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1 Introduction

A complex Hadamard matrix is a square matrix H with complex entries of absolute
value 1 satisfying HH* = nl, where % stands for the Hermitian transpose and I is
the identity matrix of order n. They are the natural generalization of real Hadamard
matrices. Complex Hadamard matrices appear frequently in various branches of
mathematics and quantum physics.

A type-II matrix, or an inverse orthogonal matrix, is a square matrix W with
nonzero complex entries satisfying WWwO! = nr , where (z,y)-entry of W) is
defined by Ww‘l. Obviously, a complex Hadamard matrix is a type-II matrix.

Complete classifications of complex Hadamard matrices, and of type-II matrices
are only available up to order n =5 (see [7, 14, 10]). Although it is shown by Craigen
[7] that there are uncountably many equivalence classes of complex Hadamard ma-
trices of order n» whenever n is a composite number, some type-II matrices are more
closely related to combinatorial objects than the others. Szollosi [16] used design the-
oretical methods to construct complex Hadamard matrices. Strongly regular graphs
were used to construct type-II matrices in [5, 6]. See [15] for a generalization. In this
paper, we construct type-II matrices and complex Hadamard matrices in the Bose-
Mesner algebra of a certain 3-class symmetric association scheme. In particular, we
recover the complex Hadamard matrices of order 15 found in [4].

The method of finding complex Hadamard matrices in the Bose-Mesner algebra
of a symmetric association scheme generalizes the classical work of Goethals and
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was supported by JSPS KAKENHI grant number 26400003.
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Seidel [9]. Assuming that the association scheme is symmetric, the resulting complex
Hadamard matrices are symmetric. It turns out that this assumption enables us to
consider only the real parts of the entries of a complex Hadamard matrix, since the
orthogonality can be expressed in terms of the real parts. Extending this reduction
to type-II matrices, we are led to consider a rational map whose inverse is explicitly
given in Section 2. In Section 3, we explain why only real parts come into play
when we construct complex Hadamard matrices in the Bose-Mesner algebra of a
symmetric association scheme. In Section 4, we consider a particular family of 3-class
association schemes. This family was found after extensive computer experiment on
the list of 3-class association schemes up to 100 vertices given in [8]. Surprisingly,
most other association schemes up to 100 vertices, with the exceptions of amorphic
or pseudocyclic schemes, do not admit a complex Hadamard matrix in their Bose-
Mesner algebras. In Section 5, we compute the Haagerup set to show inequivalence
of type-II matrices constructed in Section 4.
All the computer calculations in this paper were performed by Magma [2].

2 The image of a rational map

We define a polynomial in three indeterminates X,Y, Z as follows:
g X,Y,Z2)=X*+Y*+ 2> - XYZ - 4.
X n Y X + Z Z 4 Y\ 0
Ny " xz " xv"z)™"
Lemma 2. In the rational function field with four indeterminates X,Y, Z and z, the
following identities hold:

Lemma 1.

1 2(22-1)g+af
vt T Yt o)z o V)X =) (1)
z w 2222 = 1)g+cof
whZz=2% 2(22 = 1)(2Z - Y)(2X - 2)’ (2)
. 229+ (22X - 2YZ + f)f
=t T TV = 2) (3)
where
f=22—2X+1,
9=9(X,Y,2),

a=(22—1)(zX = Z2+2) — (2Y — 2)?,
e=(2-1)(zX-Y*+2) - (2Z-Y)?,

w = 22-1
T 2Z-Y’
272 -1

/—
vErizoy



We define a polynomial in six indeterminates Xo1, Xo2, Xo,3, X1,2, X1,3, X253 as

follows:
2 Xop Xop

h(Xo1,Xo.2, Xo3, X12,X1,3, X23) =det [Xo1 2 X2
Xosz X1z Xa3

Lemma 3. In the rational function field with four indeterminates Xy, X1, Xo, X3, set

X X .
.T,;,jz-)—(;-i-yi (OSZ<]§3)

Then h(zo1, %02, Zo,3, L1,2,L1,3, L2,3) = 0.

