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Abstract

Recently, Sakashita and Nagaoka presented their research on numerical sim-
ulatipn of asymptotic methods in quantum statistics. Their method heavily
depends on accurate calculation of all the eigenvalues and eigenvectors of a
huge Hermitian matrix. However, only a projection operator to the eigenspaee

corresponding to positive eigenvalues is necessary. We propose two different
numerical methods, both of which avoid numerical diagonalization.

1 Basic Motivation

Recently, Sakashita and Nagaoka [9] has worked for numerical simulation of asymp-

totic methods in quantum statistics. Their method heavily depends on accurate

calculation of all the eigenvalues and eigenvectors of

$\{\rho^{\bigotimes_{1}n}-k\rho_{2}^{\otimes n}>0\}$ , (1)

where $n$ is sufficiently large integer, $k$ is a real constant, and $\rho_{1}$ and $\rho_{2}$ are density

matrices in the two-dimensional Hilbert space. The notation $\{X >0\}$ for a given

Hermitian matrix $X$ is defined by

$\{X>0\}:=a:\sum_{\lambda_{a}\in\sigma(X)}, \lambda_{a}>0^{E_{a}}$ ’

where $\sigma(X)$ denotes the set of eigenvalues (spectrum) of $X$ and $E_{a}$ is a projection oper-

ator corresponding to the eigenvalue $\lambda_{a}$ . Other projection operators, $\{X<0\},$ $\{X=$

$*1$ This research is a joint work with Dr. Sakashita.
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$0\}$ are also defined in the same manner.

The above projection operator (1) is indeed the quantum Neyman-Pearson test [4]

for $\rho_{1}^{\otimes n}$ vs $\rho_{2}^{\otimes n}(k$ is determined according to the significance level Asymptotic

behavior of some quantities derived from (1) has theoretical importance [6, 3, 5].

However, our proposed methods are very general and the author believes that they

are important apart from quantum statistical significance.

Efficient computation of all the eigenvalues and eigenvectors of a huge but struc-

tured Hermitian matrix $X$ is the essence of the previous result [9]. However, a general-

purpose method (diagonalization of a matrix) was applied to numerical computation

of the projection operator $\{X>0\}$ while not eigenvalues themselves but their signs

are necessary. Thus, a basic question arises: Is there any other numerical method

comparable to the previous approach? Since the workshop, some discussions with

Sakashita have continued and finally we obtain two numerical methods of calculating

$\{X >0\}$ . Both 1nethods avoid the numerical diagonalization of a Hermitian matrix

to compute the projection operator.

2 Problem Setting

Suppose that a Hermitian matrix $X$ in a $d$-dimensional complex vector space is

given. $(d is$ assumed $to be$ very large, $say, d=10^{6}.)$ Our purpose here is to propose

a numerical method of computing projection operators without numerical diagonal-

ization.

$\{X>0\}, \{X<0\}, \{X=0\}.$

We obtain two methods in the present article.

(i) Monte Carlo optimization

(ii) Topological Method
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Monte Carlo optimization is one of the most common optimization methods (See,

e.g., Robert and Casella [8]). Topological Method uses the stability of some points

in a discrete-time dynamical system (See, e.g., Guckenheimer and Holmes [1] for

dynamical systems). The latter method is developed by the author in order to deal

with our problem.

3 Monte Carlo optimization

The first method applies the well-known optimization technique to our specific

problem. The basic idea is very simple. We construct the objective function so that

its maximizer is the desired projection $\{X >0\}$ . Our method uses some results in

classical and quantum hypothesis testing for simple hypotheses (See, e.g., Hayashi [2]

for basic notations and terminology).

Definition 1. Let $M:=\{M_{x}\}_{x\in \mathcal{X}}$ denote a finite-valued POVM $(|\mathcal{X}|<\infty)$ . The

set of test with $M$ is defined by

$\mathcal{P}_{M}:=\{T=\sum_{x}\phi(x)M_{x}:0\leq\phi(x)\leq 1, \forall x\in \mathcal{X}\}$

and the whole set of test is defined by

$P_{full}:=\{T:0\leq T\leq I\}.$

(By definition $\mathcal{P}_{M}\subset \mathcal{P}_{full}.$ )

It is easy to see that both $\mathcal{P}_{M}$ and $\mathcal{P}_{full}$ are closed (compact) and convex. We give

a slightly general form of our algorithm.
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For general algorithm, we can select the candidate distribution $\mu(U)$ to be indepen-

dent of the current $M^{(n)}$ . Practically speaking, it is inefficient and it would be faster

to generate $U$ according to the current $M^{(n)}$ if we assume some conditions on $X.$

