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Abstracts.

The solutions to the classical Hele-Shaw problem are discretized in space

by means of a modified charge simulation method (CSM) combined with

the asymptotic uniform distribution method, and then a system of ordinary

differential equations is obtained, which is solved by the usual fourth order

Runge-Kutta method. The Hele-Shaw problem has curve-shortening (CS)

and area-preserving (AP) properties. Under our scheme, the asymptotic CS-

property and the AP-property are satisfied theoretically in a discrete sense,

respectively, while simple boundary element method (BEM) does not satisfy

these properties in general. Numerical experiments by the modified CSM

and BEM will be shown.

1 Introduction

The Hele-Shaw problem is description of a motion of viscous fluid in a quasi two-dimensional
space, which was starting from a short paper [4] in 1898 by Henry Selby Hele-Shaw (1854-

1941). In his experiment, viscous fluid is sandwiched between two parallel plates with a
narrow gap (Figure 1.1), and the apparatus is called Hele-Shaw cell. He succeeded to vi-

sualize stream lines by means of colored water in the cell. Mathematically, the Hele-Shaw
problem is reduced from Navier-Stokes equations via stationary Stokes approximation,

parabolic-shape approximation of the velocity profile, and assumption of the Laplace re-
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Figure 1.1: Hele-Shaw cell with the gap $b$

lation on the boundary, that is, the problem is stated as follows (see [8, 3] in detail).

$\{\begin{array}{ll}\triangle p=0 in \Omega(t) ,p=\gamma k on C(t) ,V=-\nabla p\cdot N on C(t) ,\end{array}$ (1.1)

where $\Omega(t)\subset \mathbb{R}^{2}$ is region occupied by fluid, $C(t)=\partial\Omega(t)$ is the boundary, $p$ is the

pressure function, $k$ is the curvature $($ sign convention is the way that $k=1$ if $C(t)$ is a

unit circle), $\gamma>0$ is the surface tension coefficient, $N$ is the unit outward normal vector,

and $V$ is the normal velocity. See Figure 1.2 (in the figure, $x$ is the position vector and
$T$ is the unit tangent vector).

Figure 1.2: Liquid in a Hele-Shaw cell

Thus the Hele-Shaw problem is stated as a kind of moving boundary problems deter-

mining unknown function $p$ and unknown fluid region $\Omega$ . It can be described in another

way such as follows. Let $u$ be the velocity vector of two-dimensional fluid. Then the

harmonicity of the pressure $p$ is an expression of continuation derived from the Darcy’s

law $u=-\nabla p$ and the incompressible condition of fluid $divu=0$ , and the normal velocity
$V$ is derived from mass conservation law $\partial x/\partial t=u.$
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The purpose of the present paper is that for (1.1) we present a simple numerical scheme

by means of a modified charge simulation method combined with the asymptotic uniform

distribution method.

The charge simulation method (CSM) is a numerical technique for potential problems.

The idea is very simple, that is, the solution is approximated by linear combination

of fundamental solutions. Then CSM is a kind of method of fundamental solutions.

For instance, let us think about the Laplace problem in bounded region, say $\mathscr{D}\subset \mathbb{R}^{2}$

with a smooth boundary $C=\partial \mathscr{D}$ . Under CSM, first, we take finite number (say n)

of approximate points (the collocation points) on $C$ and the same number of singular

points (the charge points) in outside of $\overline{\mathscr{D}}$ , and second, determine coefficients of linear

combination of fundamental solutions equal to a given data at the collocation points.

If’position of the collocation points and the charge points satisfies a “nice” condition,

then the approximate error has exponential decay such as $a^{-n}$ $(a> 1)$ [5]. This is

remarkable error estimate compared with simple the finite difference method (FDM), the

finite element method (FEM) or the boundary element method (BEM) which have the

error order $n^{-a}(a>0)$ in general. On the other hand, unfortunately, the “nice condition

is theoretically unclear at this stage, and the condition is determined by trial and error,

so far. Hence finding the condition is an open problem even for potential problems in a

fixed domain. To the best of our knowledge, application of CSM for moving boundary

problem is quite a few: for instance, CSM for stationary perfect fluid of rotation free in

outside of a circle in the plane [14], and CSM combined with the level set method for

external Hele-Shaw problem without surface tension [7].

