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1 Introduction

This note is a short review of the papers [8] and [9].

It is well-known that a multi-dimensional standard Brownian motion, which consists

of $d$ independent one-dimensional standard Brownian motions, is recurrent if $d=1$ or

2, and transient otherwise. We consider limiting behaviors of multi-dimensional diffusion

processes in selfsimilar and semi-selfsimilar random environments.

Let $\mathcal{W}$ be the space of $\mathbb{R}$-valued functions $W$ satisfying the following:

(i) $W(0)=0,$

(ii) $W$ is right continuous and has left limits on $[0, \infty$ ),

(iii) $W$ is left continuous and has right limits on $(-\infty, 0$].

Following [18], we set a probability measure $Q$ on $\mathcal{W}$ such that $\{W(x), x\geq 0, Q\}$ and

$\{W(-x), x\geq 0, Q\}$ are independent strictly semi-stable L\’evy processes with index $\alpha,$
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which have the following semi-selfsimilarity:

$\{W(x), x\in \mathbb{R}\}=d\{a^{-1/\alpha}W(ax), x\in \mathbb{R}\}$ for some $a>0$ , (1.1)

where $=d$ denotes the equality in all joint distributions. This $a$ is called an epoch. We set

$r= \inf${$a>1$ : $a$ satisfies (1.1)}. (1.2)

In this paper, we call $(W, Q)$ an $(r, \alpha)$-semi-stable L\’evy environment. If $r=1,$ $(W, Q)$

is not only semi-selfsimilar but selfsimilar. In this case, we call $(W, Q)$ an $\alpha$-stable L\’evy

environment. Refer [11] to more properties of semi-stable L\’evy processes.

For a fixed $W$ , we consider a $d$-dimensional diffusion process starting at $0,$ $X_{W}=$

$\{X_{W}^{k}(t), t\geq 0, k=1, 2, 3, . . . , d\}$ whose generator is

$\sum_{k=1}^{d}\frac{1}{2}\exp\{W(x_{k})\}\frac{\partial}{\partial x_{k}}\{\exp\{-W(x_{k})\}\frac{\partial}{\partial x_{k}}\}$ . (1.3)

We regard values of $W$ at different $d$ points as a multi-parameter environment. Such $X_{W}$

is constructed by $d$ independent standard Brownian motions with a scale transformation

and a time change (c.f. [6]). Each component of $X_{W}$ is symbolically described by

$dX_{W}^{k}(t)=dB^{k}(t)- \frac{1}{2}W’(X_{W}^{k}(t))dt,$ $X_{W}^{k}(0)=0$ , for $k=1$ , 2, 3, . . . , $d,$

where $B^{k}(t)$ is a one-dimensional standard Brownian motion independent of the environ-

ment $(W, Q)$ .

In the case where $d=1$ and $(W, Q)$ is a Brownian environment, Brox showed that the

distribution of $(\log t)^{-2}X_{W}(t)$ converges weakly as $tarrow\infty$ in [1]. This shows that $X_{W}$

moves very slowly by the effect of the environment. This diffusion process is a continuous

model of random walks in random environments studied by Solomon [13] and Sinai [12],

and $X_{W}$ is often called a Brox-type diffusion. Following Brox’s result, Tanaka studied

the cases of $\alpha$-stable L\’evy environments and showed the convergence theorem with the

scaling $(\log t)^{-\alpha}X_{W}(t)$ under the assumption that $Q\{W(1)>0\}>0$ in [18]. Tanaka’s

results were extended to the cases of $(r, \alpha)$-semi-stable L\’evy environments in [15].

In view of the subdiffusive property of the Brox-type diffusion, we expect to see an

exotic limiting behavior of multi-dimensional Brox-type diffusions. We give a brief review
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of investigations related to multi-dimensional Brox-type diffusions. Fukushima et al.

showed the recurrence of the diffusion process whose generator is

$\frac{1}{2}e^{W(|x|)}\sum_{k=1}^{d}\frac{\partial}{\partial x_{k}}\{e^{-W(|x|)}\frac{\partial}{\partial x_{k}}\},$

where $|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}++x_{d}^{2}}$ and $W$ is a one-dimensional standard Brownian

motion in [2]. In the case where the environment is L\’evy’s Brownian motion $W(x)$ with a

multi-dimensional time, Tanaka showed the recurrence of the diffusion process for almost

all environments in any dimension in [19]. These results are shown by Ichihara’s recur-

rent test introduced in [5]. Mathieu studied asymptotic behaviors of multi-dimensional

diffusion processes in random environments by using Dirichlet form and showed the con-

vergence theorem in the case where the environment is a non-negative reflected L\’evy’s

