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Abstract: We consider recovering a signal matrix in high-dimension, low-

sample-size (HDLSS) situations. We first consider using the conventional

PCA to estimate a signal matrix and show that the induced estimator holds
consistency properties under several conditions. We show that the estimator

is directly affected by noise structures. In order to overcome the difficulty,
we apply the noise-reduction (NR) methodology to a recovery of the sig-

nal matrix. We show that the NR method gives a preferable estimator of

the signal matrix which holds the consistency properties under mild con-
ditions. The NR method improves the accuracy of the conventional PCA

successfully. Finally, we give several simulation results to recover a signal

matrix.
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1 Introduction

High-dimension, low-sample-size (HDLSS) data situations occur in many areas of modem sci-

ence such as genetic microarrays, medical imaging, text recognition, finance, chemometrics,

and so on. The asymptotic studies of HDLSS data are becoming increasingly relevant. In recent

years, substantial work has been done on HDLSS asymptotic theory. Hall et al. [7], Ahn et al.

[1], and Yata and Aoshima [11] explored several types of geometric representations of HDLSS

data. Jung and Marron [8] investigated the inconsistency of the eigenvalues and eigenvectors of

the sample covariance matrix. Yata and Aoshima [11] gave consistent estimators for both the

eigenvalues and eigenvectors together with the principal component (PC) scores by developing

the noise-reduction $(NR)$ methodology. The HDLSS asymptotic theory had been studied under

the assumption that either the population distribution is Gaussian or the random variables in a
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sphered data matrix have a $\rho$-mixing dependency. However, Yata and Aoshima [9] provided
asymptotic theory without assuming either the Gaussian assumption or the $\rho$-mixing condition.
Moreover, Yata and Aoshima [10] created a new principal component analysis (PCA) called the
cross-data-matrix methodology that is applicable to constructing an unbiased estimator in non-
parametric semngs. Aoshima and Yata [3, 4] developed a variety of high-dimensional statistical
inference based on the geometric representations by using the cross-data-matrix methodology.
See Aoshima and Yata [5, 6] for a review covering this field of research.

In this paper, we address the problem of recovering an unknown $d\cross n$ low-rank matrix,
$A=[a_{1}, a_{n}].$ $A$ is called the signal matrix. Let $r=rank(A)$ . We assume $r( \leq\min\{d, n\})$

is fixed. Suppose we have a $d\cross n$ data matrix, $X=[x_{1}, x_{n}]$ , where

$X=\sqrt{n}A+W$ . (1)

Here, $W=[w_{1}, w_{n}]$ is a $d\cross n$ noise matrix, where $w_{j},$ $j=1,$ $n$ , are independent
and identically distributed $(i.i.d.)$ as a $d$-dimensional distribution with mean zero and covariance
matrix $\Sigma_{W}(\geq\circ)$ . Note that $x_{j}-\sqrt{n}a_{j},$ $j=1,$ $n$ , are i.i.$d$ . Let $\Sigma_{A}=AA^{T}$ . Then, it
holds that $E(XX^{T})/n=\Sigma_{A}+\Sigma_{W}(=\Sigma, say)$ . Andrey and Nobel [2] considered the model
(1) in a high-dimensional setting, where the data dimension $d$ and the sample size $n$ increase
at the same rate, i.e. $n/darrow c>$ O. They assumed that the elements of $W$ are i.i.$d$ . standard
normal random variables. Note that the conditions such as $n/darrow c>0$” and the normality
are quite strict in real high-dimensional analyses. In this paper, we consider the model (1) in
HDLSS settings without assuming the severe conditions.