It is easily seen that $\sup\{RTX : T\in \mathcal{P}\}$ is achieved when the subset $\mathcal{P}\subseteq \mathcal{P}_{full}$ is

compact. In order to understand the above algorithm, we need three lemmas (those

are easy to prove, thus, proofs are omitted

Lemma 1. Let $X$ be a Hermitian matrix and $M=\{M_{x}\}_{x\in \mathcal{X}}$ be a POVM. Then

$\tilde{M}:=\sum_{x:TrXM_{x}>0}M_{x}$

achieves the following maximum.

max{TrTX: $T\in \mathcal{P}_{M}$ }.
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The above result is another form of the result in classical Bayesian hypothesis testing

(See, e.g., Chap.5 in Robert [7] for Bayesian testing).

Now we define

$E_{U}:=\{UE_{1}U^{*}, . . . , UE_{d}U^{*}\},$

$\tilde{E}_{U}:=\arg\max\{TxTX:T\in \mathcal{P}_{E_{U}}\}$

for every unitary matrix $U\in \mathcal{U}$ . In particular, the following holds.

Lemma 2. For a standard PVM $E$ fixed,

$\mathcal{P}_{full}=\overline{co\{\mathcal{P}_{E_{U}}:U\in \mathcal{U}\}},$

where $co\{A\}$ denotes the closed convex hull of a subset $A\subset \mathcal{P}_{full}$ and $\mathcal{U}$ denotes the

whole set of unitary matrices.

For a pair of subsets satisfying $\mathcal{P}_{1}\underline{\subseteq}\mathcal{P}_{2},$

max{TrTX: $T\in \mathcal{P}_{1}$ } $\leq\max\{hTX_{\dot{\iota}}T\in \mathcal{P}_{2}\}$

holds. Using this monotonicity and the above Lemma 1 and Lemma 2, we easily

obtain the following lemma, which is essential to our algorithm.

Lemma 3. For a standard PVM $E$ fixed, the following holds.

$\{X>0\}=\max\{$TrTX : $T\in \mathcal{P}_{full}\}$

$= \max\{\max\{$TrTX : $T\in \mathcal{P}_{E_{U}}\}:U\in \mathcal{U}\}$

$= \max\{h\tilde{E}_{U}X:U\in \mathcal{U}\}$

Clearly the last equality in Lemma 3 assures the validity of our algorithm. For a

sufficiently large $n,$ $M^{(n)}\approx\{X>0\}$ . The projection to negative eigenspace $\{X<0\}$

is also obtained in the same manner.
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4 Topological Method

First we deal with exceptional cases where rankX $=1$ . In numerical calculation we

do not have this information on X. $($Again, $we$ emphasize that $X is a$ huge matrix. $)$

Without diagonalization and knowing eigenvalues, we can decide whether rankX is

equal to one or not by calculating $RX^{2}$ and $(^{r}RX)^{2}$ . When $X$ is a Hermitian matrix,

$hX^{2}\geq(RX)^{2}$ holds. In particular, rankX $=1$ if and only if Tr$X^{2}=(hX)^{2}$ and

$X\neq 0.$

If we know rankX $=1$ , then dividing $X$ by the scalar $TrX$ yields

$\{X>0\}=\{\begin{array}{ll}\frac{1}{TrX}X, X>0,0, X<0,\end{array}$

$\{X<0\}=\{\begin{array}{ll}0, X>0,\frac{1}{TrX}X, X<0,\end{array}$

$\{X=0\}=I-\{X>0\}-\{X<0\}.$

Now we assume that rankX $\geq 2$ and present our main result. In this case, we may

consider the maximum of the absolute eigenvalue is smaller than one for simplicity.

Indeed $\Vert X\Vert_{2}$ $:=\sqrt{hX^{2}}>\Vert X\Vert_{\infty}$ when rankX $\geq 2$ and \’if we take $Y$ $:=X/\Vert X\Vert_{2}$

then $\{Y>0\}=\{X>0\}$ holds.

Our main result is due to the following elementary result in a discrete-time dynam-

ical system.