For a finite set N and a positive integer k, we denote by (1,:] ) the collection of all
k-element subsets of N.

Lemma 4. Let N = {0,1,...,d}, N3 = (}) and Ny = ({]). Leta;; (0 < 4,5 <
d, 1 # j) be complex numbers satisfying

a; =a;; (0<i<j<d), (4)
g(a‘i,ja Qjk, a'i,k) =0 ({iaja k} € NS)’ (5)
h(ai,jaai,k,ai,b aj,k,aj,e,ak,l) =0 ({i,j, k,é} € N4)~ (6)
Assume
Qg 44 ‘7"é +2 fOT‘ some io,il with 0 <1ig <1 < d. (7)

Let w;,, w;, be nonzero complex numbers satisfying
wio Wy,
+ = Qi 51 - (8)
Wi, Wiy

Define complex numbers w; (0 <1i < d, © # do,41) by

2 o2
. e 9)
Ay Wiy — Gig,iWig
Then v w
L+ —=gq; (0<i<j<d). (10)
W; wj
Conversely, if compler numbers {w;}&, satisfy (10), then (9) holds.
Moreover, if a;; (0 <i < j <d) are all real and
—-2< iy < 2, (]_1)

then |w;| = |w;| for0<i<j<d.

Theorem 1. Let d, N, N3, Ny be as in Lemma 4. Define ¢ : (C*)4+1 — CHIH1/2 py

w;  W;
qb(wo,...,wd):(——z-{-—J) .
Wi Wi/ o<icj<d
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Then the image of ¢ coincides with the zeros of the ideal generated by the polynomials

g(Xi,jan,k’Xi,k) =0 ({?’a.?’ k} € N3)a (12)
h(Xij, Xig, Xie, Xk, Xje, Xxe) =0 ({3,5,k, £} € Ny), (13)

where X, ; = Xj;.
The following lemma will be used in the proof of Theorem 2.

Lemma 5. In the rational function field with three indeterminates X, X2, X3, set

where Xo = 1. Then
(X1 X2 X3 + 1)(20,1%0,2 + o3 — T1,2)

1
= (X1 X2 + X3)(®0,1%0,2T03 + 2 — '2'(301,2330,3 + Z13%02 + T2,3%0,1))-

3 Type-II matrices contained in a Bose—-Mesner
algebra

Throughout this section, we let A denote a symmetric Bose-Mesner algebra with
adjacency matrices Ag = I, Ay, ..., Aq. Let n be the size of the matrices A;, and we

denote by
P = (P;)osi<d

0<;j<d
the first eigenmatrix of .A. Then the adjacency matrices are expressed as

d
Aj=) P,E (j=0,1,...,d),
=0

where Fy = %J, E;, ..., E4 are the primitive idempotents of .A. The second eigenma-
trix

Q = (Qi;)osi<d
0

<j<d

is defined as Q = nP™!, so that
L&
EjZE;Qi,in (]=0,1,,d)
holds. Since QP =nl and Q;o = Pig=1fori=0,1,...,d, we have

d
ZQi,j =nd;o — 1. (14)
i=1



Lemma 6. Let wqg, wy,...,wq be nonzero complex numbers, and set
d
W=> wjd; € A (15)
=0

Then the following are equivalent.

(i) W is a type-II matriz,
(i)
d d
(Z ijk,j) (Z wj_lPk,j) =n (k=1,...,d). (16)
j=0 Jj=0

Lemma 7. Let e, be the polynomial in the variables X;; (0 < ¢ < j < d) defined by

d
er= Y PuPXiy+Y Pi—n (k=1,..4d). (17)

0<i<j<d =0

If the matriz W given by (15) is a type-II matriz which is not equivalent to an ordinary
Hadamard matriz, then the complex numbers a;; defined by (10) are common zeros
of the polynomials e;, (1 < k < d) and satisfy (4)—(7).