The eigen-decomposition of $\Sigma_{W}$ is given by $\Sigma_{W}=U_{W}\Lambda_{W}U_{W}^{T}$ , where $\Lambda_{W}$ is a diagonal
matrix of eigenvalues, $\lambda_{1(W)}\geq\cdots\geq\lambda_{d(W)}(\geq 0)$ , and $U_{W}$ is an orthogonal matrix of the

corresponding eigenvectors. Let $W=U_{W}\Lambda_{W}^{1/2}Z$ . Then, $Z$ is a $d\cross n$ sphered data matrix
from a distribution with the identity covariance matrix, $I_{n}$ . Here, we write $Z=[z_{1}, z_{d}]^{T}$

and $z_{j}=$ $(z_{j1}, z_{jn})^{T},$ $j=1,$ $d$ . Note that $E(z_{jk}z_{j’k})=0(j\neq j’)$ and $Var(z_{j})=I_{n}$ . We
assume that the fourth moments of each variable in $Z$ are uniformly bounded. The singular value

decomposition of $A$ is given by $A= \sum_{j=1}^{r}\lambda_{j(A)}^{1/2}u_{j(A)}v_{j(A)}^{T}$ , where $\lambda_{1(A)}^{1/2}\geq\cdots\geq\lambda_{r(A)}^{1/2}(\geq 0)$

are singular values of $A$ and $u_{j(A)}$ (or $v_{j(A)}$ ) denotes a unit left-(or right-) singular vector

corresponding to $\lambda_{j(A)}^{1/2}$ $(j=1, r)$ . In this paper, we assume the following model.

$\lim_{darrow}\sup_{\infty}\frac{\lambda_{1(A)}}{\lambda_{r(A)}}<\infty$ and $\lim_{darrow\infty}\frac{tr(\Sigma_{W}^{2})}{\lambda_{r(A)}^{2}}=0$ . (2)

The model (2) is a special case of the power spiked model given by Yata and Aoshima [12].

Also, we assume that $\lambda_{j}(A)s$ are distinct in the sense that

$\lim_{darrow}\inf_{\infty}|\lambda_{j(A)}/\lambda_{j’(A)}-1|>0$

for all $j\neq j’(\leq r)$ .
In Section 2, we consider using the conventional PCA to estimate $A$ and show that the

induced estimator holds consistency properties under several conditions. In Section 3, we apply
the NR method instead and show that the NR method gives a preferable estimator which holds
the consistency properties under mild conditions. The NR method improves the accuracy of
the conventional PCA successfully. Finally, in Section 4, we give several simulation results to
recover a signal matrix.
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2Reconstruction of $A$ by conventional PCA

In this section, we consider recovering the signal matrix $A$ by using the conventional PCA. The

sample covariance matrix is given by $S=n^{-1}XX^{T}$ . We consider the dual sample covariance
matrix defined by $S_{D}=n^{-1}X^{T}X$ . Note that $S_{D}$ and $S$ share non-zero eigenvalues and

rank$(S)= rank(S_{D})\leq\min\{d, n\}$ . Let $\hat{\lambda}_{1}\geq\cdots\geq\hat{\lambda}_{\min\{d,n\}}\geq 0$ be the eigenvalues of

$S_{D}$ . The eigen-decompositions of $S$ and $S_{D}$ are given by $S= \sum_{j=1}^{\min\{d,n\}}\hat{\lambda}_{j}\hat{u}_{j}\hat{u}_{j}^{T}$ and $S_{D}=$

$\sum_{j=1}^{\min\{d,n\}}\hat{\lambda}_{j}\hat{v}_{j}\hat{v}_{j}^{T}$ respectively, where $\hat{u}_{j}$ (or $\hat{v}_{j}$ ) denotes a unit left-(or right-) singular vector

of $X$ corresponding to $\hat{\lambda}_{j}$ . Note that $\hat{u}_{j}$ can be calculated by $\hat{u}_{j}=(n\hat{\lambda}_{j})^{-1/2}X\hat{v}_{j}.$

We reconstruct $A$ by $\lambda_{j}s,$ $\hat{u}_{j}s$ and $\hat{v}_{j}s$ . We assume the following conditions as necessary:

(C-i) $\frac{\sum_{s,t=1}^{d}\lambda_{s(W)}\lambda_{t(W)}E\{(z_{sk}^{2}-1)(z_{tk}^{2}-1)\}}{n\lambda_{r(A)}^{2}}=o(1)$ ;

$( C-ii)\frac{tr(\Sigma_{W})}{n\lambda_{r(A)}}=o(1)$ .