Brownian motion in [10]. Following the study, Kim obtained some limit theorems of

the multi-dimensional diffusion processes in [7]. He showed the convergence theorem in

the case where the random environment consists of $d$ independent one-dimensional re-

flected non-negative Brownian environments, which is a model studied in [16]. In [17],

the multi-dimensional diffusion process consisting of $d$ independent Brox-type diffusions

was studied and the recurrence of the process for almost all environments in any dimen-

sion was shown. Recently, Gantert et al. showed the recurrence of $d$ independent random

walks in random environments, which corresponds to a model studied in [17], by using

estimates of quenched return probabilities to the origin of the one-dimensional random

walks in random environments in [4].

2 Selfsimilar and semi-selfsimilar L\’evy random envi-

ronments’ case

Following the previous studies, we consider limiting behaviors of diffusion processes in

$(r, \alpha)$-semi-stable L\’evy environments as (1.1) and (1.2), which are extensions of models

studied in [4] and [17]. We call $\{W(x), x\geq 0, Q\}$ a subordinator if it is an increasing

$(r, \alpha)$-semi-stable or $\alpha$-stable L\’evy environment. We obtain some conditions of the random
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environments which imply the dichotomy of recurrence and transience of $d$-dimensional

diffusion processes corresponding to the generator (1.3) as follows:

Theorem 1. (I) If $\{-W(x), Q\}$ is not a subordinator, then $X_{W}$ is recurrent for almost

all environments in any dimension.

(II) If $\{-W(x), Q\}$ is a subordinator, then $X_{W}$ is transient for almost all environments

in any dimension.

We next consider $d$-dimensional diffusion processes consisting of $d$ independent Brox-

type diffusions. Let $Q_{k}$ be the probability measure on $\mathcal{W}$ such that

(i) $\{W_{k}(-x_{k}), x_{k}\geq 0, Q_{k}\}$ is an $(l_{k}, \alpha_{k})$-semi-stable or an $\alpha_{k}$-stable L\’evy environment,

(ii) $\{W_{k}(x_{k}), x_{k}\geq 0, Q_{k}\}$ is an $(r_{k}, \beta_{k})$-semi-stable or a $\beta_{k}$-stable L\’evy environment,

(iii) they are independent.

We define an environment $(W, Q)$ by $\{(W_{k}, Q_{k}), k=1, 2, 3, . . . , d\}$ with independent

$(W_{k}, Q_{k})’ s$ . We remark that Suzuki studied the one-dimensional case with independent

an $\alpha$-stable and a $\beta$-stable L\’evy environment, and obtained some convergence theorems

in [14]. We also call $\{W_{k}(-x_{k}), x_{k}\geq 0, Q_{k}\}$ a subordinator if it is a decreasing $(l_{k}, \alpha_{k})-$

semi-stable or $\alpha_{k}$-stable L\’evy environment. For a fixed $W$ , we consider a $d$-dimensional

diffusion process starting at $0,$ $X_{W}=\{X_{W_{k}}^{(k)}(t), t\geq 0, k=1, 2, 3, . . . , d\}$ whose generator

is

$\sum_{k=1}^{d}\frac{1}{2}\exp\{W_{k}(x_{k})\}\frac{\partial}{\partial x_{k}}\{\exp\{-W_{k}(x_{k})\}\frac{\partial}{\partial x_{k}}\}$ . (2.1)

On the $d$-dimensional diffusion processes, we obtain the following dichotomy theorem:

Theorem 2. (I) If neither $\{-W_{k}(-x_{k}), x_{k}\geq 0, Q_{k}\}$ nor $\{-W_{k}(x_{k}), x_{k}\geq 0, Q_{k}\}$ is a

subordinator for any $k$ , then $X_{W}$ is recurrent for almost all environments in any dimension.

