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1 Introduction

Let $\Phi$ : $\mathbb{R}^{d}arrow \mathbb{R}\cup\{\infty\}$ be a self potential, $\Psi$ : $\mathbb{R}^{d}\cross \mathbb{R}^{d}arrow \mathbb{R}\cup\{\infty\}$ be a interaction pair
potential with $\Psi(x, y)=\Psi(y, x)$ . We then consider ISDE (infinite dimensional stochastic
differential equation)

$dX_{j}(t)=dB_{j}(t)- \frac{1}{2}\nabla\Phi(X_{j}(t))-\frac{1}{2}\sum_{k:k\in \mathbb{Z},k\neq j}\nabla\Psi(X_{j}(t), X_{k}(t))dt, j\in \mathbb{N}$
. (1)

The existence and uniqueness of solutions of ISDE (1) has been studied in many researches.
The stochastice process $(X_{j}(t))_{j\in \mathbb{N}}$ describes a system of interacting Brownian motions
(IBM). On the other hand, IBM is constructed by using Dirichlet form technique [2, 5, 6].
For a local function $f$ on $S$ the symmetric function $\tilde{f}$ such that

$f( \sum_{j\in \mathbb{N}}\delta_{s_{j}})=\tilde{f}((s_{j})_{j\in N})$

is associated. We call a local function $f$ is smooth if the associated function $\tilde{f}$ is smooth.
We denote by $\mathscr{D}_{0}$ the set of all local smooth functions on S. We introduce a square field
on $\mathscr{D}\circ$ given by

$\mathbb{D}_{BM}[f, g](s)=\frac{1}{2}\sum_{i=1}^{\infty}\nabla_{i}\tilde{f}(s)\cdot\nabla_{i}\tilde{g}(s) , f, g\in \mathscr{D}\mathring{},$

where $\nabla_{i}=$ $( \frac{\partial}{\partial s_{i1}}, \ldots, \frac{\partial}{\partial s_{id}})$ ,

$s=(s_{j})_{j\in N}=(s_{j}^{1}, s_{j}^{2}, \ldots, s_{j}^{d})_{j\in \mathbb{N}},$

and a bilinear form $(\mathscr{E}_{BM}, \mathscr{D}_{\infty,BM})$ defined by

晩$M(f, g)=\int_{S}\mathbb{D}_{BM}[f, g](s)d\mu,$ $f,$ $g\in \mathscr{D}_{\infty,BM},$

$\mathscr{D}_{\infty,BM}=\{f\in \mathscr{D}_{o};\mathscr{E}_{BM}(f, f)<\infty, f\in L^{2}(S, \mu$
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Under some assumptions, $(\mathscr{E}_{BM}, \mathscr{D}_{\infty,BM})$ is closable and its closure, denoted by $(\mathscr{E}_{BM}, \mathscr{D}_{BM})$ ,
is a local, quasi-regular Dirichlet form. Therefore there is a diffusion $(X_{BM}, \mathbb{P}_{s,BM})$ associ-
ated with $(\mathscr{E}_{BM}, \mathscr{D}_{BM})$ . If $\mu$ is $(\Phi, \Psi)$-quasi-Gibbs measure with smooth functions $\Phi$ and
$\Psi$ then its $L^{2}$-generator $L_{BM}$ is given by

$L_{BM}f( s)=\frac{1}{2}\sum_{i=1}^{\infty}\{\Delta_{i}\tilde{f}-\{(\nabla\Phi)(s_{i})+\sum_{j=1,j\neq i}^{\infty}(\nabla\Psi)(s_{i}, s_{j})\}\nabla_{i}\tilde{f}\},$

where $\Delta_{i}=(_{\partial}\partial^{2}=_{s_{i1}}, \ldots, \frac{\partial^{2}}{\partial_{\mathcal{S}_{id}}})$ . In addition the ISDE associated with $(\mathscr{E}_{BM}, \mathscr{D}_{BM})$ is de-

scribed by (1). We remark that although the logarithmic interaction potentials $\Psi(x, y)=$

$-\beta\log|x-y|$ are unbounded at infinity, there exists quasi-Gibbs states associated with
them for $\beta=1$ , 2, 4 and related IBMs can be constructed by the Dirichlet form approach
[5, 6].
In our research we discretize this interacting particle systems. Especially, in this paper

we consider infinite particle systems in which each particle undergoes a jump type L\’evy
process with long range interaction.
Let $\mathbb{D}$