Let $\kappa_{j}=tr(\Sigma_{W})/(n\lambda_{j(A)})$ for $j=1,$ $r$ . We have the following results.

Theorem 1. For $j=1,$ $r$ , it holds that as $darrow\infty$ and $narrow\infty$

$\frac{\hat{\lambda}_{j}}{\lambda_{j(A)}}=1+\kappa_{j}+o_{p}(1)$ , $\hat{u}_{j}^{T}u_{j(A)}=(1+\kappa_{j})^{-1/2}+o_{p}(1)$ and $\hat{v}_{j}^{T}v_{j(A)}=1+o_{p}(1)$

under (C-i).

Corollary 1. For $j=1,$ $r$ , it holds that as $darrow\infty$ and $narrow\infty$

$\frac{\hat{\lambda}_{j}}{\lambda_{j(A)}}=1+o_{p}(1)$ , $\hat{u}_{j}^{T}u_{j(A)}=1+o_{p}(1)$ and $\hat{v}_{j}^{T}v_{j(A)}=1+o_{p}(1)$

under (C-i) and (C-ii).

Based on the theoretical background, we consider recovering the signal matrix $A$ by $\hat{A}_{r}=$

$\sum_{j=1}^{r}\hat{\lambda}_{j}^{1/2}\hat{u}_{j}\hat{v}_{j}^{T}$ . Then, we have the following results.

Theorem 2. It holds that as $darrow\infty$ and $narrow\infty$

$|| \hat{A}_{r}-A||_{F}^{2}=r\frac{tr(\Sigma_{W})}{n}+o_{p}(\lambda_{r(A)})$

under (C-i), where $||\cdot||_{F}$ denotes the Frobenius norm.

Corollary 2. It holds that as $darrow\infty$ and $narrow\infty$

$||\hat{A}_{r}-A||_{F}^{2}=o_{p}(\lambda_{r(A)})$

under (C-i) and (C-ii).

It should be noted that (C-ii) is a necessary condition to claim the consistency property such

as $||\hat{A}_{r}-A||_{F}^{2}/\lambda_{r(A)}=o_{p}(1)$ .
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3 Reconstruction of $A$ by NR method

We consider applying the NR method by Yata and Aoshima [11] to recover the signal matrix $A.$

By using the NR method, we obtain an estimator of $\lambda_{i(A)}$ as

$\acute{\lambda}_{i}=\hat{\lambda}_{i}-\frac{tr(S_{D})-\sum_{j=1}^{i}\hat{\lambda}_{j}}{n-i} (i=1, n-1)$ . (3)

The following result claims that $\acute{\lambda}_{i}$ holds the consistency property without (C-ii). Remember
that $\hat{\lambda}_{i}$ requires (C-ii) to hold the consistency property.

Theorem 3. For $j=1,$ $r$ , it holds that as $darrow\infty$ and $narrow\infty$

$\frac{\acute{\lambda}_{j}}{\lambda_{j(A)}}=1+o_{p}(1)$

under (C-i).

Now, we consider an adjustment of $\acute{\lambda}_{i}s$ to estimate the signal matrix $A$ :

$\acute{\lambda}_{i(r)}=\hat{\lambda}_{i}-\frac{tr(S_{D})-\sum_{j=1}^{r}\hat{\lambda}_{j}}{n-r} (i=1, r)$ . (4)

We consider recovering $A$ by $\acute{A}_{r}=\sum_{j=1}^{r}\lambda_{j(r)}^{1/2}\hat{u}_{j}\hat{v}_{j}^{T}\prime$ . Then, we have the following results.

Theorem 4. It holds that as $darrow\infty$ and $narrow\infty$

$|| \acute{A}_{r}-A||_{F}^{2}=2\sum_{i=1}^{r}\lambda_{i(A)}(1-\frac{1}{(1+\kappa_{i})^{1/2}})+o_{p}(\lambda_{r(A)})$

under (C-i).