The Hele-Shaw problem has two properties: fluid area is preserved in time and the

total length of the boundary is decreasing in time. One of features of our scheme is to

realize the curve-shortening property asymptotically in a discrete sense by means of the

normal velocity determined by a modified invariant scheme of CSM, so-called Murota’s

invariant scheme [9, 10]. Another feature is to realize the area-preserving property by

means of the tangential velocity determined by a modified CSM and the asymptotic uni-

form distribution method (UDM) [12]. Note that under UDM, we have stable numerical

computation.

Of course, there are many ways to solve the Hele-Shaw problem numerically (see

selected just a few papers or a monograph [3, 13, 6, 15 However, many of known

schemes did not focus on making schemes which preserve a variational structure of the

Hele-Shaw problem such as curve-shortening property and area-preserving property.
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2 Two properties of solutions to the Hele-Shaw prob-

lem (1.1)

Let $t\geq 0$ be the time parameter. Assume that a smooth Jordan curve $C(t)$ : $x(u, t)\in \mathbb{R}^{2},$

parameterized by $u\in[0$ , 1$]$ , evolves according to the following evolution law of given the

normal velocity $V$ and the tangential velocity $\alpha$ (Figure 1.2).

$\partial_{t}x=\alpha T+VN$ . (2.1)

Here $\partial_{t}=\partial/\partial t$ is the time derivative. It is known that, under a suitable condition, the

value of $\alpha$ does not affect the shape of the solution curve [2].

Let $L(t)$ be the total length of $C(t)$ , $\Omega(t)$ the bounded region enclosed by $C(t)$ , and

$A(t)$ the area of $\Omega(t)$ . Then the time evolution of $L$ and $A$ are given as follows.

哉 $L(t)= \int_{C(t)}kVds,$ $\partial_{t}A(t)=\int_{C(t)}Vds,$

where $s=s(u, t)$ is the arc-length parameter, and the integral means

$\int_{C(t)}Fds=\int_{0}^{1}Fg(u, t)du$ $(9(u, t)=|\partial_{u}x(u, t)|$ is called the local length).

If the pressure $p$ and the curve $C(t)$ are the solution to the Hele-Shaw problem (1.1),

then for the time evolution of $L(t)$ we have

$\partial_{t}L(t)=\int_{C(t)}kVds=-\frac{1}{\gamma}\int_{C(t)}p\nabla p\cdot Nds=-\frac{1}{\gamma}\iint_{\Omega(t)}div(p\nabla p)dxdy$

$=- \frac{1}{\gamma}\iint_{\Omega(t)}(p\triangle p+|\nabla p|^{2})dxdy=-\frac{1}{\gamma}\iint_{\Omega(t)}|\nabla p|^{2}dxdy\leq 0.$

Hence the Hele-Shaw problem has the property of curve-shortening. We call it CS-

property.

Also, for the time evolution of $A(t)$ we have

$\partial_{t}A(t)=\int_{C(t)}Vds=-\int_{C(t)}\nabla p\cdot Nds$

$=- \int\int_{\Omega(t)}div(\nabla p)dxdy=-\int\int_{\Omega(t)}\triangle pdxdy=0.$

Hence the Hele-Shaw problem has the property of area-preserving. We call it AP-

property.
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3 Numerical scheme

The purpose of this section is to present numerical scheme by means of a modified charge

simulation method combined with the asymptotic uniform distribution method, which

approximates the solution $p$ and the solution curve $C$ to Hele-Shaw problem (1.1), and

satisfies asymptotic CS-property and AP-property theoretically in a discrete sense.

A smooth closed curve $C$ is discretized by a closed polygonal curve $\Gamma$ as follows. Let
$\Gamma=\bigcup_{i=1}^{n}\Gamma_{i}$ be an $n$-sided closed polygonal plane curve, where

$\Gamma_{i}=[x_{i-1}, x_{i}]:=\{(1-\lambda)x_{i-1}+\lambda x_{i}|\lambda\in[0, 1]\}$

is the i-th edge and $x_{i}\in \mathbb{R}^{2}$ is the i-th vertex $(i=1,2, \cdots, n;x_{0}=x_{n}, x_{n+1}=x_{1})$ . See

Figure 3.1.