$]$ be the square field on $\mathring{\mathscr{D}}$ defined by

$\mathbb{D}[f, g](s)=\frac{1}{2}\sum_{j=1}^{\infty}\int_{\mathbb{R}^{d}}\nabla_{j}^{y}\tilde{f}(s)\cdot\nabla_{j}^{y}\tilde{g}(s)p(|y-s_{j}|)dy, f, g\in \mathscr{D}_{o},$

where
$\nabla_{j}^{y}\tilde{f}(s)=\tilde{f}(\mathcal{S}_{1}, \ldots, \mathcal{S}_{j}-1, y, s_{j+1}, \ldots)-\tilde{f}(s)$ .

Here $p:[0, \infty$ ) $arrow[0, \infty$ ) is a density of $a$ (finite or infinite) measure such that

$\int_{\pi}d(1\wedge|y|^{2})p(|y|)dy<\infty$ . (2)

Then we introduce the bilinear form $(\mathscr{E}, \mathscr{D}_{\infty})$ defined by

$\mathscr{E}(f, g)=$

ヨ

$\mathbb{D}[f, g](s)d\mu,$
$f,$ $g\in \mathscr{D}_{\infty},$

$\mathscr{D}_{\infty}=\{f\in \mathscr{D}_{0};\mathscr{E}(f, f)<\infty, f\in L^{2}(S, \mu$

We show that under assumptions $(B.1)-(B.4)$ in addition to $(A.O)-(A.2)$ in section 2,
$(\mathscr{E}, \mathscr{D}_{\infty})$ is closable and its closure, denoted by $(\mathscr{E}, \mathscr{D})$ , is a quasi-regular Dirichlet form.
Therefore there is a special standard process $(X, \mathbb{P}_{s})$ associated with $(\mathscr{E}, \mathscr{D})$ . These as-
sumptions are quite mild and a system of interacting $\alpha$-stable processes $(\alpha\in(0,2))$

satisfies them if $\alpha$ is greater than $\kappa$ , the growth order of the density (the 1-correlation
function) of $\mu$ . Since we consider the case that a jump rate density do not have the
expectation (e.g. the Cauchy process) we need to consider the influence of the number of
particles coming from far points and the long range interaction. In addition in the case
that the density goes infinity at the infinity point, the parameter $\alpha$ is restricted. However
in the case even if particles move independently, infinite particles can concentrate at a
point. Suppose that $\mu$ is $a(\Phi, \Psi)$-quasi Gibbs measure. Let $\mu_{x}$ be the reduced Palm mea-
sure defined by $\mu_{x}=\mu(\cdot-\delta_{x}|s(\{x\})\geq 1)$ for $x\in \mathbb{R}^{d},$ $\rho^{1}(x)$ be the 1-correlation function
of $\mu$ defined by $\int_{A}\rho^{1}(x)dx=\int_{S}s(A)d\mu$ for any bounded measurable subset $A\subset \mathbb{R}^{d}$ and

$c_{s\backslash x}(x, y)=1+ \frac{\rho^{1}(y)}{\rho^{1}(x)}|\frac{d\mu_{y}}{d\mu_{x}}(s\backslash x)$ , (3)
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for $x\in s$ , where $s\backslash x=s-\delta_{x}$ and $d\mu_{y}/d\mu_{x}$ denote the Radon-Nikodym density of $\mu_{y}$ for
$\mu_{x}$ . Then under the some assumptions its $L^{2}$-generator $L$ is given by

$Lf( s)=\frac{1}{2}\sum_{j=1}^{\infty}\int_{S}\nabla_{j}^{y}\tilde{f}(s)c_{s\backslash s_{j}}(s_{j}, y)p(|y-s_{j}|)dy.$

According to the arguments in [3, 4] we can show that the associated labeled process
solves the following ISDE:

$X_{j}(t)=X_{j}(0)+ \frac{1}{2}\int_{0}^{t}\int_{\mathbb{R}^{d}}\int_{0}^{c_{X(s-)\backslash X_{j}(s-)}(X_{j}(s-),X_{j}(s-)+u)}uN_{p}($dsdudr) ,

for all $i\in \mathbb{N}$ , where $X(t)=\sum_{i}\delta_{X_{i}(t)}$ and $N_{p}($dsdudr) is the Poisson point process on
$[0, \infty)\cross \mathbb{R}^{d}\cross \mathbb{R}$ with intensity $dsp(|u|)dudr$ . In forthcoming paper we construct the
ISDE associated by the present infinite particle systems and discuss the uniqueness of the
solution of the ISDE. Our result is more interesting for a quasi-Gibbs state which is not
a Gibbs state. For example consider the Ginibre random point process $\mu_{gin}$ , which is a
probability measure on the configuration space on $\mathbb{R}^{2}$ with self potential $\Phi(x)=0$ and
interaction potential $\Psi(x, y)=-2\log|x-y|$ . From Theorem 1.3 in Osada and Shirai [7]
we see that, $c_{s}(x, y)$ in (3) is written by

$c_{s\backslash x}(x, y)=1+ \lim_{rarrow\infty}\prod_{|s_{i}|<r}\frac{|y-s_{i}|^{2}}{|x-s_{i}|^{2}}.$

In addition we remark that we can not consider an Glauber dynamics by the same way
on the present paper. Of course if we take an invariant measure $\mu$ from Gibbs measures
we can consider an equilibrium Glauber dynamics. Indeed to consider the dynamics we
use the absolute continuity of the Palm measure with respect to the Gibbs measure. In
this case $L^{2}$-generator $L_{Gla}$ of the equilibrium Glauber dynamics is given by

$L_{Gla}f( s)=\int_{S}(f(s\cdot x)-f(s))\rho(x)\frac{d\mu_{x}}{d\mu}(s)dx+\sum_{x\in\sup ps}(f(s\backslash x)-f(s))$ .

Here we set $s\cdot x=s+\delta_{x}$ for $s\in S$ and $x\in \mathbb{R}^{d}$ . However for an quasi-Gibbs measure
in general the Palm measure is not absolute continuous with respect to the quasi-Gibbs
measure ($e.g$ . Ginibre random point field [7]). Hence in these case an equilibrium Glauber
dynamics for a quasi-Gibbs measure is not well-defined.

2 Setup and main result

Let $S$ be a closed set in $\mathbb{R}^{d}$ such that $0\in S$ and $\overline{S^{int}}=S$ , where $S^{int}$ denote the interia
of $S$ . Let $S=$ { $s=\sum_{i}\delta_{s_{i}};s(K)<\infty$ for all compact sets $K\subset S$ }, where $\delta_{a}$ stands for
the delta measure at $a$ . We endow $S$ with the vague topology. Then $S$ is a Polish space.
We call $S$ the configuration space over $S$ . We denote by $\mathscr{D}_{o}$ the set of all local smooth
functions on S. For $f,$ $g\in \mathscr{D}_{o}$ we set $\mathbb{D}[f, g]$ : $Sarrow \mathbb{R}$ by

$\mathbb{D}[f, g](s)=\frac{1}{2}\sum_{j=1}^{\infty}\int_{S}\nabla_{j}^{y}\tilde{f}(s)\cdot\nabla_{j}^{y}\tilde{g}(s)p(|y-s_{j}|)dy,$
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where $p$ : $[0, \infty$ ) $arrow[0, \infty$ ) is a density of $a$ (finite or infinite) measure satisfying the
condition (2). We set

$\mathscr{E}(f, g)=\int_{S}\mathbb{D}[f, g](s)d\mu,$

$\mathscr{D}_{\infty}=\{f\in \mathscr{D}$
。

$\cap L^{2}(S, \mu);\mathscr{E}(f, f)<\infty\}.$

Let $S_{r}=\{x\in S;|x|\leq r\}$ . We introduce some assumptions as the following.

There exist $k$-density function of $\mu$ on $S_{r}$ , denoted by $\sigma_{r}^{k},$

(A.O)
and $k$-correlation function, denoted by $\rho^{k}$ , for all $k,$ $r\in \mathbb{N}.$

$(\mathscr{E}, \mathscr{D}_{\infty})$ is closable on $L^{2}(S, \mu)$ . (A.1)

$\sigma_{r}^{k}\in L^{p}(S_{r}^{k}, dx)$ for all $k,$ $r\in \mathbb{N}$ with some $1<p\leq\infty$ . (A.2)

By (A.1) we denote by $(\mathscr{E}, \mathscr{D})$ the closure of $((\mathscr{E}, \mathscr{D}_{\infty}),$ $L^{2}(S,$
$\mu$ In addition we introduce

conditions $(B.1)-(B.4)$ :