Corollary 3. It holds that as $darrow\infty$ and $narrow\infty$

$||\acute{A}_{r}-A||_{F}^{2}=o_{p}(\lambda_{r(A)})$

under (C-i) and (C-ii).

From Theorems 2 and 4, we compare $2\lambda_{i(A)}\{1-1/(1+\kappa_{i})^{1/2}\}$ with $\lambda_{i(A)}\kappa_{i}$ . It holds that

$2\{1-1/(1+\kappa_{i})^{1/2}\}<\kappa_{i}(i=1,.r)\prime..$, for any $\kappa_{i}>0$ , so that $||\acute{A}_{r}-A||_{F}^{2}$ is smaller than
$||\hat{A}_{r}-A||_{F}^{2}$ asymptotically. Thus, $A_{r}$ improves the error rate of $\hat{A}_{r}.$

4 Simulations

We used computer simulations to compare the performance of $\acute{A}_{r}$ with $\hat{A}_{r}$ . We set $r=3$ and
$\Sigma_{A}=diag(\lambda_{1(A)}, \lambda_{2(A)}, \lambda_{3(A)}, 0, 0)$ with $\lambda_{1(A)}=2d^{3/5},$ $\lambda_{2(A)}=1.5d^{3/5}and\lambda_{3(A)}=d^{3/5}.$

Note that the model (2) holds. We generated pseudo random vectors for $w_{j},$ $j=1,$ $n,$

i.i.d. as a $d$-dimensional normal distribution with mean zero and covariance matrix $\Sigma_{W}(\geq O)$ .
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$We_{M)=||M-A||_{F}^{2}/M}$
considered t

$wocases_{\lambda_{r(A)}foranyd\cross nmatriX}:(a)\Sigma_{W}=I_{d}and(b)\Sigma_{W}=F(,.$
$f_{hefindingswereobtainedbyaver-}^{(\sigma_{ij})with\sigma_{ij}=(0.3)^{|i-j|^{1/3}}Let}$

aging the outcomes from 2000 $(=K, say)$ replications. Under a fixed scenario, suppose that

the k-th replication ends with estimates, $F(\hat{A}_{r})_{k}$ and $F(\acute{A}_{r})_{k}$ , for $k=1,$ $K$ . Let us simply

write $F_{\hat{A}}=K^{-1} \sum_{k=1}^{K}F(\hat{A}_{r})_{k}$ and $F_{A’}=K^{-1} \sum_{k=1}^{K}F(\acute{A}_{r})_{k}$ . We also considered the Monte

Carlo variability. Let $var(F_{\hat{A}})=(K-1)^{-1}\sum_{k=1}^{K}(F(\hat{A}_{r})_{k}-F_{\hat{A}})^{2}$ and $var(F_{A’})=(K-$

$1)^{-1} \sum_{k=1}^{K}(F(\acute{A}_{r})_{k}-F_{\’{A}})^{2}$ . Fig. 1 shows the behaviors of $(F_{\hat{A}}, F_{A})$ and $(var(F_{\hat{A}}), var(F_{\’{A}}))$

for $(d,n)=(2^{s}, 3s)$ , $s=5$ , 11, in the case of (a). Fig. 2 shows them in the case of (b). The
dashed lines denote the simulation results. In the left panels of each figure, we gave the corre-
sponding theoretical values, $rtr(\Sigma_{W})/(n\lambda_{r})$ and 2 $\sum_{i=1}^{r}\lambda_{i(A)}\{1-(1+\kappa_{i})^{-1/2}\}/\lambda_{r}$ , that are
denoted by the solid lines. See Theorems 2 and 4 for the details. The simulation results appeared

close to the theoretical values and it seemed to be good approximations. As expected theoreti-

cally, we observed that the estimates by the NR method give more preferable performances both

for (a) and (b) compared to the conventional PCA.