Conversely, if a;; (1 < 1,7 < d) are common zeros of the polynomials e; (1 <
k < d) and satisfy (4)—(7), then there exist complex numbers wo, wy, . .., wq satisfying
(10) such that the matriz W is a type-1I matriz which is not equivalent to an ordinary
Hadamard matriz.

Moreover, the matriz W is a scalar multiple of a complex Hadamard matriz which
is not equivalent to an ordinary Hadamard matriz if and only if a;; defined by (10)
are common real zeros of the polynomials e, (1 < k < d), satisfy (4)—(7) and (11).

4 Infinite families of complex Hadamard matrices

Let ¢ > 4 be an integer, and n = g% — 1. We consider a three-class association scheme
X = (X,{R;}3_,) with the first eigenmatrix:

(18)

For ¢ = 2° with an integer s > 2, there exists a 3-class association scheme with the
first eigenmatix (18) (see {3, 12.1.1]).

Let M = (Ag, Ay, Ay, As) be the Bose-Mesner algebra of X = (X, {R;}3,).
Then, X has two non-trivial fusion schemes. One is an imprimitive scheme X; =
(X, {Ro, R1 U Ry, R3}) with the first eigenmatrix:

1 g(g—1) ¢-2
P= |1 0 -1 1. (19)
1 —g+1 g-2
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Another is a primitive scheme X, = (X, { Ry, R1 U R3, Ry}) with the first eigenmatrix:

1 £-2 £
=1 -1 ¢ (20)

1 —-4-1 4
Theorem 2. Let wy, wq, ws be nonzero compler numbers. The matrix
W = Ay + w A1 + waAg + w3As € M (21)
is a type-1I matriz if and only if one of the following holds:
(i) wy = wy = w3, where

1
w3+ —+¢*—3=0,
w3

(i) ws is as in (i), and
_—(g=3ws+(g-1)

w1=w2— q2_2q_1 y
(ii1) 2 6
1 -
w1+_=(—q2'—_)a U)2=—1, w3 = W,
w1 q -4
(i) 2
—2(g* -2
wl_wS'—l, w2+w_= (qq2 )7
2
(v) ) .
’LU1+—=——, Wy = —, w3—1’
1 q wn
(vi)
wy + o = ag,,
1
and 2 1
w=—a  (;=23),
a1, W1 — Qo
where
o= —a=Dg=2)+(@+2)r
> 2¢(q+1) ’
g @t2(g-1)-(g=2)r
2 2q(q — 3) ’
- 5¢2 —2¢q—19— (¢—1)r
T g+ )(g-3)
S 2(—q¢* +2¢* +4¢> — 10g+ 1+ (¢ — 1)r)
b2 ?(g+1)(g-3) !
1,3 = —0Qp,2,

r?= (179 - 1)(g - 1).



Note that wywe = —ws3 holds.

Corollary 1. Let W be a type-II matriz in Theorem 2. Then, W is a complex
Hadamard matriz if and only of W is given in (iii), (iv), (v), or (vi) with r =
V(17¢-1)(g-1) > 0.

Chan [4], found three complex Hadamard matrices on the line graph of the Pe-
tersen graph. This is the 3-class association scheme with the first eigenmatrix (18),
where ¢ = 4, and the three matrices can be described as the matrix W in (21) with
wy, Wy, w3 given as follows.

_ =7+ /15

w = 1, Wo 3 w3 = 1, (22)
+V1le
w = %—Z, Wyo = ——1, w3z = W, (23)
-1+ +V15¢
wy = ——-—4\/—_—2-, wy = wit, ws = 1. (24)

The cases (22), (23) and (24) are given by (iv), (iii) and (v), respectively, of Theorem 2.
Note that (22) is equivalent to the matrix Uys in [16].

