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Abstract

The objective of this note is to give a survey of our recent paper [6].

We are concerned with certain phase transition phenomena arising in

some parametrized maximization problems for controlled Markov chains

on infinite graphs. We prove that, there exists a critical value of the

parameter such that the recurrence/transience of the optimal trajectory

changes around this critical point.

1 Main results

Let $S$ be a countably infinite set with a fixed reference point $x_{0}\in S$ (e.g.,

$S=Z^{d}$ with $x_{0}=0$), and let $p=p(x, y)$ be a given stochastic matrix on $S.$

Set $B:=\{(x, y)\in S\cross S|p(x, y)>0$ Then the pair $(S, B)$ forms an infinite

graph equipped with the graph distance $d(x, y)$ $:= \inf\{n\geq 0|p^{n}(x, y)>0\},$

where $p^{n}$ denotes the $n$-product of the stochastic matrix $p$ . Notice here that

$d(x, y)\neq d(y, x)$ , in general. Throughout this note, we impose the following

conditions:

(A1) (a) $p=p(x, y)$ is irreducible on $S$ , i.e., the graph $(S, B)$ is strongly

connected.

(b) There exists an $M>0$ such that $d(y, x)\leq M$ for all $(x, y)\in B.$
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(c) There exists an $\epsilon_{0}>0$ such that $p(x, y)\geq\epsilon_{0}$ for all $(x, y)\in B.$

(d) $\frac{1}{n}(p^{n}d)(x_{0})arrow 0$ as $narrow\infty$ , where $d(x)$ $:=d(x_{0}, x)$ .

Let $Q$ be the totality of stochastic matrices $q=q(x, y)$ on $S$ such that

$q(x, y)=0$ for all $(x, y)\not\in B$ . For each $q\in Q$ , we denote by $((X_{n})_{n\geq 0}, (P_{x}^{q})_{x\in S})$

the associated discrete-time, time-homogeneous Markov chain on $S$ , which we
shall call $q$-chain”’ for short. Regarding $q$ as a stationary control policy, we

consider the following maximization problem with real parameter $\beta\geq 0$ :

Maximize $J(q; \beta):=\lim_{Tarrow}\sup_{\infty}\frac{1}{T}E_{x_{0}}^{q}[\sum_{n=0}^{T-1}(\beta r(X_{n})-c(X_{n}, q ,$

(1)

subject to $q\in Q,$

where $r:S\cross R$ is a reward function, while $c:S\cross Qarrow R$ stands for a penalty

function defined by

$c(x, q)= \frac{1}{a(x)}\sum_{y\in S}q(x, y)\log\frac{q(x,y)}{p(x,y)}, x\in S$ , (2)

for some $a=a(x)$ : $Sarrow R$ . Hereafter, we always assume the following:

(A2) There exist finite $x_{1}$ , . . . , $x_{l}\in S$ and $\alpha_{1}$ , . . . , $\alpha_{l}>0$ such that $r(x)=$

$\sum_{i=1}^{l}\alpha_{i}\delta_{x_{i}}(x)$ for all $x\in S.$

(A3) There exist $\kappa_{1},$ $\kappa_{2}>0$ such that $\kappa_{1}\leq a(x)\leq\kappa_{2}$ in S.

By definition, $c$ is nonnegative in $S\cross Q$ and strictly convex with respect to $q.$

It is also not difficult to verify that $c(x, q)=0$ if and oirly if $q=p.$

Our interest is to investigate qualitative properties, with respect to $\beta$ , of

the optimal value

$\Lambda(\beta):=\sup_{q\in Q}J(q;\beta)$
, (3)

as well as the corresponding optimal control policy. Since the value $\Lambda(\beta)$

is determined as a trade-off between reward $r(x)$ and penalty $c(x, q)$ , it is

natural to expect that certain phase transitions occur at some $\beta$ . It turns

out that, if the $p$-chain is transient, then there exists a $\beta_{c}>0$ such that
$\Lambda(\beta)=0$ for $\beta\in[0, \beta_{c}]$ and $\Lambda(\beta)>0$ for $\beta\in(\beta_{c}, \infty)$ . Loosely speaking, if
$\beta$ is small, then our optimal strategy is to choose $p$ at any stage (and obtain
$\Lambda(\beta)=J(p;\beta)=0)$ since the reward does not compensate the penalty incurred

by $q\neq p$ . In contrast, if $\beta$ is large, then a suitable policy $\overline{q}\neq p$ allows one to