$vux(F_{1}\lrcorner)$

$0 \mathfrak{M}\theta.B\Phi A0\ovalbox{\tt\small REJECT}\Phi 0P.\ldots..\frac{.01.l3\Phi i_{e_{\backslash }}13a_{S}\ovalbox{\tt\small REJECT}^{\backslash .\backslash }\iota\backslash \backslash _{\backslash _{\backslash }}\backslash .\backslash \backslash \backslash \backslash .t\backslash \backslash \backslash .\backslash .\iota_{\backslash }\backslash .\backslash \backslash _{\backslash }\backslash _{\grave{\iota}_{\vee^{\backslash }\sim}^{\backslash }}.\vee^{\backslash }\backslash .\backslash .Y.\wedge\backslash \vee..\sim.へ.x_{\sim.\sim\backslash arrow*-.\sim-*}^{\wedge\wedge\backslash \wedge}\sim\sim\sim\sim}{3?l1011};\cdot\cdots\cdot h_{\ } d$

Figure 1: The behaviors of two estimates, $\hat{A}_{r}$ denoted by $\bullet$ and $\acute{A}_{r}$ denoted by $A$ , when
$\Sigma_{W}=I_{d}$ . The values of $F_{\hat{A}}$ and $F_{A’}$ are denoted by the dashed lines in the left panel.

The values of their sample variances, $var(F_{\hat{A}})$ and $var(F_{\’{A}})$ , are denoted by the dashed

lines in the right panel. The theoretical values, $rtr(\Sigma_{W})/(n\lambda_{r})$ and 2 $\sum_{i=1}^{r}\lambda_{i(A)}\{1-$

$(1+\kappa_{i})^{-1/2}\}/\lambda_{r}$ , are denoted by the solid lines in the left panel.

Figure 2: (Continued). When $\Sigma_{W}=(\sigma_{ij})$ with $\sigma_{ij}=(0.3)^{|i-j|^{1/3}}$
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A Appendix

Throughout, let $e_{n}=$ $(e_{1}, e_{n})^{T}$ be an arbitrary unit random vector.

Lemma 1. It holds that as $darrow\infty$ and $narrow\infty$

$e_{n}^{T} \frac{W^{T}W}{n\lambda_{j(A)}}e_{n}=\frac{tr(\Sigma_{W})}{n\lambda_{j(A)}}+o_{p}(1)$

for $j(\leq r)$ under (C-i).

Proof. We write that

$e_{n}^{T} \frac{W^{T}W}{n\lambda_{j(A)}}e_{n}=e_{n}^{T}(n^{-1}\sum_{s=1}^{d}\lambda_{s(W)}z_{s}z_{s}^{T})e_{n}=e_{n}^{T}\{n^{-1}\sum_{s=1}^{d}\lambda_{s(W)}(z_{s}z_{s}^{T}-I_{n})\}e_{n}+\frac{tr(\Sigma_{W})}{n}.$

From Lemma 5 given in Yata and Aoshima [12], it holds that as $darrow\infty$ and $narrow\infty$

$e_{n}^{T} \frac{n^{-1}\sum_{s=1}^{d}\lambda_{s(W)}(z_{s}z_{s}^{T}-I_{n})}{\lambda_{j}}e_{n}=o_{p}(1)$

for $j(\leq r)$ under (C-i). Thus it concludes the result. 口

Lemma 2. It holds that as $darrow\infty$ and $narrow\infty$

$\frac{u_{i(A)}^{T}We_{n}}{n^{1/2}}=o_{p}(\lambda_{r(A)}^{1/2}) , i=1, r.$

Proof. We write that $u_{i(A)}^{T}We_{n}= \sum_{k=1}^{n}e_{k}w_{k}^{T}u_{i(A)}$ . Note that $\lambda_{1(W)}=o(\lambda_{r(A)})$ as $darrow\infty$

from (2). By using Markov’s inequality, for any $\tau>0$ and $i=1,$ $r$ , we have that as $darrow\infty$

and $narrow\infty$

$P( \sum_{k=1}^{n}(w_{k}^{T}u_{i(A)})^{2}/n\geq\tau\lambda_{r(A)})\leq\frac{E\{\sum_{k=1}^{n}(w_{k}^{T}u_{i(A)})^{2}\}}{\tau n\lambda_{r(A)}}=\frac{u_{i(A)}^{T}\Sigma_{W}u_{i(A)}}{\tau\lambda_{r(A)}}$