$\rho^{1}(x)=O(|x|^{\kappa})$ as $|x|arrow\infty$ for some $\kappa\geq 0$ . (B. 1)

$p(r)=O(r^{-(d+\alpha)})$ as $rarrow\infty$ for some $\alpha>\kappa$ . (B.2)

$p(r)=O(r^{-(d+\beta)})$ as $rarrow+0$ for some $0<\beta<2$ . (B.3)

$\frac{Var[s(S_{r})]}{(\mathbb{E}[s(S_{r})])^{2}}=O(r^{-\delta})$ as $rarrow\infty$ for some $\delta>0$ . (B.4)

Conditions $(B.1)-(B.3)$ relate to the jump rate and the growth rate of the density of
particles. Condition (B.4) is necessary to control the fluctuation of the number of particles
in $S_{r}$ . Moreover we remark that the LHS of (B.4) is represented by the 1 and 2-correlation
functions of $\mu$ by the following:

$\frac{Var[s(S_{r})]}{(\mathbb{E}[s(S_{r})])^{2}}=\frac{\int_{S_{r}}\rho^{1}(x)dx-\int_{S_{r}^{2}}(\rho^{1}(x_{1})\rho^{1}(x_{2})-\rho^{2}(x_{1},x_{2}))dx_{1}dx_{2}}{(\int_{S_{f}}\rho^{1}(x)dx)^{2}}.$

By the expression we can check that (B.4) holds if $\mu$ is the Poisson random point field
with respect to Lebesgue measure or $\mu$ is a determinantal point field. Hence condition
(B.4) is mild.
Now we state an our main theorem:

Theorem 1. Suppose that $(A. O)-(A.2)$ , $(B. l)-(B.4)$ hold. Then $(\mathscr{E}, \mathscr{D})$ is a quasi-regular
Dirichlet form on $L^{2}(S, \mu)$ . Therefore there exists a special standard process $\{\mathbb{P}_{s}\}_{s\in S}$ as-
sociated with $((\mathscr{E}, \mathscr{D}),$ $L^{2}(S,$

$\mu$ Moreover $\{\mathbb{P}_{s}\}_{s\in S}$ is reversible with invariant measure
$\mu.$

Remark 1. Condition (B.1) and (B.2) imply that

$\int_{S}\rho^{1}(x)p(x, A)dx<\infty$ , (4)

for all compact subset $A$ . The property (4) is necessary to construct the infinite particle
systems of independent jump type processes. Hence Condition (B.1) and (B.2) are natural.

176



3 Sketch of proof of Theorem 1

In this section we give the sketch of the proof of the quasi-regularity of $(\mathscr{E}, \mathscr{D})$ . For the
reader’s convenience we give the definition of quasi-regular Dirichlet form. We refer to
Ma and R\"ockner [1] for detail and related notions. A symmetric Dirichlet form $(\mathscr{E}, \mathscr{D})$ on
$L^{2}(S, \mu)$ is called quasi-regular if $(\mathscr{E}, \mathscr{D})$ satisfies the following:

(Q.1) There exists an $\mathscr{E}$-nest consisting of compact sets.

(Q.2) There exists an $||\cdot||_{1}$ -dense subset of $F$ whose elements have $\mathscr{E}$-continuous $\mu$-versions.
Here $||f||_{1}^{2}=\mathscr{E}(f, f)+||f||_{L^{2}(S,\mu)}^{2}.$

(Q.3) There exist $u_{n}\in \mathscr{D},$ $n\in \mathbb{N}$ , having $\mathscr{E}$-continuous $\mu$-versions $\tilde{u}_{n}$ , and an $\mathscr{E}$-exceptional
set $N$ such that $\{\tilde{u}_{n}\}$ separates the points of $S-N.$

We can check (Q.2) and (Q.3) by the similar way used in [2]. Hence it is sufficient that
we check (Q. 1).