The complex Hadamard matrix of order 15 constructed in Theorem 2 (vi) seems
to be new. This is obtained by setting ¢ = 4 and r = /201, and has coefficients
W1, Wo, W3 = —WiWq, Where

wy + — = ag,1,
w1
3
Qag,1 = 56(\/201 o 1),
Qg 1W1 — 2
Wy =

)
Q1,2W1 — Qo2

1
a()yg = —Z(VQO - 9),

3v201 — 103
40 '

Q12 =

We have verified using the span condition [13, Proposition 4.1] that, this matrix, as
well as the one given by (22) are isolated, while the two matrices given by (23) and
(24) do not satisfy the span condition.

5 Equivalence
For a type-II matrix W of order n, the Haagerup set H(W) (see [10]) is defined as

ml»jl VVinz

( ) {I/I/il,j2m/’i2,j1 =201 92 = n}
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We also define 1
KW)={w+ - |we HW)\ {1}}.

Two complex Hadamard matrices W; and W, are said to be equivalent if they are
type-1I equivalent. It is easy to see that, if W; and W) are equivalent, then H(W;) =
H(W,), and hence K(W;) = K(W,). In this section, we compute the Haagerup
sets of type-II matrices constructed in Theorem 2 to conclude that some of them are
inequivalent to others.

We suppose that

d
W = Z w,-A,-
=0
is a complex Hadamard matrix, where Ao,..., Ay are the adjacency matrices of a

symmetric Bose-Mesner algebra of an association scheme (X, {R;}&,), and wp = 1.
Let H(W) be the Haagerup set of W. Then

where

H(W) — W$11y1 sz,yz
' WIZ»yl WIl,yz

fori=1,2,3,4. Clearly,

T1,T2,Y1,Y2 € Xa |{m1,$27y17y2}l = 7’}

HI(W) = {l}a
Hy(W)={1}u{w?|i=1,...,d}. (25)

It should be remarked that, although H(W) is an invariant, none of H;(W) (i = 2,3, 4)
is.

Lemma 8. If | X| > 3, then

w;w;

+1
Hg(W):{l}U{(—) [ 1<14,5,k<d, pfj>0}.
Wk
Lemma 9. Let A be a subset of {1,...,d}. Suppose that there exists i € {1,...,d}
such that pi ; >0 for any iy, j1 € A. Then
W;, Wy,

Hy (W) D {——

Wj, Wy,

11,%2,J1,J2 € A} \ {1}

In particular, if there exists 1 € {1,...,d} such that pﬁhjl > 0 for any i1,71 €
{1,...,d}, then
W;, Wi,

H(W)\ (1) = { e

31 Wiz

i1y iz, 1y o € {1,...,d}} \ {1},
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Lemma 10. Suppose that there exists i € {1,...,d — 1} such that p, ; > 0 for any
i1,J1 € {1,...,d — 1}. Moreover, suppose pf,j >0 for any j € {1,...,d —1}. Then
wilwiz

HiW)\ (1) = { 2ot

Wi, Wiy

i1y i2, 1, 7o € {1,...,d}} \ {1},

Below, we determine the Haagerup set of the type-II matrices given in Theorem 2.
In what follows, let X = (X, {R;}2_,) be an association scheme with the first eigen-
matrix (18), where q is an even positive integer with ¢ > 4. The intersection numbers
of X are given by

[ 0 1 0 0
_qzi —q (q—42)2 (@=2?* ag-9)
Bl = 0 q(q—2 q q4—2 él_ ’ (26)
L 0 2 2 0
K 0 1 0
0 =2 ga¢=2) ¢
B=lp & 4 4 @)
2 1 LI
| 0 5 5 0
0 0 0 1
0 &2 2 ¢
lg—2 0 0 ¢g—-3
where By, has (i, j)-entry pl, (0 < 4,5 < 3).

Lemma 11. LetW =1 +Z?=1 w; A; be a type-1I matriz belonging to the Bose-Mesner
algebra of X. Then

HW) = {w¥?|i=1,2,3}

+1
Wi, Wi i do.d ‘
U ( ” w) }1521,22,’435& Piads > 0
wi3 ,

Wy Wiy | . . .
U{# 117/&27]17.726{1)233}}‘

Wi, Wy,

Using Lemma 11, we can determine the Haagerup set H(W) for each type-II
matrix given in Theorem 2. Note that the description of H(W) in Table 1 is valid
for all even ¢q > 4, even though p3, = 0 for ¢ = 4.

