int_{0}^{\infty}e^{-w^{*}\xi}d\lambda^{*}(dw^{*})$ , $\xi\geqq 0.$

Since we assume (37) in this subsection, we have $\varphi(0)=1$ and $\varphi(\infty)=0$ , so that

(47) $\varphi^{-1}(0)=\infty$ and $\varphi^{-1}(1)=0.$

(41) and (37) imply that (47) is consistent with (46). Substituting (46) and (45) in (39), we

have $\tilde{u}^{*}(w^{*}, y)$ $:=\overline{u}(w, y)=w^{*}e^{-w^{*}\varphi^{-1}(1-y)}$ . Substituting this in (38), we arrive at $\sigma^{*}(w^{*}, y):=$

$\sigma(w, y)=-\frac{d}{dy}(e^{-w\varphi^{-1}(1-y)})$ and $\mu(dw\cross[y, 1))=\lambda(dw)\int_{y}^{1}\sigma(w, z)$ $dz=e^{-w\varphi^{-1}(1-y)}\lambda(dw)$ .

Thus for the constant $w$ case, we have an explicit formula for the solution $\mu$ in terms of the

generating function of $\lambda.$
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