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This short note is an announcement and simplified version of our recent paper
[20]. We state only our motivation, problems and some results. For the complete
proof, we refer to [20].

1 Motivation

In numerical simulation of real-world flow problems, we often encounter some issues concerning
artificial boundary conditions. A typical and important example is the blood flow problem in
the large arteries, where the blood is assumed to be a viscous incompressible fluid (cf. [7],
[17]). The blood vessel is modeled by a branched pipe as illustrated, for example, by Fig. 1.
We are able to give a velocity profile at the inflow boundary $S$ and the flow is supposed to be
a perfect non-slip on the wall $C$ . Then, the blood flow simulation is highly dependent on the
choice of artificial boundary conditions posed on the outflow boundary $\Gamma.$

In order to state the problem more specifically, let $\Omega\subset \mathbb{R}^{d},$ $d=2$ , 3, be a bounded domain
and let the boundary $\partial\Omega$ be composed of three parts $S,$ $C$ and $\Gamma$ . Those $S,$ $C$ and $\Gamma$ are
assumed to be smooth surfaces, although the whole boundary $\partial\Omega$ itself is not smooth. Then,
for $T>0$ , we consider the Navier-Stokes equations

$u_{t}+(u\cdot\nabla)u=\nabla\cdot\sigma(u,p)+f in\Omega\cross(O, T)$ , (1a)
$\nabla\cdot u=0$ in $\Omega\cross(0, T)$ , (1b)

$u=b$ on $S\cross(O, T)$ , (1c)

$u=0$ on $C\cross(O, T)$ , (1d)

$u|_{t=0}=u_{0}$ on $\Omega$ (1e)

for the velocity $u=(u_{1}, \ldots, u_{d})$ and the pressure $p$ with the density $\rho=1$ and the kine-
matic viscosity $v$ of the viscous incompressible fluid under consideration. Therein, $\sigma(u,p)=$

$(\sigma_{i,j}(u,p))=-pI+2\nu D(u)$ denotes the stress tensor, where $D(u)=(D_{i,j}(u))=$ $( \frac{1}{2}(\nabla u+\nabla u^{T}))$

the deformation-rate tensor and $I$ the identity. The prescribed functions $f=f(x, t)$ and
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Figure 1: A branched pipe

$u_{0}=u_{0}(x)$ denote the external force and initial velocity, respectively. Moreover, $b=b(x, t)$

denotes the prescribed inflow velocity with $b|_{\partial S}=0.$

A setting of the boundary condition on $\Gamma$ is not a trivial task, since the flow distribution
and pressure field are unknown and cannot be prescribed in many simulations. As a common
outflow boundary condition, the free-traction condition or the so-called do-nothing condition

$\tau(u,p)=0$ on $\Gamma$ (2)

is still frequently used so far (cf. [10], [9]), where

$\tau(u,p)=\sigma(u,p)n$ (3)

denotes the traction vector on $\partial\Omega$ and $n$ the outward normal vector to $\partial\Omega$ . Though this
condition is enough for many problems, it sometimes causes serious numerical instability near
$\Gamma$ (cf. [5, Remark 4.1], [18]). Actually, from the view-point of mathematics, the energy
inequality is not guaranteed under (2) and it is a drawback of employing (2). To describe this
issue, we take a reference flow $(g, \pi)$ which is the solution of the Stokes system

$\nabla\cdot\sigma(g, \pi)=0,$ $\nabla\cdot g=0$ in $\Omega$ , (4a)

$g=b$ on $S,$ $g=0$ on $C,$ $g=g_{0}(x)\beta(t)$ on $\Gamma$ (4b)

for all $t\in[0, T]$ , where $g_{0}=g_{0}(x)\in C_{0}^{\infty}(\Gamma)^{d}$ is a prescribed function satisfying

$\int_{\Gamma}g_{0}\cdot nd\Gamma=1, g_{0}\cdot n\geq 0on\Gamma$ (5)

and we set

$\beta(t)=-\int_{S}b\cdot ndS.$
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(The function $g$ is nothing but a lifting function of $b.$ ) By using this, we will find $(u,p)$ of the
form

$u=U+g, p=P+\pi.$

Then, the energy inequality for (1) reads as

$\sup_{t\in[0,T]}\Vert U\Vert_{L^{2}(\Omega)^{d}}^{2}+2v\int_{0}^{T}D_{ij}(U)D_{ij}(U)\leq C$ , (6)

where $C$ denotes a positive constant depending only on $f,$ $u_{0},$
$b$ and $T$ . This inequality is of

use. It plays a crucial role in the construction of a solution of the Navier-Stokes equations as
is just discussed in this paper. Furthermore, it is connected with the stability of numerical
schemes from the view-point of numerical computation. That is, it is preferred that the energy
inequality does not spoiled after discretizations. For example, we often take some kinds of
approximation to