Lemma 4. There exist two positive constants $b>0$ and $c>0$ and a third order poly-

nomial $h(x)$ satisfying the following. For the initial value $x_{0}\in(-c, c)$ , we recursively

define
$x_{n+1}:=h(x_{n})$ , $n=0$ , 1, 2, . . . ,

6



and the sequence converges to three values depending on the initial value, i.e.,

$\lim_{narrow\infty}x_{n}=\{\begin{array}{ll}b, 0<x_{0}<c0, x_{0}=0,-b, -c<x_{0}<0\end{array}$ (2)

One example is $b=c=\sqrt{3}/2$ and $h(x)=-x^{3}+7/4x$ ( $c$ could be larger). Fig. 1

shows the graph of $x_{1},$ $x_{3},$ $x_{5},$ $x_{10}$ as a function of the initial value $x_{0}$ . We see that $x_{10}$

is nearly a step function taking three values $-\sqrt{3}/2,$ $0,$ $\sqrt{3}/2$ according to the initial

value $x_{0}$ . It implies that 10 times repetition of the calculation of $h(x)$ is enough except

when $x_{0}$ is very close to 0.0.

$h\{x|=\cdot 1x^{A}3*0x^{A}2*1.75x*O$

$-10$ $-0.5$ 00 0. $5$ $\{0$

$X_{-}\prime N/T$

Fig. 1: Example of $h(x)=-x^{3}+7/4x.$

Remark 1. The smallest degree of a polynomial satisfying the condition (2) is three.
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4.1 Our Algorithm

When the maximum absolute eigenvalue of $Y$ is smaller than one, the following

formula is used.
$\lim_{narrow\infty}(I-Y^{2})^{n}=\{Y=0\}.$

Thus, the projection to the nonzero eigenspace,

$\{Y\neq 0\}=\{Y>0\}+\{Y<0\}=I-\{Y=0\}$

is easily obtained by numerical computation. If we can compute $\{Y>0\}-\{Y<0\}$

as above, then we obtain a numerical method of computing $\{Y>0\}.$

If we do not impose any condition, then we could use the following analytical

formula, generally intractable in numerical computation. Take a sequence of real-

valued analytical functions $\{f_{n}\}$ satisfying

$\lim_{narrow\infty}f_{n}(x)=\{\begin{array}{ll}1, x>0,0, x=0,-1, x<0.\end{array}$

Then, for a Hermitian matrix $Y$ we obtain

$\lim_{narrow\infty}f_{n}(Y)=\{Y>0\}-\{Y<0\}.$

$f_{n}(x)=\tanh(nx)$ is a typical example. There are too many candidates other than this

function. However, for example, numerical computation of $\tanh(nY)$ is troublesome.

The matrix function $e^{nY}$ is intractable as $narrow\infty$ in numerical computation. Even if

we use the Taylor expansion of $\tanh(x)$ , the higher order is more essential as $narrow\infty.$

Thus, we impose some conditions on our numerical method.

(i) Not solving any eigenvalue problem or linear equation

(ii) Not using numerically unstable calculations such as matrix inverse or matrix

determinant
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Under these conditions, we find a simple method due to the last lemma.

Theorem 1. We fix a Hermitian matrix $Y$ with maximum absolute eigenvalue smaller

than one. We take positive constants $b>0,$ $c>0$ and $h(x)$ satisfying the condition

(2). Let us define $Z_{0}$ $:=Y/c$ and $Z_{n+1}$ $:=h(Z_{n})$ , $n=0$ , 1, 2, . . . recursively. Then,

$\frac{1}{b}hmZ_{n}narrow\infty=\{Y>0\}-\{Y<0\}$

holds.

Its proof is also elementary due to Lemma 4,

The main point here is that we derive a recursive way of obtaining $\{Y>0\}-\{Y<$

$0\}$ by using only matrix multiplication and summation. As an illustrative example,

we give an explicit form.

$Z_{0}= \frac{2}{\sqrt{3}}Y,$

$Z_{1}=h(Z_{0})=-(Z_{0})^{3}+7/4Z_{0},$

$Z_{2}=h(Z_{1})=-\{-(Z_{0})^{3}+7/4Z_{0}\}^{3}+7/4\{-(Z_{0})^{3}+7/4Z_{0}\}$ , . . .

For a suffciently large $n$ , we obtain $\frac{r_{3}}{2}Z_{n}\approx\{Y>0\}-\{Y<0\}.$

5 Concluding Remarks

In the present article, we proposed two numerical methods to compute $\{X >0\}$

without numerical diagonalization. We showed the result of the numerical experiment

of the latter method for real scalar values. In addition, we tried to perform numerical

computation of the latter one for $2\cross 2$ matrices, which will be reported later. It

was surprisingly easy to implement and converges well. Numerical experiment for

huge matrices, which was the original motivation, and detailed comparison with the

previous result from the viewpoint of efficiency, robustness to numerical errors are

left for future study.
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