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1. INTRODUCTION

A basic problem in dynamics is to describe how structurally stable systems lose
their stability through continuous modifications of the systems. The loss of stability
of horseshoes through homoclinic bifurcations is modeled by a family of H\’enon-like

diffeomorphisms

(1) $f_{a}:(x, y)\in \mathbb{R}^{2}\mapsto(1-ax^{2},0)+b\cdot\Phi(a, b, x, y) , a\in\mathbb{R}, 0<b\ll 1.$

Here, $\Phi$ is bounded continuous in $(a, b, x, y)$ and $C^{2}$ in $(a, x, y)$ . It is known [2, 8,
10, 18] that there is a first bifurcation parameter $a^{*}=a^{*}(b)\in \mathbb{R}$ with the following
properties:

$\bullet a^{*}arrow 2$ as $barrow 0$ ;
$\bullet$ the non wandering set of $f_{a}$ is a uniformly hyperbolic horseshoe for $a>a^{*}$ ;
$\bullet$ for $a=a^{*}$ there is a single orbit of homoclinic or heteroclinic tangency. If $f_{a}*$

preserves orientation, the tangency is homoclinic. Otherwise it is heteroclinic.
The tangency is quadratic, and the family $\{f_{a}\}_{a\in \mathbb{R}}$ unfolds the tangency at
$a=a^{*}$ generically.

The study of the map $f_{a^{*}}$ opens the door to understanding the dynamics beyond
uniform hyperbolicity in dimension two. In this paper we advance the thermodynamic
formalism for $f_{a}$ . initiated in [15, 16]. We prove the existence of equilibrium measures
for a family $\{\varphi_{t}\}_{t\in\pi}$ of non continuous geometric potentials, and study accumulation
points of these measures as $tarrow\pm\infty.$

Write $f$ for $f_{a^{*}}$ . The non wandering set of $f$ , denoted by $\Omega$ , is a compact $f$-invariant
set. Let $\mathcal{M}(f)$ denote the space of $f$-invariant Borel probability measures endowed
with the topology of weak convergence. For a potential function $\varphi:\Omegaarrow \mathbb{R}$ the minus
of the free energy $F_{\varphi}:\mathcal{M}(f)arrow \mathbb{R}$ is defined by

$F_{\varphi}( \mu)=h(\mu)+\int\varphi d\mu,$

where $h(\mu)$ denotes the entropy of $\mu$ . An equilibrium measure for the potential $\varphi$ is
a measure $\mu_{\varphi}\in \mathcal{M}(f)$ which maximizes $F_{\varphi}$ , i.e.,

$F_{\varphi}( \mu_{\varphi})=\sup\{F_{\varphi}(\mu):\mu\in \mathcal{M}(f)\}.$

The existence and uniqueness of equilibrium measures depends upon the characteris-
tics of the system and the potential. The family of potentials we are concerned with
is

$\varphi_{t}=-t\log J^{u} t\in \mathbb{R},$
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where $J^{u}$ denotes the Jacobian in the unstable direction which is defined as follows.
For a point $x\in \mathbb{R}^{2}$ let $E_{x}^{u}$ denote the one-dimensional subspace of $T_{x}\mathbb{R}^{2}$ such that

(2) $\lim\sup^{\underline{1}}\log\Vert D_{x}f^{-n}|E_{x}^{u}\Vert<0.$

$narrow\infty n$

Since $f^{-1}$ expands area, the one-dimensional subspace of $T_{x}\mathbb{R}^{2}$ with this property
is unique when it makes sense. We call $E_{x}^{u}$ the unstable direction at $x$ and define
$J^{u}(x)=\Vert D_{x}f|E_{x}^{u}\Vert$ . It was proved in [15, Proposition 4.1] that $E_{x}^{u}$ makes sense for all
$x\in\Omega$ , and $x\in\Omega\mapsto E_{x}^{u}$ is continuous except at the fixed saddle near $(-1,0)$ where
it is merely measurable.

Since the chaotic behavior of $f$ is created by the (non-uniform) expansion along the
unstable direction, a good deal of information is obtained by studying the equilibrium
measures for $\varphi_{t}$ and the associated pressure function $t\in \mathbb{R}\mapsto P(t)$ , where

$P(t)= \sup\{F_{\varphi_{t}}(\mu):\mu\in \mathcal{M}(f)\}.$

The existence of equilibrium measures for $\varphi_{t}$ was proved in [15] for all $t\leq 0$ , and
for those $t>0$ such that $P(t)/t$ is slightly bigger than -log2. However, the argu-
ments and the result in [15] do not cover sufficiently large $t>$ O. Our first theorem
complements this point.