The elements of H(W) given in Table 1 can be found as follows:

As for the Case (i), K(W) has two elements

1 1
w+—=-¢+3, w+-5=q¢"-65+T.
As for (ii), setting
___9°3 p__a-1
g —2q—1 ¢ —2q—1
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HW)\ {1} K(W)
(D) | {wi,wi®} —¢°+3,¢"—64°+7
(11) {wiﬂa wiua ";{:fla w3 ) _q2 + 37 q4 - 6q2 + 7)
3_2,2__
(L)1, (ma)#1, ()42} et }
(iii) | {-1, +wi’, twi?} —2, £24 -0 4 20160 150)
(iv) {wéﬂ w2 } 2(q‘2—2) 2(q4—8q‘+8)
) @ P
(V) {wl awitz)wit37wit47 — —§>"'
(vi) | {-1, twi iw%’l,:l:w -2,...
iwét2’( :tl il) :l:wl w2 )
i(wfwg)*l +(wyw?)*}

Table 1: Haagerup sets

we have
w; = ng + B
A2+B-1 g
AB '
This implies )
—=—A+1B
wn W3

so that

wq
=3¢ —q+7
¢ -29-1

1 1
w+ — = ('lU3+—>A+2B
w3

The Cases (iii) and (iv) are immediate. Finally, it is clear that K (W) contains —% and
—2, in the Cases (v) and (vi), respectively. We do not need the remaining elements
of K(W) to prove the following propositions.

Proposition 1. Let Wy,...,Wg be type-II matrices given in (i)—(vi) of Theorem 2,
respectively. Then Wy,..., Wg are pairwise inequivalent.

Proposition 2. Let W, and W_ be type-II matrices given in Theorem 2 (vi) with
r > 0 and r < 0, respectively. Then W, and W_ are inequivalent.

We were able to use the Haagerup set to distinguish some of the complex Hadamard
matrices in Theorem 2. This is because the Haagerup set can be described by the in-
tersection numbers of the association scheme, and is independent of the isomorphism
class. In general, if ¢ > 8 is a power of 2, there may be many non-isomorphic associa-
tion schemes with the eigenmatrix (18). We do not know whether complex Hadamard



matrices having the same coefficients are equivalent if they belong to Bose—Mesner
algebras of non-isomorphic association schemes.

Note that there are two type-II matrices described in Theorem 2(i), since wy =
wy = wg is either of the two zeros of a quadratic equation. Similarly, there are two
type-II matrices in each of (ii)—(v) in Theorem 2. Moreover, there are four type-II
matrices in (vi), since there are two choices for r and af, — 4 # 0. The following
lemma shows that the two type-II matrices in Theorem 2(i) are inequivalent, and so
are those in Theorem 2(ii).

Lemma 12. Let W and W’ be type-II matrices belonging to the Bose-Mesner algebra
of an association scheme X = (X, {R;}%,). Suppose that each of W and W' has d+1
distinct entries, the valencies of X are pairwise distinct, and min{p}; | 0 < i < d} >
%q. If W and W' are type-II equivalent, then W is a scalar multiple of W'.

For a matrix W with nonzero complex entries, we denote its entrywise inverse by

W),

Proposition 3. Let W be a type-II matriz given in (i) of Theorem 2. Then W and
W) are inequivalent. The same conclusion holds if W is a type-II matriz given in
(ii) of Theorem 2.