obtain some positive return $\Lambda(\beta)=J(\overline{q};\beta)>J(p;\beta)=0$ . Hence, there exists
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a threshold $\beta=\beta_{c}$ at which the controller switches his/her strategy from $p$ to

another $\overline{q}\neq p$ , and several qualitative properties concerning (1) change in the

vicinity of $\beta=\beta_{c}.$

In [6], we justify such phase transition phenomena in the framework of

controlled Markov chains, or Markov decision processes, on $S$ . To this end, we

introduce the optimality equation associated with (1). For each $f$ : $Sarrow R,$

we define the function $H[f]$ : $Sarrow R$ by

$H[f](x):= \sup_{q\in Q}\{(qf)(x)-c(x, q x\in S,$ (4)

and consider the following difference equation:

$\lambda+W(x)=H[W](x)+\beta r(x)$ in $S,$ $W(x_{0})=0$ , (5)

where the unknown is the pair of a real constant $\lambda$ and a function $W=W(x)$

on $S$ . Note that we impose the constraint $W(x_{0})=0$ to avoid the ambiguity

of additive constants with respect to $W$ . We next set

$\lambda^{*}(\beta)$ $:= \inf${ $\lambda\in R|$ There exists a supersolution $W$ of (5)}. (6)

Recall that a function $W$ : $Sarrow R$ , or a pair $(\lambda, W)$ , is called a supersolution

(resp. subsolution) of (5) if

$\lambda+W(x)\geq H[W](x)+\beta r(x)$ in $S,$ $W(x_{0})\geq 0$ (resp. $\leq$ ). (7)

As usual, $W$ is said to be a solution of (5) if it is both sub- and supersolutions.

We are now in position to state our main results. We first give the solv-

ability of (5).

Theorem 1.1 (see Theorem 2.1 of [6]). For any $\beta\geq 0$ , there exists a solution
$W$ of (5) with $\lambda=\lambda^{*}(\beta)$ such that $\sup_{S}W<\infty$ . Moreover, there exists a
$\beta_{c}\geq 0$ such that $\lambda^{*}(\beta)=0$ for $\beta\in[0, \beta_{c}]$ and $\lambda^{*}(\beta)>0$ for $\beta\in(\beta_{c}, \infty)$ .

Our second result is concerned with the characterization of $\Lambda=\Lambda(\beta)$ in

terms of the constant $\lambda^{*}(\beta)$ in (6). Let $\overline{q}=\overline{q}(x, y)$ be the stochastic matrix on
$S$ that maximizes the right-hand side of (4) for all $x\in S$ , i.e., the one which

satisfies
$H[f](x)=(\overline{q}f)(x)-c(x, q x\in S.$ (8)

It is known (e.g., Lemma 3.3 of [6]) that such $\overline{q}$ exists uniquely, and that

it is irreducible on $S$ . Hereafter, we use the notation $\overline{q}=$ $[argmax] H[f]$ to

emphasize the dependence of $\overline{q}$ on $f$ . Then, our second main result can be

stated as follows.
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Theorem 1.2 (c.f., Theorem 2.2 of [6]). Let $\lambda^{*}=\lambda^{*}(\beta)$ and $\Lambda=\Lambda(\beta)$ be
the constants defined by (6) and (3), respectively. Then $\lambda^{*}(\beta)=\Lambda(\beta)$ for all
$\beta\geq 0$ . Moreover, Let $W$ be the solution of (5) given in Theorem 1.1, and let
$\overline{q}=[argmax] H[W]$ . Then $\Lambda(\beta)=J(\overline{q};\beta)$ .

We now turn to our third result concerning phase transition phenomena

arising in (1). More precisely, let $\beta_{c}$ be the constant given in Theorem 1.1.
Then the positivity of $\beta_{c}$ is equivalent to the transience of the $p$-chain. One
can also see that the recurrence and transience of the Markov chain associated
with the optimal control policy $\overline{q}=[argmax] H[W]$ changes whether $\beta>\beta_{c}$ or
$\beta<\beta_{C}.$

Theorem 1.3 (c.f., Theorem 2.3 of [6]). Let $\beta_{c}\geq 0$ be the constant given in

Theorem 1.1. Then, $\beta_{C}>0$ if and only if the $p$-chain is transient. Moreover,

for any solution $W$ of (5) with $\lambda=\lambda^{*}(\beta)$ , the Markov chain associated with
$\overline{q}=[argmax] H[W]$ is transient for $\beta<\beta_{c}$ and positive recurrent for $\beta>\beta_{c}.$

By virtue of Theorems 1.1, 1.2, and 1.3, we observe that the stationary
policy $p$ is optimal for $\beta\leq\beta_{c}$ , while it is not optimal for $\beta>\beta_{c}$ . This agrees
with our intuition.