$\leq\frac{\lambda_{1(W)}}{\tau\lambda_{r(A)}}=o(1)$

from the fact that $u_{i(A)}^{T}\Sigma_{W}u_{i(A)}\leq\lambda_{1(W)}$ . Then, by noting that

$| \sum_{k=1}^{n}e_{k}(w_{k}^{T}u_{i(A)})/n^{1/2}|\leq\{\sum_{k=1}^{n}e_{k}^{2}\}^{1/2}\{\sum_{k=1}^{n}(w_{k}^{T}u_{i(A)})^{2}/n\}^{1/2}$

$= \{\sum_{k=1}^{n}(w_{k}^{T}u_{i(A)})^{2}/n\}^{1/2}$

we can conclude the result. 口
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ProofofTheorem 1. We write that for $j=1,$ $r$

$\frac{\hat{\lambda}_{j}}{\lambda_{j(A)}}=\hat{v}_{j}^{T}\frac{S_{D}}{\lambda_{j(A)}}\hat{v}_{j}=\hat{v}_{j}^{T}\frac{(A+W/n^{1/2})^{T}(A+W/n^{1/2})}{\lambda_{j(A)}}\hat{v}_{j}$

$= \hat{v}_{j}^{T}\frac{A^{T}A}{\lambda_{j(A)}}\hat{v}_{j}+2\hat{v}_{j}^{T}\frac{A^{T}W}{n^{1/2}\lambda_{j(A)}}\hat{v}_{j}+\hat{v}_{j}^{T}\frac{W^{T}W}{n\lambda_{j(A)}}\hat{v}_{j}$ . (5)

We note that $| \hat{v}_{j}^{T}A^{T}W\hat{v}_{j}|\leq\sum_{i=1}^{r}\lambda_{i(A)}^{1/2}|u_{i(A)}^{T}W\hat{v}_{j}|$ for $j=1,$ $r$ . From Lemma 2 and (2),

it holds that as $darrow\infty$ and $narrow\infty$

$\hat{v}_{j}^{T}A^{T}W\hat{v}_{j}/n^{1/2}=o_{p}(\lambda_{r(A)}^{1/2})$ (6)

for $j=1,$ $r$ . Then, by combining (5) with Lemma 1 and (6), it holds that for $j=1,$ $r$

$\frac{\hat{\lambda}_{j}}{\lambda_{j(A)}}=\hat{v}_{j}^{T}\frac{\sum_{s=1}^{r}\lambda_{s(A)}v_{s(A)}v_{s(A)}^{T}}{\lambda_{j(A)}}\hat{v}_{j}+\frac{tr(\Sigma_{W})}{n\lambda_{j(A)}}+o_{p}(1)=1+\frac{tr(\Sigma_{W})}{n\lambda_{j(A)}}+o_{p}(1)$

under (C-i). Thus, we have that $\hat{v}_{j}^{T}v_{j(A)}=1+o_{p}(1)$ for $j=1,$ $r$ . For $\hat{u}_{j}s$ , from Lemma 2,

under (C-i), it holds that as $darrow\infty$ and $narrow\infty$

$u_{j(A)}^{T}\hat{u}_{j}=\hat{\lambda}_{j}^{-1/2}\lambda_{j(A)}^{1/2}v_{j(A)}^{T}\hat{v}_{j}+(n\hat{\lambda}_{j})^{-1/2}u_{j(A)}^{T}W\hat{v}_{j}=\{1+tr(\Sigma_{W})/(n\lambda_{j(A)})\}^{-1/2}+o_{p}(1)$

for $j=1,$ $r$ . Thus it concludes the results. $\square$

ProofofCorollary I. Note that $tr(\Sigma_{W})/n=o(\lambda_{r(A)})$ under (C-ii). From Theorem 1, we can
conclude the result. 口