$\int_{\Omega}(u\cdot\nabla)v\cdot wdx$

to ensure the energy inequality under time discretizations. However, it is not certain the energy
inequality (6) to hold under (2) even for the continuous case. In fact, assuming (1) admits a
smooth solution $(u,p)=(U+g, P+\pi)$ in $0\leq t\leq T$ and multiplying the both sides of (1a) by
$U$ , we have by the integration by parts

$\frac{d}{dt}\Vert U\Vert_{L^{2}(\Omega)^{d}}^{2}+_{c}2_{\underline{\lrcorner} ,\frac{\nu\int_{\Omega}D_{ij}(U)D_{ij}(U)dx+\frac{1}{2}\int_{\Gamma}u_{n}|U|^{2}d\Gamma-\int_{\Gamma}\tau(u,p)\cdot Ud\Gamma}{=I}}$

$= \int_{\Omega}[f-g_{t}-(g\cdot\nabla)g]\cdot Udx-\int_{\Omega}(U\cdot\nabla)g\cdot Udx$ . (7)

If $I\geq 0$ , we can derive (6); However, it is impossible to get $I\geq 0$ since we have no information
about $u_{n}$ on $\Gamma$ under (2). (Bothe et al. [6] recently studied the well-posedness of the Navier-
Stokes equations under a class of energy preserving boundary conditions; However, the common
one (2) was discussed only in the case of the Stokes equations.)

With this connection, F. Boyer, F. Bruneau and P. Fabrie proposed and studied a class of
nonlinear boundary conditions that ensure the energy inequality (cf. [1], [2], [3], [4]). A typical
outflow condition they proposed is given as

$\tau(u,p)=-\frac{1}{2}[u_{n}]_{-}U+2\nu D(g)n$ on $\Gamma$ , (8)

where
$[s]_{\pm}= \max\{0, \pm s\}, s=[s]_{+}-[s]_{-}.$

Under the boundary condition (8), the identity (7) implies

$\frac{d}{dt}\Vert U\Vert_{L^{2}(\Omega)^{d}}^{2}+2\nu\int_{\Omega}D_{ij}(U)D_{ij}(U)dx+\frac{1}{2}\int_{\Gamma}[u_{n}]_{+}|U|^{2}d\Gamma$

$= \int_{\Omega}[f-g_{t}-(g\cdot\nabla)g]\cdot Udx-\int_{\Omega}(U\cdot\nabla)g\cdot Udx+\int_{\Gamma}2vD(g)n\cdot Ud\Gamma.$
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Then, after some calculations, we obtain the energy inequality (6). Actually, they established
the well-posedness of (1) with a class of boundary conditions, including (8), by Galerkin’s
method based on (6).

As a matter of fact, a similar boundary condition is successfully applied in actual compu-
tations, that is, in blood flow simulation for thoracic arteries. In Bazilevs et al. [5, \S 4], they
employed the following condition. First, they introduced a regularized traction vector

$\tilde{\tau}(u,p)=\tau(u,p)+[u_{n}]_{-}u$

and considered the resistance boundary condition

$\tilde{\tau}(u,p)\cdot n+R\int_{\Gamma}u_{n}d\Gamma+p_{0}=0,$ $\tilde{\tau}(u,p)-[\tilde{\tau}(u,p)\cdot n]n=0$ on $\Gamma,$

where $R$ and $p0$ are prescribed constants that control the average of the flow rate across $\Gamma$ (cf.
[19], [8]). This condition is equivalently written as

$\tau(u,p)=-[u_{n}]_{-}u-(R\int_{\Gamma}u_{n}d\Gamma+p_{0})n$ . (9)

If $b=0$ (then we can take $g=0$ and $\pi=0$), we derive the energy inequality under this
condition. They offered several numerical results for medical problems and did not give any
mathematical considerations. On the other hand, Labeur and Wells [14] considered essentially
the same condition as (9) with $R=p_{0}=0$ , where they studied energy stable hybrid discon-
tinuous finite element method but did not discuss about the well-posedness of the continuous
problem.
Those previous works suggest us that it is important to control the flow-direction near the

outflow boundary for stable numerical computations and that the energy inequality is a key
property to check whether the flow-direction is suitable or not. Therefore, it is worth-while
considering flow-direction boundary conditions, such as (8) and (9), from the view-point of
numerical analysis. Furthermore, it seems that there are little works devoted to those boundary
conditions from the view-point of pure analysis.