Figure 3.1: A closed polygonal curve in the plane $\mathbb{R}^{2}$

Let $\Gamma(t)=\bigcup_{i=1}^{n}\Gamma_{i}(t)$ be an $n$-sided closed polygonal plane curve continuously in time

starting from $\Gamma(0)=\Gamma$ , where $\Gamma_{i}(t)=[x_{i-1}(t), x_{i}(t)]$ is the i-th edge, and $x_{i}(t)\in \mathbb{R}^{2}$ is

the i-th vertex for $i=1$ , 2, $\cdots,$ $n$ and $t\geq 0$ . The polygonal curve $\Gamma(t)$ moves according

the evolution law:

$\dot{x}_{i}=\alpha_{i}T_{i}+VN_{i}$ $(i=1,2, \cdots, n)$ , (3.1)

where $\dot{F}=dF/dt$ is the time derivative of $F$ , and $T_{i}$ is the i-th unit tangent vector and

$N_{i}=-T_{i}^{\perp}$ is the i-th unit outward normal vector at the i-th vertex $x_{i}$ , which will be

defined later $((a, b)^{\perp}=(-b,$ $a$ Then $\alpha_{i}$ ’s and $V_{i}$ ’s are the tangential and the normal

velocities at $x_{i}$ , respectively. The evolution equations (3.1) correspond to a discretization

of the evolution equation (2.1).
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3.1 Algorithm

Since $N_{i}=-T_{i}^{\perp}$ holds, the evolution equations (3.1) are rewritten as

$\dot{x}_{i}=\alpha_{i}T_{i}-VT_{i}^{\perp} (i=1,2, \cdots, n)$ ,

and by the following our scheme, $\{T_{i}\}_{i=1}^{n},$ $\{V_{i}\}_{i=1}^{n}$ and $\{\alpha_{i}\}_{i=1}^{n}$ in the right hand side can
be described as a function of $\{x_{i}\}_{i=1}^{n}$ . Therefore the evolution equations can be rewritten
as the following system of ordinary differential equations (ODEs):

$\dot{x}(t)=f(x(t))$ , $\{\begin{array}{l}x(t)=(x_{1}(t), x_{2}(t), \cdots, x_{n}(t))\in \mathbb{R}^{2\cross n},f=(f_{1}, f_{2}, \cdots, f_{n}):\mathbb{R}^{2\cross n}arrow \mathbb{R}^{2\cross n};x\mapsto f(x) .\end{array}$

In this paper, we use the usual fourth order Runge-Kutta method for solving the above
system of ODEs.

Under our scheme, $\{T_{i}\}_{i=1}^{n},$ $\{V_{i}\}_{i=1}^{n}$ and $\{\alpha_{i}\}_{i=1}^{n}$ are obtained in three steps as follows.

Step 1: Compute $\{T_{i}\}_{i=1}^{n}$ by $T_{i}=(\cos\nu_{i}^{*}, \sin\nu_{i}^{*})^{T}(i=1,2, \cdots, n)$ in \S 3.2, where $\nu_{i}^{*}=$

$(\nu_{i}+\nu_{i+1})/2$ and $\nu_{i}$ is the i-th tangent angle:

$\frac{x_{i}-x_{i-1}}{r_{i}}=(\cos v_{i}, \sin\nu_{i})^{T}, r_{i}=|x_{i}-x_{i-1}| (i=1,2, \cdots, n)$ .

Step 2: Compute $\{V_{i}\}_{i=1}^{n}$ by a modified CSM in \S 3.4.

Step 3: Compute $\{\alpha_{i}\}_{i=1}^{n}$ from $\{r_{\iota’}\}_{i=1}^{n},$ $\{v_{i}\}_{i=1}^{n}$ and $\{V_{i}\}_{i=1}^{n}$ by UDM in \S 3.5.

