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Abstract: We will review some recent results on the existence of monochromatic subgraphs
with certain properties in edge-colored graphs.

1 Introduction

We consider only finite and simple graphs. In particular, we will mainly consider edge-colored graphs.
Given a graph whose edges are colored, on how many vertices can we find a monochromatic subgraph
of a certain type, such as a connected subgraph, or a cycle? In this short survey, we shall review some
known results and conjectures regarding these questions.

We firstly give some basic definitions. For a graph G = (V(G), E(G)), let ¢(G) be the circumference
of G, i.e. the length of a longest cycle in G. Let a(G) be the independence number of G, i,e., the size
of the largest independent set of G. For two disjoint graphs A and B, let A + B be the graph obtained
from A and B by joining them completely with edges (thus, V(A + B) = V(A)U V(B),E(A+ B) =
E(A)UE(B)U{abla € V(A),b € V(B)}). A graph G is called unicyclic if it has exactly one cycle. Let
P;r be a P, with the addition of a single vertex adjacent to an internal vertex of the path.

2 Monochromatic cycles

In this section, let us consider the problem of finding monochromatic subgraphs in edge-colored graphs. A
first result in this direction is the following observation, made a long time ago by Erdés and Rado: A graph
is either connected, or its complement is connected. In other words, for every 2-edge-colored complete
graph, there exists a monochromatic spanning connected subgraph (or equivalently, a monochromatic
spanning tree). A substantial generalization of this observation is to ask for the existence of a large
monochromatic subgraph of a certain type in an edge-colored graph.

Given an r-edge-colored complete graph, we may ask for the existence of a long monochromatic cycle.
Throughout this section we regard K; as a cycle of order 7 for i € {1,2}. Let us consider the following
problem:

Problem 1 Determine the mazimum value f(n,r) such that every r-edge-coloring of K, contains a
monochromatic cycle of length at least f(n,r).

In [6] Faudree et al. showed that for every graph G of order n > 6 we have max{c(G), ¢(G)} > [2n/3],
where G denotes the complement of G. Furthermore, this bound is sharp. It can be easily seen by taking
G to be the graph consisting of |n/3| isolated vertices and a clique on the remaining [2n/3] vertices. So
we have f(n,2) = [2n/3]. For r > 3, it is known that f(n,r) <n/(r —1).

The lower bound on f(n,r) is given as follows:

*Research is supported by the Japan Society for the Promotion of Science Grant-in-Aid for Young Scientists (B)
(20740095).




Theorem 2 ([7]) Let n,r be integers with n > r > 1. Then any r-edge-colored complete graph K,
contains a monochromatic cycle of order at least [n/r]. (i.e., f(n,v) > [n/r].)

Very recently, Theorem 2 was slightly improved in some special cases:

n{n—1

Theorem 3 ([10]) Let n,r be integers withn > r > 1. Suppose that both n and | n_{f’] are even.
Then any r-edge-colored complete graph K, contains a monochromatic cycle of order at least [E%L_—_%'r—zr’[

Another recent progress on this problem is the following:
Theorem 4 ([11]) The following statements hold:
(i) Forn>r>3, f(2r+2,r)=3.

(22) For any positive integers s,c with s > 2,¢ > 2, f(sr +c¢,r) = s+ 1 holds if v is sufficiently large
compared with s and c. i

This theorem says that there exist infinitely many pairs n,r such that f(n,r) = [n/r]. But we do
not know the exact value of f(n,r) in other cases. Even for the case f(n,3), it is open.

3 Gallai-colorings and extensions

In this topic, we shall consider the task of finding monochromatic subgraphs in edge-colored complete
graphs by putting a restriction on the edge-coloring. Edge colorings of complete graphs in which no
triangle is colored with three distinct colors were called Gallai-partitions in [25], and Gallai-colorings in
[20, 21). Here we briefly call these colorings G-colotings and always assume that G-colorings are on the
edges of a complete graph. More than just the term, the concept occurs in relation to deep structural
properties of fundamental objects. An important result, Theorem 5, from Gallai’s original paper [17]
-translated to English and endowed by comments in [26] - can be reformulated in terms of G-colorings.
Further occurrences are related to generalizations of the perfect graph theorem [2, 3], Ramsey-type
functions called Gallai-Ramsey numbers [13, 16], or applications in information theory [24].