2 Some additional remarks

We first mention that, if $a=a(x)$ in (2) is constant in $S$ , say $a(x)\equiv 1$ , then
the optimality equation (5) can be transformed into a linear equation. More
specifically, suppose that $a(x)\equiv 1$ , namely, $c(x, q)$ is equal to the so-called
relative entropy function with respect to $p$ :

$c(x, q)= \sum_{y\in S}q(x, y)\log\frac{q(x,y)}{p(x,y)}, x\in S.$

Then, one can see that $W$ is a solution of (5) if and only if $\phi(x)=e^{W(x)}$ is a
positive solution to the linear stationary equation

$\sum_{\hat{y}\in S}e^{\beta r(x)}p(x, y)\phi(y)=e^{\lambda}\phi(x) , x\in S$
. (9)

In this sense, the optimality equation (5) can be regarded as a nonlinear ex-
tension of the linear eigenvalue problem (9). Furthermore, by regarding (9) as
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the limit of the recursive equation

$\phi(T, x)=\sum_{y\in S}e^{\beta r(x)}p(x, y)\phi(T-1, y)$
in $N\cross S,$ $\phi(0, x)\equiv 1$ , (10)

and takihg into account the large deviation theory, one can expect that

$\lim_{Tarrow\infty}\frac{\log\phi(T,x)}{T}=\lim_{Tarrow\infty}\frac{1}{T}\log E_{x}^{p}[\exp(\beta\sum_{n=0}^{T-1}r(X_{n}))]$

(11)

$= \inf${ $\lambda\in R|(9)$ has a positive solution $\phi$ }.

The relations (11) can be justified as a corollary of Theorem 1.2. We emphasize,

however, that the transformation above does not work when $a(x)$ in (2) is not

constant, so that our maximization problem is essentially nonlinear.

There is an extensive literature devoted to limit theorems of type (11). In

the case where $S=Z^{d}$ , the paper [1] studies the continuous-time counterpart of

(9)$-(11)$ in connection with discrete homopolymer models in statistical physics.

More precisely, suppose that $S=Z^{d}$ and $r(x)=\delta_{0}(x)$ , where $\delta_{y}$ : $Sarrow R$ is

defined by $\delta_{y}(x)=1$ for $x=y$ and $\delta_{y}(x)=0$ , otherwise. Let $X=(X_{t})_{t\geq 0}$ be

the continuous-time random walk on $Z^{d}$ generated by the discrete Laplacian
$\triangle$ . Furthermore, let $F(\beta)$ be the “free energy”’ of $X$ defined by

$F( \beta) :=\lim_{Tarrow\infty}\frac{1}{T}\log E_{0}[\exp(\beta\int_{0}^{T}\delta_{0}(X_{t})dt)]$

Then, it is proved in [1] that $F(\beta)$ is identical with the spectral function
$\sup\sigma(L)$ of the discrete Scr\"odinger operator $L$ $:=\triangle+\beta\delta_{0}$ on $l^{2}(Z^{d})$ , that

there exists a $\beta_{c}\geq 0$ such that $F(\beta)=0$ for $\beta\in[0, \beta_{c}]$ and $F(\beta)>0$ for
$\beta\in(\beta_{c}, \infty)$ , and that $\beta_{c}=0$ for $d=1$ , 2 and $\beta_{c}>0$ for $d\geq 3$ (see also [3]

for the spectral analysis of $L$ ). In [6], we rediscover these facts as a particular

case of our main results, although we only deal with the discrete-time case.

We point out here that, if $S=Z^{d}$ and $p=p(x, y)$ generates a symmetric

simple random walk on $Z^{d}$ , then (9) is nothing but a discrete-time variant of

the stationary Schr\"odinger equation $L\phi=\lambda\phi$ in $Z^{d}.$

As the final remark, we mention that [6] can be regarded as a discrete

version of [4, 5], where the same type of phase transitions are discussed for

continuous-time controlled diffusions in $R^{d}$ (see also [2] for a continuous ver-

sion of [1]). Our interest in [6] is to establish an effective method peculiar in

the discrete case. Apart from technical details, we also obtain some results
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that have not beed studied in the continuous model (see Theorem 6.6 in [6]).

Typically, we are able to estimate the value of $\beta_{c}$ , and this seems to be new to

the best of our knowledge.
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