3.2 Step 1: Compute $\{T_{i}\}_{i=1}^{n}$

The length of $\Gamma_{i}$ is denoted by $r_{i}=|x_{i}-x_{i-1}|$ . The i-th unit tangent vector $t_{i}$ can
be defined as $t_{i}=(x_{i}-x_{i-1})/r_{i}$ , and the i-th unit outward normal vector $n_{i}=-t_{i}^{\perp}.$

Then the i-th tangent angle $v_{i}$ is obtained from $t_{i}=(\cos\nu_{i}, \sin v_{i})^{T}$ in the following way:
Firstly, from $t_{1}=(t_{11}, t_{12})^{T}$ , we obtain $v_{1}=-\arccos(t_{11})$ if $t_{12}<0;v_{1}=\arccos(t_{11})$ if
$t_{12}\geq 0$ . Secondly, for $i=1$ , 2, $\cdots,$ $n$ we successively compute $v_{i+1}$ from $v_{i}$ :

$\nu_{i+1}=\{\begin{array}{ll}\nu_{i} -- arccos(I), if D<0,v_{i}+\arccos(I) , if D>0,\nu_{i}, otherwise,\end{array}$ where $D=\det(t_{i}, t_{i+1})$ , $I=t_{i}\cdot t_{i+1}.$

Finally, we obtain $v_{0}=\nu_{1}-(\nu_{n+1}-\nu_{n})$ . Then the i-th unit outward normal vector $n_{i}$ is
$n_{i}=(\sin\nu_{i}, -\cos\nu_{i})^{T}.$

Let us introduce the “dual” edge $\Gamma_{i}^{*}=[x_{i}^{*}, x_{i}]\cup[x_{i}, x_{i+1}^{*}]$ of $\Gamma_{i}$ , where

$x_{i}^{*}=(x_{i-1}+x_{i})/2$
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is the mid point of the i-th edge $\Gamma_{i}(i=1,2, \cdots, n;x_{n+1}^{*}=xi)$ . The length of $\Gamma_{i}^{*}$ is
$r_{i}^{*}=(r_{i}+r_{i+1})/2.$

We define the i-th tangent angle of $\Gamma_{i}^{*}$ by

$2^{*}= \frac{\nu_{i}+\nu_{i+1}}{2}=$ 砺 $+ \frac{\varphi_{i}}{2},$

where $\varphi_{i}=\nu_{i+1}-\nu_{i}$ is the angle between the adjacent two edges. See Figure 3.1.

Then the i-th unit tangent vector $T_{i}$ and the outward unit normal vector $N_{i}$ at the
i-th vertex $x_{i}$ are given by

$T_{i}=(\cos\nu_{i}^{*}, \sin\nu_{i}^{*})^{T},$ $N_{i}=(\sin\nu_{i}^{*}, -\cos\nu_{i}^{*})^{T},$

respectively.

3.3 The length $L$ , the area $A$ , and the curvatures $\{k_{i}\}_{i=1}^{n}$

The total length of $\Gamma$ can be calculated as

$L= \sum_{i=1}^{n}r_{i}=\sum_{i=1}^{n}r_{i}^{*},$

and the enclosed area of $\Gamma$ can be calculated as

$A= \frac{1}{2}\sum_{i=1}^{n}(x_{i}\cdot n_{i})r_{i}=\frac{1}{2}\sum_{i=1}^{n}x_{i-1}^{\perp}\cdot x_{i}.$

Hereafter we will use the following abbreviations:

$c_{i}= \cos\frac{\varphi_{i}}{2},$ $s_{i}= \sin\frac{\varphi_{i}}{2}$ $(i=1,2, \cdots, n)$ .