Our starting point in this section is the following result of Gallai [17], see an explicit proof in [20].
We say that a color class of an edge-coloring of G is connected if it together with all vertices of G forms
a connected graph. Otherwise the color class is called disconnected.

Theorem 5 In every G-coloring with at least three colors, at least one of the color classes must be
disconnected.

What is the role of forbidding a rainbow triangle? Call a subgraph rainbow if all colors on the edges
of the subgraph are distinct. Can we extend Theorem 5 in some way to colorings where a rainbow copy of
some other fixed graph F is forbidden? This question is the central topic of this section. An edge coloring
of a complete graph K is connected if every color class in K is connected. Let us say that a graph F has
the disconnection property, DP, if there exists a natural number m = m(F) (note that m(F) does not
depend on the order of K) such that the following holds: in every edge coloring of a complete graph with
at least m colors, either there is a rainbow £ or at least one color class is disconnected. Equivalently,
F' has the disconnection property if, in every connected coloring with at least m(F) colors, there is a
rainbow copy of F. Notice that m(F) > |E(F)| because complete graphs which are large enough have
connected colorings using |E(F')| — 1 colors with no rainbow F.

By definition, Theorem 5 tells us that K3 € DP. In {12] K; + (K U K3) € DP is shown. The recent
progress on this topic is the following:

Theorem 6 ([9]) The following statements hold:

(#) If F € DP is connected and bipartite, then F is a tree or a unicyclic graph or two such components
joined by an edge.
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(i) For any F € DP, there exists an edge e € E(F) such that F — e is bipartite.
(#4i) If F € DP is connected, then F can be obtained from a tree by adding at most two edges.

(iv) If F is a unicyclic graph such that its cycle is a triangle, then F' € DP. (hence, any forest belongs
to DP.)

We do not know whether small cycles with at least 4 vertices are in DP. So we propose the following
problem:

Problem 7 Is Cy € DP? More generally, are even cycles in DP?

In [9] the authors construct an example which shows that if Cy € DP then m(Cy) > 4(= [E(C4))).

4 Covering by monochromatic subgraphs and related topics

So far, much work has been done on covering problems in edge-colored complete graphs. Those come
from a variety of background, but mostly the purpose in this topic is to cover the whole vertex set of K,
by monochromatic connected components. One such example is the following, which is the equivalent
formulation of the Ryser’s conjecture on multi-partite hypergraphs [22, 27]:

Conjecture 8 In every r-edge-coloring of a complete graph, the vertex set can be covered by the vertices
of at most r — 1 monochromatic connected components.

This conjecture is open for r > 6. It is trivially true for 7 = 2, the cases r = 3,4 are solved in [18]
and in [5], and for the case r = 5, see [5, 28].
Gyarfas and Lebhel discovered a bipartite version of this conjecture.

Conjecture 9 In every r-edge-coloring of a complete bipartite graph, the vertex set can be covered by
the vertices of at most 2r — 2 monochromatic connected components.

It is easy to check that any r-edge-coloring of a complete bipartite graph contains at most 2r — 1
monochromatic connected components covering the whole vertex set. Indeed, let u and v be two vertices
in opposite classes of K, », and take the monochromatic double star with centers u and v, along with
the remaining monochromatic stars centered at u and v (there are at most 2r — 2 such stars). On the
other hand, it is shown in [4] that there is an r-edge-coloring of a complete bipartite graph where we
need at least 27 — 2 monochromatic connected components to cover the vertex set.

The recent progress on this conjecture is the following:

Theorem 10 ([4]) Conjecture 9 is true for r < 5.