The condition (8) is useful, but it has a few difficulties. Thus, a non-trivial relationship
is assumed between the traction $\tau(u,p)$ and the velocity $u$ in (8) and we have to determine
the reference velocity $g$ before computation. On the other hand, it is not obvious that the
condition (9) is suitable for the case $b\neq 0.$

In the present paper, we propose a new boundary condition. That is, in order to control the
flow direction at $\Gamma$ , we pose a unilateral boundary condition of Signorini’s type

$\{\begin{array}{l}u_{n}\geq 0,on \Gamma,\tau_{n}(u,p)\geq 0, u_{n}\tau_{n}(u,p)=0, \tau_{T}(u)=0\end{array}$ (10)

where
$\tau_{n}(u,p)=\tau(u,p)n, \tau_{T}(u)=\tau(u,p)-\tau_{n}(u,p)n.$

This is an analogy to Signorini’s condition in the theory of elasticity (cf. [12]). Under this
condition, the solution of (1) satisfies the energy inequality (cf. Theorem 4) and it is indeed a
generalization of the free-traction condition (2). Namely,

if $u_{n}>0$ on $\omega\subset\Gamma$ , then $\tau_{n}(u,p)=0$ on $\omega$ ;

if $u_{n}=0$ on $\omega\subset\Gamma$ , then $\tau_{n}(u,p)\geq 0$ on $\omega.$
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The condition (10) is described in terms of inequalities so that it cannot be directly applied
to numerical calculations. However, we can utilize its penalty approximation

$\tau_{n}(u,p)=\frac{1}{\epsilon}[u_{n}]_{-},$ $\tau_{T}(u)=0$ on $\Gamma$ , (11)

where $0<\epsilon\ll 1$ is the penalty parameter. After introducing a $C^{1}$ regularization of (for
example, $\rho_{\delta}$ in $($?? $)$ ), we can solve (1) with (11) by using, for example, Newton’s iteration. We
do not need to introduce the reference velocity $g$ for computation. (For mathematical analysis
below, we need $g.$ ) It is indeed an approximation of (10); Thus, we have

$(u_{\epsilon},p_{\epsilon})arrow(u,p)$ as $\epsilonarrow 0$

in a certain sense or other, where $(u,p)$ and $(u_{\epsilon},p_{\epsilon})$ denote solutions of (1) with, respectively,
(10) and (11). Moreover, the condition (11) is closely related with (9) in a certain sense.
Namely, although $\epsilon$ is originally defined as a positive constant, we set it as a function;

$\frac{1}{\epsilon}=[u_{n}]_{-}.$

Then, (11) implies
$\tau_{n}(u,p)=[u_{n}]_{-}^{2}=-[u_{n}]_{-}u_{n}, \tau_{T}(u)=0.$

Hence, as for the normal component, (11) and (9) are equivalent in the case $R=p_{0}=0$ . This
suggests that (9) is of use for the case $b\neq 0$ . This is another motivation for studying (11).

Our ultimate aim is to develop the theory for the initial-boundary value problems for the
Navier-Stokes equations (1) with (10) or with (11) from the standpoint both of analysis and
numerical computations. In this short note, we mention results on the well-posedness of these
problems; We refer to [20] for the complete proof. We postpone a study on time discretizations
and the finite element approximation in future works; a partial result on the finite element
approximation for a model (stationary) Stokes problem will be reported in Saito et al. [15].

2 Summary

We shall give the precise statement of our main results in \S 6, after having described the
variational interpretation of our target problems. However, let us summarize our results here
for the reader’s convenience.

First, we assume that the prescribed inflow velocity $b=b(x, t)$ satisfies $b|_{\partial S}=0$ and

$\beta(t)=-\int_{S}b\cdot ndS>0, t\in[0, T].$

Consequently, we will have

$\int_{\Gamma}u\cdot nd\Gamma=\beta(t)>0, t\in[0, T].$

As is clearly stated in Introduction of [11], weak solutions of Leray-Hopf’s class is not suitable
for the purpose of application to numerical analysis. We are strongly motivated by [11] and
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interested in constructing of strong solutions of Ladyzhenskaya’s class (cf. [13]), that is, we
will find functions

$u\in L^{\infty}(0, T;H^{1}(\Omega)^{d}) , u_{t}\in L^{2}(0, T;H^{1}(\Omega)^{d})\cap L^{\infty}(0, T;L^{2}(\Omega)^{d})$ ,

$p\in L^{\infty}(0, T;L^{2}(\Omega))$

that satisfy the Navier-Stokes equation (1) with the unilateral boundary condition (10) in the

sense of distributions.
To this end, it suffices to find $(U, P)$ satisfying the following perturbed Navier-Stokes prob-

lem.