Then it is easy to check that

$t_{i}=c_{i}T_{i}+s_{i}N_{i},$ $t_{i+1}=c_{i}T_{i}-s_{i}N_{i},$

$n_{i}=c_{i}N_{i}-s_{i}T,$ $n_{i+1}=c_{i}N_{i}+s_{i}T,$

and from which it follows that

$\dot{L}=\sum_{i=1}^{n}\dot{x}_{i}\cdot(t_{i}-t_{i+1})=2\sum_{i=1}^{n}V_{i}s_{i}=\sum_{i=1}^{n}V_{i}k_{i}^{*}r_{i}^{*}=\sum_{i=1}^{n}k_{i}\langle v\rangle_{i}r_{i}$ , (3.2)

$\dot{A}=\sum_{i=1}^{n}V_{i}c_{i}r_{i}^{*}+\sum_{i=1}^{n}\alpha_{i}s_{i}\frac{r_{i+1}-r_{i}}{2}=\sum_{i=1}^{n}\langle v\rangle_{i}r_{i}+err_{A}$ , (3.3)

$err_{A}=\sum_{i=1}^{n}\langle v\rangle_{i}\frac{r_{i+1}-2r_{i}+r_{i-1}}{4}+\sum_{i=1}^{n}\alpha_{i}s_{i}\frac{r_{i+1}-r_{i}}{2}.$
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Here $k_{i}^{*}=2s_{i}/r_{i}^{*}$ is the i-th curvature on the dual edge $\Gamma_{i}^{*},$ $\langle v\rangle_{i}$ is the averaged normal
velocity on $\Gamma_{i}$ defined as

$\langle v\rangle_{i}=\frac{1}{r_{i}}\int_{\Gamma_{i}}vd_{\mathcal{S}} (i=1,2, \cdots, n)$ ,

$V_{i}$ is the normal velocity at $x_{i}$ defined as

$V_{i}= \frac{\langle v\rangle_{i}+\langle v\rangle_{i+1}}{2c_{i}} (i=1,2, \cdots, n)$ , (3.4)

and $k_{i}$ is the i-th curvature defined on $\Gamma_{i}$ defined as

$k_{i}= \frac{\tan(\varphi_{i}/2)+\tan(\varphi_{i-1}/2)}{r_{i}} (i=1,2, \cdots, n)$ ,

which is the same as the polygonal curvature in [1]. The i-th averaged normal velocity
$\langle v\rangle_{i}$ will be defined by (3.8) in \S 3.4.

The quantities $\dot{L}$ and $\dot{A}$ are discrete analogue of $\dot{L}=\int_{C}kVds$ and $\dot{A}=\int_{C}Vd_{\mathcal{S}}$ for
smooth curve $C$ , if $err_{A}=0$ holds, respectively. Note that if distribution of the vertices is
uniform, that is, $r_{i}\equiv L/n$ holds for all $i$ , then we have $err_{A}=0$ . Another way of realizing
$err_{A}=0$ is to define $\alpha_{i}=(\langle v\rangle_{i+1}-\langle v\rangle_{i})/(2s_{i})$ , since $err_{A}=\sum_{i=1}^{n}(r_{i+1}-r_{i})(\langle v\rangle_{i}-\langle v\rangle_{i+1}+$

$2s_{i}\alpha_{i})/4$ holds. This way is valid for instance for the curvature flow $\langle v\rangle_{i}=-k_{i}$ since $\alpha_{i}$

does not become singular even if $s_{i}=$ O. But in general such as the Hele-Shaw flow, it
is hard to compute $\alpha_{i}$ near $s_{i}\approx 0$ . Hence we will use the uniform distribution technique
from the above reason and also from the viewpoint of numerical stability.

Remark 3.1 Note that if we can calculate the average $\langle\nabla p\cdot n_{i}\rangle_{i}$ and put $\langle v\rangle_{i}=-\langle\nabla p.$

$n_{i}\rangle_{i}$ , then we have

$\dot{A}=\sum_{i=1}^{n}\langle v\rangle_{i}r_{i}=-\sum_{i=1}^{n}\int_{\Gamma_{i}}\frac{\partial p}{\partial n}d_{\mathcal{S}}=-\int_{\Gamma(t)}\frac{\partial p}{\partial n}d_{\mathcal{S}}=-\int\int_{\Omega(t)}\triangle pdxdy=0,$

if $err_{A}=$ O. The averaged value $\langle\nabla p\cdot n_{i}\rangle_{i}$ can not be obtained in general, but we will
obtain AP-property $\lrcorner\dot{4}=0$ from another context in \S 3.4.