(II) If either $\{-W_{k}(-x_{k}), x_{k}\geq 0, Q_{k}\}$ or $\{-W_{k}(x_{k}), x_{k}\geq 0, Q_{k}\}$ is a subordinator for

some $k$ , then $X_{W}$ is transient for almost all environments in any dimension.
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3Multi-dimensional Gaussian environments

In this section, we consider the recurrence of the diffusion process $X_{W}$ given by the

following generator:

$\frac{1}{2}(\triangle-\nabla W\cdot\nabla)=1e^{W}\sum_{k=1}^{d}\frac{\partial}{\partial x_{k}}\{e^{-W}\frac{\partial}{\partial x_{k}}\}$ , (3.1)

where $W$ is a Gaussian field on $\mathbb{R}^{d}$ i.e., $\{W(x), x\in \mathbb{R}^{d}\}$ is a family of random variables such

that the $\mathbb{R}^{d}$-valued random variable $(W(x_{1}), W(x_{2}), \ldots, W(x_{n}))$ has an $n$-dimensional

Gaussian distribution for all $n\in \mathbb{N}$ and $x_{1},$ $x_{2}$ , . . . , $x_{n}\in \mathbb{R}^{d}$ . We assume that $W$ is

continuous on $\mathbb{R}^{d}$ almost surely, $W(O)=0$ , and that $E[W(x)]=0$ for $x\in \mathbb{R}^{d}$ . We

can construct the diffusion process $X_{W}$ associated with the generator above by a random

time-change of the diffusion process associated with the Dirichlet form:

$\mathcal{E}(f, g)=\frac{1}{2}\int_{\pi}d(\nabla f\cdot\nabla g)e^{-W}dx.$

Hence, the existence of the diffusion process $X_{W}$ associated with (3.1) is guaranteed (see

[3]). Let $K(x, y):=E[W(x)W(y)]$ for $x,$
$y\in \mathbb{R}^{d}$ . Fixing $r>1$ we denote the set

$\{x\in \mathbb{R}^{d}:|x|<r^{n}\}$ by $E_{n}$ for $n\in \mathbb{N}$ . We also denote $E_{n}\backslash E_{n-1}$ by $D_{n}$ . Fixing $H>0$ , we

define a mapping $T$ from Borel measurable functions on $\mathbb{R}^{d}$ to themselves by

$Tf(x):=r^{-H}f(rx)$ , (3.2)

and let $T_{n}$ $:=T^{n}$ for $n\in \mathbb{N}$ . Now we assume that the law of $TW$ equals to that of $W.$

Then, $T$ is a measure preserving transformation. For the Gaussian field $W$ , we obtain the

following.results:

Theorem 3. Let $W$ be a Gaussian field on $\mathbb{R}^{d}$ satisfying that

(i) there exists a positive constant $\epsilon$ such that

$\inf_{x\in D_{1}}\int_{D_{1}}K(x, y)dy\geq\epsilon,$

(ii) the law of $T_{n}W$ equals to that of $W$ for all $n\in \mathbb{N}$ and that

$\lim_{narrow\infty}r^{-nH}\sup_{x,y\in D_{1}}K(r^{n}x, y)=0.$

Then, the diffusion process $X_{W}$ associated with the generator (3.1) is recurrent for almost

all environments $W.$
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In the case where environments are fractional Brownian fields on $\mathbb{R}^{d}$ , we can apply

Theorem 3 and show the recurrence of the diffusion process $X_{W}$ given by the generator

(3.1). For a given $H\in(O, 1)$ , let $W$ be a Gaussian random environment which satisfying

that $W(O)=0,$ $E[W(x)]=0$ for $x\in \mathbb{R}^{d}$ , and that the covariance between $W(x)$ and

$W(y)$ is given by

$K( x, y):=\frac{1}{2}(|x|^{2H}+|y|^{2H}-|x-y|^{2H}) , x, y\in \mathbb{R}^{d}.$

Note that the law of Gaussian random environments are determined by the means and

the covariance. The random field $W$ is called a fractional Brownian field. When $H=1/2,$

it is called L\’evy’s Brownian motion (c.f. [19]). It is easy to see that the environment $W$ is

a selfsimilar random environment with the mapping (3.2). The parameter $H$ is called the

Hurst parameter. Now we can show the following theorem as an application of Theorem

3.

Theorem 4. Let $W$ be a fractional Brownian field on $\mathbb{R}^{d}$ with the Hurst parameter

$H\in(O, 1)$ . Then, the process $X_{W}$ given by the generator (3.1) is recurrent for almost all

environments $W.$
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