Lemma 1. Assume (B.4). Let $a_{n}=\{n2^{(d+\kappa)r}\}_{r\in N},$ $n\in \mathbb{N}$ . Then we have

$\mu(\bigcup_{n=1}^{\infty}S[a_{n}])=1.$

where $S[a]=\{s\in S;s(S_{2^{r}})\leq a_{r}$ for all $r\}$ for $a=\{a_{r}\}_{r\in N}.$

It is known that $S[a]$ is a compact set for all $a=\{a_{r}\}_{r\in N}$ . Hence Lemma 1 says that
there exists a family of compact subsets whose union has probability one.
Here we introduce a function $\chi[a]$ defined by

$\chi[a](s)=\rho\circ d_{a}(s) , d_{a}(s)=\sum_{r=1j}^{\infty}\sum_{\in J_{r_{\rangle}s}}\frac{(2^{7}-|s_{j}|)\wedge 2^{r-1}}{2^{r-1}a_{r}},$

where $(s_{j})_{j\in \mathbb{N}}$ is a sequence such that $|s_{j}|\leq|s_{j+1}|$ for all $j\in \mathbb{N},$ $s=\sum_{j}\delta_{S_{j}}$ and

$J_{r,s}=\{j;j>a_{r}, s_{j}\in S_{2^{r}}\}.$

$\rho$ : $\mathbb{R}arrow[0$ , 1$]$ is the function defined by

$\rho(t)=\{\begin{array}{ll}1 if t<0,1-t if 0\leq t\leq 10 if 1<t,\end{array}$

(see Figure 1). For the function $\chi[a]$ we can see the following lemma by the straightforward
calculation (see Figure 2).

Lemma 2. For any $a=\{a_{r}\}_{r\in \mathbb{N}}$ we have

$\chi[a](s)=\{\begin{array}{l}1if s\in S[a],0 if s\in S[2a_{+}]^{c},\end{array}$

where we set $2a_{+}=\{2a_{r+1}\}_{r\in \mathbb{N}}.$
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Figure 1: $\rho(t)$

Figure 2: an example of a configuration in $S[2a_{+}]^{c}$

From lemma 2 we can call $\chi[a]$ a cut off function on $S[a].$

The next lemma is a key lemma of the proof of Theorem 1. This lemma is proved by
the lemma 2 and some additional arguments.

Lemma 3. Suppose $a_{n}=\{a_{n,r}\}_{r\in N}=\{n2^{(d+\kappa)r}\}_{r\in N}$ . Let $a>\kappa,$ $0<\beta<2$ . Then there
exists $C=C_{d,\alpha,\beta,\kappa}$ such that

$\int_{S}\mathbb{D}[\chi[a_{n}], \chi[a_{n}]](s)f^{2}(s)d\mu\leq C\int_{A(a_{\mathfrak{n}})}f^{2}(s)d\mu$ for all $n\in \mathbb{N}$ and $f\in \mathscr{D}_{\infty}.$

where we set $A(a)=S[2a_{+}+1]\backslash S[a-1]$ for $a=\{a_{r}\}_{r\in \mathbb{N}},$ $2a_{+}+1=\{2a_{r+1}+1\}_{r\in N}$

and $a-1=\{a_{r}-1\}_{r\in N}.$

From Lemma 1 and Lemma 3 and some additional arguments, we can prove the following
lemma.

Lemma 4. For all $f\in \mathscr{D}_{\infty}$ , we have

$\chi[a_{n}]farrow f$ in $||\cdot||_{1}$ as $narrow\infty.$

From Lemma 4 and some additional arguments, we can check the condition (Q.1).

4 Examples

We set that $\mu$ is the Dyson random point field or the Ginibre random point field. It is
known that these random point fields are quasi-Gibbs measures, i.e. $(A.O)-(A.2)$ hold.
For these random point fields we can see $\rho^{1}$ is a constant function. Then the assumption
(B.1) is satisfied for $\kappa=0$ . Hence we can take $0<\alpha,$ $\gamma<2$ . Therefore we can construct
interacting symmetric $\alpha$-stable processes for any $0<\alpha<2.$

On the other hand we set that $\mu$ is the Airy random point field. It is known that the
Airy random point is a quasi-Gibbs measure, i.e. $(A.O)-(A.2)$ hold. For the Airy random

178



point field we can see $\rho^{1}(x)=O(|x|^{1/2})./$ as $xarrow-\infty$ . Then the assumption (B.1) is
satisfied for $\kappa=\frac{1}{2}$ . Hence we can take $\frac{1}{2}<\alpha<2,$ $0<\gamma<2$ . Therefore we can construct
interacting symmetric a-stable processes for any $\frac{1}{2}<\alpha<2.$

Figure 3: $\rho^{1}$ of Dyson or Ginibre
Figure 4: $\rho$ of Airy1
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