3.4 Step 2: Compute $\{V_{i}\}_{i=1}^{n}$ by a modified CSM $($mCSM)

We compute the averaged normal velocity $\langle v\rangle_{i}$ by means of a modified charge simulation
method (mCSM in short). See \S A for the original CSM under the invariant scheme and
for comparison argument with the boundary element method (BEM).

For each fixed $t\geq 0$ we solve the following Dirichlet problem:

$\{\begin{array}{l}\triangle p=0 in \Omega(t) ,p=\gamma k_{i} on \Gamma_{i}(t) (i=1,2, \cdots, n) ,\end{array}$
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by means of a CSM-type technique as follows. We seek the approximate solution $P$ of

the form

$P(x)=Q_{0}+ \sum_{j=1}^{n}Q_{j}E_{j}(x)$ , $E_{j}(x);=E(x-y_{j})-E(x-z)$ , (3.5)

where $E$ is the fundamental solution of the Laplace operator $\triangle$ such as

$E(x)= \frac{1}{2\pi}\log|x|,$

$z$ is a “dummy point located at a sufficiently far position $(z= (1000, 0)^{T}$ will be used

in \S 4), $y_{j}$ ’s are the charge points given by

$y_{j}=x_{j}^{*}+dn_{j}$ $(j=1,2, \cdots , n)$ ,

and $d>0$ is a parameter controlling accuracy of mCSM. Note that $P$ satisfies $\triangle P=0$

in $\Omega$ and is invariant under the trivial affine transformation and the origin shift of the

boundary data as well as the original invariant scheme of CSM as in \S A. Thus we can add

one more condition instead of (A.2) which is required for the invariance of the original

invariant scheme of CSM. We select the condition such a way that the weighted average

of $Q_{j}$ ’s is equal to $0$ , that is, coefficients $\{Q_{j}\}_{j=0}^{n}$ are determined by

$P($媒 $)=\gamma k_{i}$ $(i=1,2, \cdots,n)$ , $\sum_{j=1}^{n}Q_{j}H_{j}=0$ , (3.6)

where

$H_{j}:=- \sum_{i=1}^{n}\nabla E_{j}(x_{i}^{*})\cdot n_{i}r_{i}$ $(j=1,2, \cdots, n)$ .

The equations (3.6) are equivalent to the system of $n+1$ linear equations as follows:

$(\begin{array}{ll}0 H^{T}l G\end{array})(\begin{array}{l}Q_{0}Q\end{array})=(\begin{array}{l}0b\end{array})$ , (3.7)

where

$G=(E_{j}(x_{i}^{*}))\in \mathbb{R}^{n\cross n},$ $1=(1,1, \cdots, 1)^{T}\in \mathbb{R}^{n},$

$H=(H_{1}, H_{2}, \cdots, H_{n})^{T},$ $Q=(Q_{1}, Q_{2}, \cdots, Q_{n})^{T},$ $b=(\gamma k_{1}, \gamma k_{2}, \cdots, \gamma k_{n})^{T}\in \mathbb{R}^{n}.$

AP-property

If the averaged normal velocity $\langle v\rangle_{i}$ ’s are defined by

$\langle v\rangle_{i}=-\nabla P(x_{i}^{*})\cdot n_{i}$ $(i=1,2, \cdots, n)$ , (3.8)
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then we have

$\sum_{i=1}^{n}\langle v\rangle_{i}r_{i}=\sum_{j=1}^{n}Q_{j}H_{j}=0$ . (3.9)

This means that $\lrcorner\dot{4}=0$ holds in (3.3) if $err_{A}=0$ , that is, AP-property holds in a discrete

sense. By using these $\langle v\rangle_{i}’ s$ , we define the normal velocity $V_{i}$ at the i-th vertex $x_{i}$ by (3.4).