Theorem A. Assume $f$ preserves orientation. For any $t\in \mathbb{R}$ there exists $q_{\iota}n$ equi-
librium measure for $\varphi_{t}.$

For $t$ in a large bounded interval, the uniqueness and some geometric/statistical
properties of equilibrium measures were established in [16]. It would be nice to prove
the uniqueness for all $t\in \mathbb{R}$ , including the orientation reversing case.

Since $t$ represents the inverse of the temperature in statistical mechanics, $tarrow\pm\infty$

means that the temperature goes to zero. Hence, it is natural to study accumulation
points of equilibrium measures for $\varphi_{t}$ as $tarrow\pm\infty$ . They represent the lowest energy
states, and may reflect the characteristics of the system.

The study of the behavior of the equilibrium measures as $tarrow\pm\infty$ is also related to
the ergodic optimization (See e.g. [5] and the references therein): given a continuous
dynamical system $T$ acting on a compact metric space $X$ , and a real-valued function
$\phi$ on $X$ , one looks for $T$-invariant Borel probability measures which maximize the
integral of $\phi$ . One way to do this is by freezing the system: to consider a family $\{t\phi\}_{t\in \mathbb{R}}$

of potentials and an associated family $\{v_{t}\}_{t\in\pi}$ of equilibrium measures, and to let
$tarrow+\infty$ . If the topological entropy is finite and the potential is continuous, then any
accumulation point as $tarrow+\infty$ maximizes the integral of $\phi$ . For uniformly hyperbolic
systems (or the subshift of finite type), the convergence has been established for
certain locally constant potentials [4, 12] as well as for a residual set of continuous
potentials [9, 11]. However, little is known for non hyperbolic systems.

An unstable Lyapunov exponent of a measure $\mu\in \mathcal{M}(f)$ is a number $\lambda^{u}(\mu)$ defined
by

$\lambda^{u}(\mu)=\int\log J^{u}d\mu.$

Of interest to us are measures which optimize the unstable Lyapunov exponent. Since
the unstable Lyapunov exponent is not continuous as a function of measures, the
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existence of such measures is an issue. We show that any accumulation point of the
equilibrium measures for $\varphi_{t}=-t\log J^{u}$ as $tarrow\pm\infty$ optimizes the unstable Lyapunov
exponent.

Set
$\lambda_{m}^{u}=\inf\{\lambda^{u}(\mu):\mu\in \mathcal{M}(f)\}.$

A measure $\mu\in \mathcal{M}(f)$ is called Lyapunov minimizing if $\lambda^{u}(\mu)=\lambda_{m}^{u}$ . Let $Q$ denote
the fixed point of $f$ near $(-1,0)$ , and $\delta_{Q}$ the Dirac measure at $Q.$

Theorem B. Assume $f$ preserves orientation. Let $\{\mu_{t}\}_{t\in \mathbb{R}}$ be such that $\mu_{t}$ is an
ergodic equilibrium measure for $\varphi_{t}$ for all $t\in \mathbb{R}$ . Then any accumulation point of
$\{\mu_{t}\}_{t\in \mathbb{R}}$ as $tarrow+\infty$ is $\delta_{Q}$ , or a Lyapunov minimizing measure. If $(1/2)\lambda^{u}(\delta_{Q})\neq\lambda_{m}^{u},$

then any accumulation point as $tarrow+\infty$ is Lyapunov minimizing.

Since $\lambda^{u}(\delta_{Q})arrow\log 4$ and $\lambda_{m}^{u}arrow\log 2$ as $barrow 0$ , it is not easy to verify $(1/2)\lambda^{u}(\delta_{Q})\neq$

$\lambda_{m}^{u}$ . However, from a given family (1) of H\’enon-like diffeomorphisms one can construct
another satisfying this condition by slightly perturbing the reminder term $\Phi.$

It is worthwhile to compare Theorem $B$ with the results of Leplaideur [13]. In
this paper, he studied an orientation preserving non-uniformly hyperbolic horseshoe
map with three symbols, with a single orbit of homoclinic tangency, introduced in
[14]. Although this map is similar to our $f$ at a first glance, its equilibrium measures
converge as $tarrow+\infty$ to a Dirac measure which maximizes the unstable Lyapunov
exponent. He also proved the nonexistence of a measure which minimizes the unstable
Lyapunov exponent.

A key ingredient for proofs of the theorems is a control of the derivatives in the un-
stable direction. To this end we develop Benedicks-Carleson’s critical point approach
[3] further. The same strategy has been taken already in [15, 16], but substantial im-
provements are necessary to treat all $t>0$ . The assumption on the orientation of the
map $f$ will be used to construct measures with small unstable Lyapunov exponent,
and to estimate the pressure $P(t)$ from below.
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