We now give a quick review concerning the existence of large monochromatic trees in edge-colored
graphs with given independence number. In [19], Gyirfas and Sarkdzy investigated the size of monochro-
matic trees in edge-colored graphs.

Theorem 11 ([19]) Any 2-edge-colored graph G contains a monochromatic tree T of order at least
V(G)l/a(G).
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Theorem 12 ([19]) Any G-colored graph G contains a monochromatic tree T of order at least |V (G)|/(a(G)*+

a(G) —1).

The bound on T in Theorem 11 is sharp. To see this, consider a(G) disjoint monchromatic complete
graphs of equal order. We do not know about the best possiblity on the order of T in Theorem 12.

Recently, Theorem 11 was extended to a result on partitioning V(G) by monochromatic connected
subgraphs.



Theorem 13 ([8]) Any 2-edge-colored graph G can be partitioned into at most a(G) monochromatic
connected parts.

Now we consider another different covering problem concerning highly connected monochromatic
subgraphs in edge-colored complete graphs. Returning to the case r = 2 in Conjecture 8, we see that any
2-coloring of K, is covered by a monochromatic connected subgraph. However, when we try to find such
a subgraph with higher connectivity, we can not hope to find such a spanning subgraph. In order to see
this, consider the following example:

Let G, = H U---UHjs where H; is a red complete graph Kj_; for i < 4 and Hs is ared K, —4(k—1)
where n > 4(k — 1). To this structure, we add all possible red edges between Hs, H; and H; and from
H, to H3 and from H, to Hy. All edges not already colored in red are colored in blue. In either color,
there is no k-connected subgraph of order larger than n — 2(k — 1). Since a spanning monochromatic
subgraph is more than we could hope for, we consider finding a highly connected subgraph that is as
large as possible. Along this line, Bollob4s and Gyérfas [1] proposed the following conjecture.

Conjecture 14 Forn > 4(k—1), every 2-coloring of Ky, contains a monochromatic k-connected subgraph
with at least n — 2(k — 1) vertices.

In order to see that the bound on 7 is the best possible, consider the example G above with n =
4(k — 1) (so Hs = @). In [1], the authors showed that this conjecture is true for £ < 2.
The recent progress concerning Conjecture 14 is the following:

Theorem 15 ([14]) If n > 6.5(k — 1) then any 2-edge-coloring of K, contains a monochromatic k-
connected subgraph of order at least n — 2(k —1).

By the example G,, we must give up finding a monochromatic k-connected subgraph covering the
vertex set of a 2-edge-colored K,,. But how about covering “almost” all the vertices by a monochromatic
k-connected subgraph? If n is extremely large compared with k, one can say from Theorem 15 that
any 2-edge-coloring of K, contains a monochromatic k-connected subgraph which covers “almost” all
of the vertices. Can we have a similar statement for any r-edge-coloring of K,, with r > 37 This is
not true in general. If we consider an r-edge-coloring of K,, and try to find the largest monochromatic
k-connected subgraph of K, it was shown in [23] that the best result one could possibly hope for would

be a monochromatic k-connected subgraph of order approximately —%;. Thus, in order to find larger
monochromatic k-connected subgraphs, it becomes necessary to assume additional restrictions on the
coloring.

Finding a monochromatic k-connected subgraph covering almost all of the vertices corresponds to
finding one color class inducing an “almost” k-connected graph. In contrast to the concept DP in the
previous section, one very natural restriction would be to forbid the existence of a rainbow subgraph.

Thus, we have the following question:

Problem 16 Let n,r, k be positive integers with n > r > k. For what connected graphs G does the fol-
lowing statement hold? In any rainbow G-free coloring of K,, using at least v colors, there is a monochro-
matic k-connected subgraph of order at least n — f(G,r, k) for some function f not depending on n.

The following result gives an answer toward this question:

Theorem 17 ([15]) The set of graphs G such that G satisfies Question 16 is precisely K3, P{ and Ps
and their subgraphs.
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