(NS) For $t\in(O, T)$ , find $(U, P)$ such that

$U_{t}+((U+g)\cdot\nabla)U+(U\cdot\nabla)g-\nabla\cdot\sigma(U, P)=F in\Omega$ , (12a)

$\nabla\cdot U=0 in\Omega$ , (12b)

$U=0$ on $S\cup C$ , (12c)

$U_{n}+g_{n}\geq 0,$ $\tau_{n}(U+g, P+\pi)\geq 0$ on $\Gamma$ , (12d)

$(U_{n}+g_{n})\tau_{n}(U+g, P+\pi)=0,$ $\tau_{T}(U)=-\tau_{T}(g)$ on $\Gamma$ , (12e)

$U(x, 0)=U_{0}$ on $\Omega$ , (12f)

where

$F=f-g_{t}-(g\cdot\nabla)g,$

$U_{0}=u_{0}-g(0)$ .

Actually, under some appropriate assumptions on $F,$ $U_{0}$ , and $(g, \pi)$ (cf. $(A1)-(A4)$ below),

we will prove (cf. Theorem 2 in \S 6), there exists a unique solution of (NS) satisfying

$U\in L^{\infty}(0, T;H^{1}(\Omega)^{d}) , U_{t}\in L^{2}(0, T;H^{1}(\Omega)^{d})\cap L^{\infty}(0, T;L^{2}(\Omega)^{d})$ ,

$P\in L^{\infty}(0, T;L^{2}(\Omega))$ .

For the penalty problem (1) with (11), we consider the following perturbed problem.

$(NS_{\epsilon})$ Let $0<\epsilon\ll 1$ . For all $t\in(O, T)$ , find $(U_{\epsilon}, P_{\epsilon})$ such that

$U_{\epsilon,t}+(U_{\epsilon}+g \cdot\nabla)U_{\epsilon}+(U_{\epsilon}\cdot\nabla)g-\frac{1}{\rho}\nabla\cdot\sigma(U_{\epsilon}, P_{\epsilon})=F in\Omega,$

$\nabla\cdot U_{\epsilon}=0$ in $\Omega,$

$U_{\epsilon}=0$ on $S\cup C,$

$\tau_{n}(U_{\epsilon}+g, P_{\epsilon}+\pi)=\frac{1}{\epsilon}[U_{\epsilon n}+g_{n}$ $\tau_{T}(U_{\epsilon})=-\tau_{T}(g)$ on $\Gamma,$

$U_{\epsilon}(x, 0)=u_{0}-g(0)$ on $\Omega,$

Then,
$u_{\epsilon}=U_{\epsilon}+g, p_{\epsilon}=P_{\epsilon}+\pi$

solve (1) with (11). Under the same assumptions on $F,$ $U_{0}$ , and $(9^{\pi})$ , we will prove (cf.

Theorem 3 in \S 6), there exists a unique solution of $(NS_{\epsilon})$ satisfying

$U_{\epsilon}\in L^{\infty}(0, T;H^{1}(\Omega)^{d}) , U_{\epsilon,t}\in L^{2}(0,T;H^{1}(\Omega)^{d})\cap L^{\infty}(0, T;L^{2}(\Omega)^{d})$ ,

$P_{\epsilon}\in L^{\infty}(0, T;L^{2}(\Omega))$
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for a sufficiently small $\epsilon.$

The plan of our analysis is as follows. We firstly give variational formulations (NS-E) and
$(NS_{\epsilon}-E)$ of (NS) and $(NS_{\epsilon})$ in \S 5, after having described the variational interpretations of trac-
tion vectors $\tau(u,p)$ , $\tau_{n}(u,p)$ and $\tau_{T}(u)$ in \S 4. Further, (NS-E) is converted into the variational
inequality problem (NS-I). We also introduce the solenoidal (divergence-free) versions $(NS-I^{\sigma})$

and $(NS_{\epsilon}-E^{\sigma})$ of (NS-I) and $(NS_{\epsilon}-E)$ , respectively.
Theorems 2 and 3 are divided into several propositions (See [20] for the statements of these

propositions):

$\bullet$ Proposition 1 (The unique existence of $U$ of a solution of $(NS-I^{\sigma})$ );

$\bullet$ Proposition 2 (The existence of an associating pressure $P$ with $U$ of (NS-I));

$\bullet$ Proposition 3 (The uniqueness of (NS-I));

$\bullet$ Proposition 4 (The unique existence of $U_{\epsilon}$ of a solution of $(NS_{\epsilon}-E^{\sigma})$ );

$\bullet$ Proposition 5 (The existence of an associating pressure $P_{\epsilon}$ with $U_{\epsilon}$ of $(NS_{\epsilon}-E)$ );

$\bullet$ Proposition 6 (The uniqueness of $(NS_{\epsilon}-E)$ ).