We do not know whether the two type-1I matrices in each of (iii)—(v) in Theorem 2
are equivalent or not, and whether the two type-II matrices in Theorem 2(vi) with a
given sign for r are equivalent or not.
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A Verification by Magma

Isolation

n:=15;

A0:=ScalarMatrix(n,1);
J:=Parent(A0)![1:i in [1..n"2]];
L03:=LineGraph(0ddGraph(3));
Al:=AdjacencyMatrix(L03);
A2:=A1"2-A1-4%A0;
A3:=J-A0-A1-A2;
DM:=DistanceMatrix(L03);

DM eq A1+2*A2+3*A3;

hermitianConjugate:=
func<H|Parent (H) ! [ComplexConjugate(x):x in Eltseq(Transpose(H))]>;

complexHadamard:=function(xyz)
AA:=[ChangeRing(A,Parent(xyz[1])):A in [A1,A2,A3]];
return AO+xyz[1]1*AA[1]+xyz[2]*AA[2]+xyz[3]*AA[3];
end function;

spanCondition:=function(H)
F:=Parent (H[1,1]);

MnF:=Parent (H);
n:=Nrows (H) ;

Es:=[MnF|0:i in [1..n]];

for i in [1..n] do

Es[il [i,i]:=1;

end for;
EsF:=[MnFle:e in Es];
Hs:=hermitianConjugate (H);
Vn:=VectorSpace(F,n"2);
bracket:=sub<Vn| [Vn|Eltseq(v*Hs*wxH-Hs*wxH*v) :v,w in EsF]>;
return Dimension(bracket) eq n~2-2*n+1;
end function;

F<s>:=QuadraticField(-15);
y:=(-T+s)/8;

H:=complexHadamard ([1,y,1]);
HxhermitianConjugate(H) eq n*A0Q;
spanCondition(H);

F<s>:=QuadraticField(-11);
x:=(5+8)/6;
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H:=complexHadamard([x,-1,x]);
H¥hermitianConjugate(H) eq n*A0;
not spanCondition(H);

F<s>:=QuadraticField(-15);
x:=(-1+8)/4;

H:=complexHadamard( [x,x"(-1),1]);
H*hermitianConjugate (H) eq n*AO;
not spanCondition(H);

F<s>:=QuadraticField(201);
Z:=(53-3%s)/10;
R<T>:=PolynomialRing(F);
K<z>:=ext<F|T"2-Z*T+1>;

z+1/z eq Z;

X:=1/144%((-5*Z+31) *z-25*Z+155) ;
Xb:=1/144*((-5%Z+31)*z"~ (-1)-25%Z+155) ;
y:=1/144x((25%Z-155) xz+5%Z~31) ;
yb:=1/144*((25%Z-155) %z~ (-1) +5%Z-31) ;
x*xb eq 1;

y*yb eq 1;

H:=complexHadamard ([x,y,z]);
Hx¥hermitianConjugate(H) eq n*AO;
spanCondition(H);

Table 1

HWminus1:=function(w)
I13:={1..3};
H3q:={wlil]*w[i2]/w[i3]:i1,i2,i3 in I3
|#[i:i in [i1,i2,i3]|i eq 3] ne 2};
H3q4:={wl[i1]*w[i2]/w([i3]:i1,i2,i3 in I3
I#[i:i in [i1,i2,i3]|i eq 3] ne 2 and {i1,i2,i3} ne {1,3}};
plus:=[{w[i]"2:i in I3} join H:H in [H3q,H3q4l];
return {(p join {x~(-1):x in p} join
{wlill*wl[i2]/(w[j1)*w[j2]):i1,i2,j1,j2 in I3})
diff {1}:p in plus};
end function;
Rw<wl,w2,w3>:=FunctionField(Rationals(),3);
HWminus1([wl,wl,wl]) eq
{&join{{w1"s,w1~(s*2)}:s in {1,-1}}};
HWminusi([wl,wl,w3]) eq
{&join{{w"s,w"(s*2)}:s in {1,-1},w in {w1,w3}} join
&join{{(w1~2/w3)"s, (w3/wl) s, (w3/wl)~(s*2)}:s in {1,-1}}};
HWminus1([wi1,-1,w1]) eq {{-1} join