Proofs ofTheorem 2 and Corollary 2. From Theorem 1, under (C-i), we have that

$|| \hat{A}_{r}-A||_{F}^{2}=||\sum_{s=1}^{r}(\hat{\lambda}_{s}^{1/2}\hat{u}_{s}\hat{v}_{s}^{T}-\lambda_{s(A)}^{1/2}u_{s(A)}v_{s(A)}^{T})||_{F}^{2}=r\frac{tr(\Sigma_{W})}{n}+o_{p}(\lambda_{r(A)})$ .

It concludes the result. 口

Lemma 3. It holds that as $darrow\infty$ and $narrow\infty$

$\frac{tr(S_{D})-\sum_{i=1}^{j}\hat{\lambda}_{i}}{n-j}=\frac{tr(\Sigma_{W})}{n}+o_{p}(\lambda_{r(A)})$ for $j=1$ , $\cdots$ , $r$

under (C-i).

Proof. We write that tr(WTW/n)-tr( $\Sigma$W) $=\Sigma$ ds$=$ 1
$\lambda$

s(W)
$\Sigma$ nk$=$

1(考 k-l)/n. Then, itholds
that as $darrow\infty$ and $narrow\infty$

$E[ \{tr(W^{T}W/n)-tr(\Sigma_{W})\}^{2}]=\sum_{r,s=1}^{d}\lambda_{r(W)}\lambda_{s(W)}E\{(z_{sk}^{2}-1)(z_{sk}^{2}-1)\}/n=o(\lambda_{r(A)}^{2})$
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under (C-i). Hence, by using Chebyshev’s inequality, for any $\tau>0$ , we have that as $darrow\infty$

and $narrow\infty$

$P(| tr(W^{T}W/n)-tr(\Sigma_{W})|\geq\tau\lambda_{r(A)})\leq\frac{E[\{tr(W^{T}W/n)-tr(\Sigma_{W})\}^{2}]}{\tau^{2}\lambda_{r(A)}^{2}}=0(1)$

under (C-i). Thus it follows that $tr(W^{T}W/n)=tr(\Sigma_{W})+o_{p}(\lambda_{r(A)})$ . On the other hand, from
(2), we have that

$E \{tr(A^{T}W)^{2}\}=E\{(\sum_{i=1}^{n}a_{i}^{T}w_{i})^{2}\}=\sum_{i=1}^{n}a_{i}^{T}\Sigma_{W}a_{i}=tr(\Sigma_{W}\Sigma_{A})$

$\leq\sqrt{tr(\Sigma_{W}^{2})tr(\Sigma_{A}^{2})}=O(tr(\Sigma_{W}^{2})^{1/2}r\lambda_{1(A)})=o(\lambda_{r(A)}^{2})$ ,

so that $tr(A^{T}W)=o_{p}(\lambda_{r(A)})$ . Then, we have that

$tr(S_{D})=tr(A^{T}A)+2tr(A^{T}W)/n^{1/2}+tr(W^{T}W)/n$

$= \sum_{i=1}^{r}\lambda_{i(A)}+tr(\Sigma_{W})+o_{p}(\lambda_{r(A)})$ . (7)

under (C-i). From Theorem 1 and (7), it holds that for $j(\leq r)$

$\frac{tr(S_{D})-\sum_{i=1}^{j}\hat{\lambda}_{i}}{n-j}=\frac{tr(\Sigma_{W})}{n}+o_{p}(\lambda_{r(A)})$

under (C-i). It concludes the result. 口

ProofofTheorem 3. By combining Theorem 1 with Lemma 3, we can conclude the result. 口

Proofs ofTheorem 4 and Corollary 3. By combining Theorems 1 and 3, we can conclude the
results. 口
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