We use a $C^{1}$ regularization $\rho_{\delta}$ of and the standard Galerkin’s method to prove Propo-
sition 4. Therein, several a priori estimates including

$\Vert[U_{\epsilon,n}+g_{n}]_{-}\Vert_{L^{\infty}(0,T,L^{2}(\Gamma))}\leq C\sqrt{\epsilon}$

play important role. Then, we prove Proposition 1 by compactness. Usually, we apply a
version of De Rham’s theorem (cf. [16, Lemma IV.1.4.3] for example) to deduce a pressure of
the Navier-Stokes equations, after a velociy has been obtained. Unfortunately, it is not enough
to deduce pressures $P$ and $P_{\epsilon}$ for our $P_{o}^{roblems}$ . Actually, we have to choose suitable constants
$k$ and $k_{\epsilon}$ such that $(U, P^{\circ}+k)$ and $(U_{\epsilon}, P_{\epsilon}+k_{\epsilon})$ satisfy (NS-I) and $(NS_{\epsilon}-E)$ , respectively, where
$\mathring{P}$ and $\mathring{P}_{\epsilon}$ are associating pressures with $U$ and $U_{\epsilon}$ , respectively. $(P$ and $P_{\epsilon}$ are $L^{2}$ functions
in $\Omega$ with zero mean values.)

(NS-E) and $(NS_{\epsilon}-E)$ admit energy inequalities of the form (6).

3 Notation

We recall that $\Omega\subset \mathbb{R}^{d},$ $d=2$ , 3, is a bounded domain and the boundary $\partial\Omega$ is composed of
three parts $S,$ $C$ and $\Gamma.$

We follow the standard notation, for example, of $[?]$ and [16] as for function spaces and their
norms. We employ the abbreviations:

$\Vert u\Vert=\Vert u\Vert_{\Omega}=\Vert u\Vert_{0,\Omega}=\Vert u\Vert_{L^{2}(\Omega)^{d}}$ or $\Vert u\Vert_{L^{2}(\Omega)}$ ;

$\Vert u\Vert_{1}=\Vert u\Vert_{1,\Omega}=\Vert u\Vert_{H^{1}(\Omega)^{d}}$ or $\Vert u\Vert_{H^{1}(\Omega)}$ ;

$\Vert u\Vert_{\Gamma}=\Vert u\Vert_{0,\Gamma}=\Vert u\Vert_{L^{2}(\Gamma)^{d}}$ or $\Vert u\Vert_{L^{2}(\Gamma)}$ ;

$(u, v)=(u, v)_{L^{2}(\Omega)^{d}}$ or $(u, v)_{L^{2}(\Omega)}.$
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We frequently use the following function spaces:

$V=\{v\in H^{1}(\Omega)^{d}|v=0 on C\cap S\}, V^{\sigma}=\{v\in v|\nabla\cdot v=0in\Omega\},$

$V_{0}=H_{0}^{1}(\Omega)^{d}, V_{0}^{\sigma}=\{v\in V_{0}|\nabla\cdot v=0 in \Omega\},$

$K=\{v\in V|v_{n}+g_{n}\geq 0on\Gamma\}, K^{\sigma}=\{v\in K|\nabla\cdot v=0in\Omega\},$

$Q=L^{2}( \Omega) , Q_{0}=L_{0}^{2}(\Omega)=\{q\in Q|\int_{\Omega}qdx=0\}, M=H_{0}^{\frac{1}{0^{2}}}(\Gamma)$ .

The spaces $V$ and $V^{\sigma}$ are closed subspaces of $H^{1}(\Omega)^{d}$ and are equipped with norm $\Vert\cdot\Vert_{1}$ . The
spaces $V_{0}$ and $V_{0}^{\sigma}$ are also closed subspaces of $H^{1}(\Omega)^{d}$ and are equipped with norm $\Vert\cdot\Vert_{1}$ by
virtue of the Poincar\’e inequality.

In general, $X’$ denotes the dual space of a Banach space $X.$

We use the following forms (the summation convection is employed):

$a(u, v)=2 \nu\int_{\Omega}D_{ij}(u)D_{ij}(v)dx (u, v\in H^{1}(\Omega)^{d})$ ;

$a_{1}(u, v, w)= \int_{\Omega}[(u\cdot\nabla)v]wdx (u, v, w\in H^{1}(\Omega)^{d})$ ;

$b(v,p)=- \int_{\Omega}(\nabla\cdot v)pdx (v\in H^{1}(\Omega)^{d}, p\in L^{2}(\Omega))$ ;

$[\lambda, \eta]=$ the duality pairing between $\lambda\in M’$ and $\eta\in M$ ;

$[[\lambda, \eta]]=$ the duality pairing between $\lambda\in(M^{d})’$ and $\eta\in M^{d}.$

As usual, we write $C$ to express various positive constants that depend only on $\Omega.$

For a vector-valued function $v$ defined on $\partial\Omega$ , it’s normal and tangential components are
denoted, respectively, by

$v_{n}=v\cdot n, v_{T}=v-(v_{n})n.$

4 The re-definition of traction vectors

For $(U, P)\in V\cross Q$ , we cannot define $\tau(U, P)$ as a function on $\Gamma$ because of the lack of
regularity. However, if $(U, P)$ is smooth and satisfies (12a), it also satisfies, for $t\in(O, T)$