&join{{si*wil"s,s1*wl~(s*2)}:s,s1 in {1,-1}}};
HWminus1([1,w2,1]) eq {&join{{w2"s,w2"(s*2)}:s in {1,-1}}};
HWminus1([wl,w1"(-1),1]) eq {{w1~(s*k):s in {1,-1},k in {1..4}}};
HWminus1([wl,w2,-wi*w2]) eq {{-1} join

{s0*w~ (s*k):w in {wl,w2},s,s0 in {1,-1},k in {1,2}} join

&join{{sO*w1~s1*w2"s2, (w1~ s1*w2"s2)"2}:s80,s1,s2 in {1,-1}}

join &join{{sOx(w1~2*w2~(-1))"s,s0*(w1~(-1)*w2"2) s}

:s,s0 in {1,-1}}};
// (1)
Rq<g>:=FunctionField(Rationals());
(-q~2+3)"2-2 eq q"4-6*q~2+7;
// (ii)
Rw3<w3>:=FunctionField(Rq) ;
A:=-(q-3)/(q"2-2%q-1);
B:=(q-1)/(q"2-2%q-1);
(A"2+B"2-1)/(AxB) eq q~2-3;
wl:=A*w3+B;
(A/w3+B)-1/ul eq 1/wi*AxBx(w3+1/w3+(q"2-3));
// (iii)
(2%(q"2-6)/(q"2-4))"2-2 eq 2*(q~4-16%q~2+56)/(q"2-4)"2;
// (iv)
(-2%(q"2-2)/q"2)"2-2 eq 2*(q~4-8*q~2+8)/q"4;

Proof of Proposition 1

(iii) 2 (vi)

Rg<g>:=FunctionField(Rationals());
k3a:=(q"2-6)/(q"2-4);
k3b:=2%(q"4-16%q~2+56)/(q~2-4) "2;
ral:=(k3a+(q-1)*(q-2)/(2*g*(q+1)))/(q+2);
fac:=Factorization(Numerator(ral~2-(17*q-1)*(q-1)));
#fac eq 1 and Degree(fac([1][1]) gt 1;
ra2:=(-k3a+(q-1)*(q-2)/(2*q*(q+1)))/(q+2);
fac:=Factorization(Numerator(ra2~2-(17*q-1)*(q-1)));
#fac eq 1 and Degree(fac[1][1]) gt 1;
rb1:=(k3b+(q-1)*(q-2)/(2*q*(q+1))) /(q+2) ;
fac:=Factorization(Numerator(rb1~2-(17*q-1)*(q-1)));
#fac eq 1 and Degree(fac[1][1]) gt 1;
rb2:=(-k3b+(q-1)*(q-2) / (2%q*(q+1)))/(q+2) ;
fac:=Factorization(Numerator (rb2°2-(17*q-1)*(q-1)));
#fac eq 1 and Degree(fac[1][1]) gt 1;

(1))
n:=q~2-1;
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Numerator ((2-n)-(q~3-3*q~2-q+7)/(q"2-2%q-1))
eq -(q-2)*(q+1)*(q"2-5);

Numerator ((n~2-4*n+2)-(q~3-3*q"2-q+7)/(q"2-2*q-1))
eq (q-2)*(q+1)"2%(q~3-2%q~2-4*q+7) ;

(iv)$£(v)

Numerator (-2*(n-1)/(n+1)-(-2)/q)
eq -2*(q-2)*(q+1);

Numerator (2% (n~2-6%n+1)/(n+1) ~2-(-2)/q)
eq 2*(q-2)*(q+1)*(q~2+2%q-4);

Proof of Proposition 2

ral:=(2+(q-1)*(q-2)/(2*q*(q+1)))/(q+2) ;
fac:=Factorization(Numerator(ral~2-(17*q-1)*(q-1)));
#fac eq 1 and Degree(fac[1][1]) gt 1;
ra2:=(-2+(q-1)*(q-2)/(2*xq*(q+1)))/(q+2) ;
fac:=Factorization(Numerator(ra2-2-(17*q-1)*(q-1)));
#fac eq 1 and Degree(fac[1][1]) gt 1;