$\int_{\Gamma}\tau(U, P)\cdot vd\Gamma=(U_{t}, v)+a(U, v)+a_{1}(U+g, U, v)$

$+a_{1}(U, g, v)+b(v, P)-(F, v) (v\in V)$ ,

where $\tau(U,p)$ is understood as a usual function on $\Gamma.$

Based on this identity, we re-define the traction vector $\tau(U, P)$ as a functional over $M^{d}$ for
a solution $(U, P)\in V\cross Q$ of (NS) in the sense of distributions $($More precisely, $for (U, P)$

satisfying (18a) below). We recall the following result.

Lemma 4.1. There exists an extension operator $\mathcal{E}$ : $M^{d}arrow V$ such that $\mathcal{E}\eta=\eta$ on $\Gamma$ and
$\Vert \mathcal{E}\eta\Vert_{V}\leq C\Vert\eta\Vert_{M^{d}}$ for all $\eta\in M^{d}$ . Conversely, for any $w\in V$ , we have $\eta=w|_{\Gamma}\in M^{d}$ and
$||\eta\Vert_{M^{d}}\leq C\Vert w\Vert_{V}.$
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As a consequence, we obtain an extension operator $\mathcal{E}_{n}:Marrow V$ such that

$(\mathcal{E}_{n}\eta)_{n}=\eta,$ $(\mathcal{E}_{n}\eta)_{T}=0$ on $\Gamma,$ $\Vert \mathcal{E}_{n}\eta\Vert_{V}\leq C\Vert\eta\Vert_{M}$

for any $\eta\in M$ . Now we propose the re-definition of $\tau(U, P)$ as follows:

$[[\tau(U, P), \eta]]=(U_{t}, w_{\eta})+a(U, w_{\eta})+a_{1}(U+g, U, w_{\eta})$

$+a_{1}(U_{9}, w_{\eta})+b(w_{\eta}, P)-(F, w_{\eta}) (\eta\in M^{d})$ , (13)

where $w_{\eta}=\mathcal{E}\eta\in V$ . Actually, the right-hand side of (13) does not depend on the way of
extension; Hence, this definition is well-defined. Similarly, we re-define as

$[[\tau_{T}(U), \eta]]=(U_{t}, w_{\eta})+a(U, w_{\eta})+a_{1}(U+g, U, w_{\eta})+a_{1}(U_{9}, w_{\eta})$

$+b(w_{\eta}, P)-(F, w_{\eta})$ $(\eta\in M^{d}$ with $\eta_{n}=0;w_{\eta}=\mathcal{E}\eta)$ (14)

and

$[\tau_{n}(U, P), \eta]=(U_{t}, w_{\eta})+a(U, w_{\eta})+a_{1}(U+g, U, w_{\eta})$

$+a_{1}(U, g, w_{\eta})+b(w_{\eta}, P)-(F, w_{\eta}) (\eta\in M;w_{\eta}=\mathcal{E}_{n}\eta)$ . (15)

Then,
$[[\tau(U, P), \eta]]=[\tau_{n}(U, P), \eta_{n}]+[[\tau_{T}(U), \eta_{T}]] (\eta\in M^{d})$ . (16)

For a solution $(U_{\epsilon}, P_{\epsilon})$ of $(NS_{\epsilon})$ , we propose the similar re-definition. For example,

$[\tau_{n}(U_{\epsilon}, P_{\epsilon}), \eta]=(U_{\epsilon,t}, w_{\eta})+a(U_{\epsilon}, w_{\eta})+a_{1}(U_{\epsilon}+g, U_{\epsilon}, w_{\eta})$

$+a_{1}(U_{\epsilon}, g, w_{\eta})+b(w_{\eta}, P_{\epsilon})-(F, w_{\eta}) (\eta\in M;w_{\eta}=\mathcal{E}_{n}\eta)$ . (17)

On the other hand, we will assume that $\tau(g, \pi)\in H^{1}(0, T;L^{2}(\Gamma)^{d})$ (see, (A1) below) so that
we have

$[[ \tau(g, \pi), \eta]]=\int_{\Gamma^{\mathcal{T}}}(9^{\pi)\cdot\eta d\Gamma} (\eta\in M^{d})$ .

5 Problems

Under those re-definitions presented in the previous section, we precisely interpret (NS) as
follows.

(NS-E) For a.e. $t\in(0, T)$ , find $(U(t), P(t))\in V\cross Q$ with $U_{t}(t)\in Q^{d}$ such that

$(U_{t}, v)+a(U, v)$

$+a_{1}(U+g, U, v)+a_{1}(U_{9}, v)+b(v, P)=(F, v) \forall v\in V_{0}$ , (18a)

$b(U, q)=0 \forall q\in Q$ , (18b)
$U_{n}+g_{n}\geq 0$ on $\Gamma$ , (18c)

$[\tau_{n}(U, P)+\tau_{n}(9^{\pi}), \eta]\geq 0 \forall\eta\in M, \eta\geq 0$ , (18d)

$[\tau_{n}(U, P)+\tau_{n}(9^{\pi}), U_{n}+g_{n}]=0$ , (18e)

$[[\tau_{T}(U)+\tau_{T}(g), \eta]]=0 \forall\eta\in M$ , (18f)

$U(x, 0)=U_{0} on\Omega$ . (18g)
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Remark 5.1. If $(U, P)\in V\cross Q$ satisfies (18a), then $[\tau(U, P), \eta]$ and $[[\tau_{T}(U), \eta]]$ are well-defined
by (15) and (14).

(NS-E) can be converted into the following variational inequality problem.

(NS-I) For a.e. $t\in(0, T)$ , find $(U(t), P(t))\in K\cross Q$ with $U_{t}(t)\in Q^{d}$ such that

$(U_{t}, v-U)+a(U, v-U)+a_{1}(U+g, U, v-U)$

$+a_{1}(U, g, v-U)+b(v-U, P)\geq(F, v-U)-[[\tau(g, \pi), v-U]] \forall v\in K$ , (19a)

$b(U, q)=0$ $\forall q\in Q$ , (19b)

$U(x, 0)=U_{0}$ $on\Omega$ . (19c)

The following solenoidal version of (NS-I) will be of use later.

$(NS-I^{\sigma})$ For a.e. $t\in(0, T)$ , find $U(t)\in K^{\sigma}$ with $U_{t}(t)\in Q^{d}$ such that

$(U_{t}, v-U)+a(U, v-U)+a_{1}(U+g, U, v-U)$

$+a_{1}(U, g, v-U)\geq(F, v-U)-[[\tau(g, \pi), v-U]] \forall v\in K^{\sigma}$ , (20a)

$U(x, O)=U_{0} on\Omega$ . (20b)

We state the following variational formulations of $(NS_{\epsilon})$ .
$(NS_{\epsilon}E)$ For a.e. $t\in(O, T)$ , find $(U_{\epsilon}(t), P_{\epsilon}(t))\in V\cross Q$ with $U_{\epsilon,t}(t)\in Q^{d}$ such that

$(U_{\epsilon,t}, v)+a(U_{\epsilon}, v)+a_{1}(U_{\epsilon}+9, U_{\epsilon}, v)+a_{1}(U_{\epsilon}, g, v)$

$+b(v, P_{\epsilon})- \frac{1}{\epsilon}\int_{\Gamma}[U_{\epsilon n}+g_{n}]_{-}v_{n}d\Gamma=(F, v)-[[\tau(g, \pi), v]] \forall v\in V$, (21a)

$b(U_{\epsilon}, q)=0 \forall q\in Q$ , (21b)

$U_{\epsilon}(x, 0)=U_{0}$ on $\Omega$ . (21c)

$(NS_{\epsilon}E^{\sigma})$ For a.e. $t\in(0, T)$ , find $U_{\epsilon}(t)\in V^{\sigma}$ with $U_{\epsilon,t}(t)\in Q^{d}$ such that

$(U_{\epsilon,t}, v)+a(U_{\epsilon}, v)+a_{1}(U_{\epsilon}+g, U_{\epsilon}, v)$

$+a_{1}(U_{\epsilon}, g, v)- \frac{1}{\epsilon}\int_{\Gamma}[U_{\epsilon n}+g_{n}]_{-}v_{n}ds=(F, v)-[[\tau(g, \pi), v]] \forall v\in V^{\sigma}$ , (22a)

$U_{\epsilon}(x, O)=U_{0},$ $on\Omega$ . (22b)

6 Main results

We are now in a position to state the main results of this paper. Recall that $(g, \pi)$ is the
solution of the Stokes system (4) and $g_{0}\in C_{0}^{\infty}(\Gamma)^{d}$ is defined by (5). We make the following
assumptions.

(A1) $f\in H^{1}(0, T;Q^{d})$ and $\tau(g, \pi)|_{\Gamma}\in H^{1}(0, T;L^{2}(\Gamma)^{d})$ .

(A2) $g\in H^{2}(0, T;Q^{d})\cap L^{\infty}(0, T;V^{\sigma})$ and $g_{t}\in L^{2}(0, T;V^{\sigma})$ .

(A3) $\beta(t)\geq\beta_{0}>0$ for $t\in[0, T]$ with some $\beta_{0}>0$ and $\beta(t)\in C^{2}(0, T)$ .
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(A4) $U_{0}\in V_{0}^{\sigma}\cap H^{2}(\Omega)^{d}$ and it satisfies

$-(v \triangle U_{0}, v)=a(U_{0}, v)+\int_{\Gamma}\tau(g, \pi)|_{t=0}vd\Gamma (v\in V^{\sigma})$ .

Remark 6.1. Conditions (A1) and (A2) implies $F\in H^{1}(0, T;Q^{d})$ and $F\in L^{\infty}(O, T;Q^{d})$ .
Remark 6.2. Condition (A2) leads to $g\in L^{\infty}(O, T;Q^{d})$ .

Remark 6.3. On $\Gamma,$ $\tau(g, \pi)|_{t=0}$ is well-defined by (A1).

Theorem 1. Problems (NS-E) and (NS-I) are equivalent.

Theorem 2. Assume that $(A1)-(A4)$ are satisfied. When $d=2$ , there exists a unique

$U\in L^{\infty}(O, T;V^{\sigma}) , U_{t}\in L^{2}(0, T;V^{\sigma})\cap L^{\infty}(0, T;Q^{d})$ , (23a)

$P\in L^{\infty}(O, T;Q)$ (23b)

satisfying (NS-I) for any $T\in(0, \infty)$ . In particular, $(U, P)$ is the unique solution of (1) with
(10) in the sense of distributions. When $d=3$ , the same conclusion holds for a smaller time
interval $(0, T_{*}$ ], where $T_{*}$ denotes a positive constant depending on $U_{0}.$

Theorem 3. Assume that $(A1)-(A4)$ are satisfied. When $d=2$ , there exists a unique

$U_{\epsilon}\in L^{\infty}(O, T;V^{\sigma}) , U_{\epsilon,t}\in L^{2}(0, T;V^{\sigma})\cap L^{\infty}(0, T;Q^{d})$ , (24a)
$P_{\epsilon}\in L^{\infty}(0, T;Q)$ (24b)

satisfying $(NS_{\epsilon}-E)$ for any $T\in(0, \infty)$ and a sufficiently small $\epsilon$ . More precisely, there $exist_{\mathcal{S}}$

$\epsilon_{0}>0$ , which depends only on $F,$ $g,$ $U_{0},$ $\Omega$ and $T$, such that $(NS_{\epsilon}-E)$ admits a unique solution
$(U_{\epsilon}, P_{\epsilon})$ satisfying (24) for any $\epsilon\in(0, \epsilon_{0}$ ]. When $d=3$ , the same conclusion holds for a
smaller time interval $(0, T_{*}$ ], where $T_{*}$ denotes a positive constant depending on $U_{0}.$

Theorem 4 (Energy inequality for (NS-E)). If there exists

$U\in L^{\infty}(0, T;Q^{d})\cap L^{2}(0, T;V^{\sigma}) , U_{t}\in L^{2}(0, T;Q^{d})$ (25)

that satisfy (NS-E) in $0\leq t\leq T$ with some $P(t)\in Q$ , then we have

$\sup_{0\leq t\leq T}\Vert U(t)\Vert^{2}+\int_{0}^{T}a(U(t), U(t))dt\leq C(T)$ , (26)

where $C(T)$ denotes a positive constant depending on $F,$ $g,$ $U_{0},$
$\Omega$ and $T.$

Theorem 5 (Energy inequality for $(NS_{\epsilon}-E)$ ). Let $\epsilon>0$ . Suppose that there exists

$U_{\epsilon}\in L^{\infty}(0, T;Q^{d})\cap L^{2}(0, T;V^{\sigma}) , U_{\epsilon,t}\in L^{2}(0, T;Q^{d})$

that $sati_{\mathcal{S}}fy(NS_{\epsilon}-E)$ in $0\leq t\leq T$ with some $P_{\epsilon}(t)\in Q$ . Moreover, assume that

$\Vert[U_{\epsilon n}+g_{n}]_{-}\Vert_{L\infty(0,T,L^{2}(\Gamma))}\leq C_{2}(T)\sqrt{\epsilon} (t\in[0, T])$ . (27)

Then, there exists $e_{1}>0\mathcal{S}uch$ that we have, for $e\in(0, \epsilon_{1}$ ],

$\sup_{0\leq t\leq T}\Vert U_{\epsilon}(t)\Vert^{2}+\int_{0}^{T}a(U_{\epsilon}(t), U_{\epsilon}(t))dt\leq C(T)$ . (2S)

Therein, $\epsilon_{1},$ $C_{2}(T)$ and $C(T)$ denote positive constants depending on $F,$ $g,$ $U_{0},$ $\Omega$ and $T.$

Remark 6.4. As is described in [20, \S 4], the existence proof of $U_{\epsilon}$ depends on the inequality
(27). Hence, it is not restrictive that we assume (27) as long as the solution exists.
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