Asymptotic CS-property

From (3.2) and (3.6), for the averaged normal velocity (3.8) we have

$\dot{L}=\sum_{i=1}^{n}k_{i}\langle v\rangle_{i}r_{i}=-\sum_{i=1}^{n}$ ki $\nabla$P(媛).niri $=- \frac{1}{\gamma}\sum_{i=1}^{n}$ P(嫉) $\nabla$P(婿).niri

$=- \frac{1}{\gamma}\sum_{i=1}^{n}\int_{\Gamma}P(x_{i}^{*})\nabla P(x_{i}^{*})\cdot n_{i}ds$

$\approx-\frac{1}{\gamma}\sum_{i=1}^{n}\int_{\Gamma_{i}}$ $P$ $(x$ $)$ $\nabla P$ $($忽 $)$ $n_{i}d_{\mathcal{S}}$

$=- \frac{1}{\gamma}\int_{\Gamma}P(x)\nabla P(x)\cdot nds$

$=- \frac{1}{\gamma}\iint_{\Omega}div(P\nabla P)dxdy=-\frac{1}{\gamma}\iint_{\Omega}|\nabla P|^{2}dxdy\leq 0.$

The above approximation $\approx$
” is the equality $=$ with an error of order $1/n$ as $narrow\infty.$

We will see this fact as follows. Put $f_{i}(x)=P(x)\nabla P(x)\cdot n_{i}$ for $x\in\Gamma_{i}$ . Then by the

mean value theorem, there exists $\mu_{i}\in(0,1)$ for each $i$ such that the following estimate

holds.

$\dot{L}+\frac{1}{\gamma}\iint_{\Omega}|\nabla P|^{2}dxdy\leq|\frac{1}{\gamma}\iint_{\Omega}|\nabla P|^{2}dxdy+\dot{L}|$

$=| \frac{1}{\gamma}\sum_{i=1}^{n}\int_{\Gamma_{i}}$ $(P($忽 $)$ $\nabla P($忽 $)$ $-P(x_{i}^{*})\nabla P(x_{i}^{*}))$ $n_{i}ds|$

$=| \frac{1}{\gamma}\sum_{i=1}^{n}\int_{\Gamma_{i}}(f_{i}(x)-f_{i}(x_{i}^{*}))ds|$

$=| \frac{1}{\gamma}\sum_{i=1}^{n}\int_{\Gamma_{i}}\nabla f_{i}((1-\mu_{i})x+\mu_{i}x_{i}^{*})\cdot(x-x_{i}^{*})ds|$

$\leq\frac{1}{\gamma}\sum_{i=1}^{n}C_{i}\max_{x\in\Gamma_{i}}|x-x_{i}^{*}|r_{i}\leq\frac{C}{\gamma}\sum_{i=1}^{n}r_{i}^{2}\leq\frac{C}{\gamma}Lr_{m},$

where

$C_{i}= \max_{x\in\Gamma_{i}}|\nabla f_{i}(x)|,$ $C= \max_{1\leq i\leq n}C_{i},$ $r_{\max}= \max_{1\leq i\leq n}r_{i}.$
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By the asymptotic uniform distribution method (3.10) below, we have

$r_{\max} \leq\frac{L(t)}{n}+e^{-f(n,t)}$

where $f(n, t)$ is a given function diverging to infinity as $t$ tends to the final time $T\leq\infty$

or $narrow\infty$ . In our experiment, we take $\partial_{t}f(n, t)=\omega$ with $\omega=10n$ in \S 4.
Thus we have the following asymptotic CS-property:

$\dot{L}\leq-\frac{1}{\gamma}\iint_{\Omega}|\nabla P|^{2}dxdy+\frac{C}{\gamma}L(\frac{L}{n}+e^{-f(n,t)})$ .

Remark 3.2 (BEM) By means of the boundary element method (BEM) with the con-

stant element, the averaged normal velocity $\langle v\rangle_{i}$ can be computed from the following

linear equations:

$\frac{1}{2}\gamma_{i}=\sum_{j=1}^{n}\int_{\Gamma_{j}}E(x-x_{i}^{*})q_{j}ds-\sum_{j=1}^{n}\int_{\Gamma_{j}}b_{j}\frac{\partial E}{\partial n}(x-x_{i}^{*})ds$ $(i=1,2, \cdots, n)$ ,

which are derived from (A.5) in the case where $C=\Gamma,$ $\xi=x_{i}^{*}$ , and $\tilde{P}$ satisfies

$\tilde{P}(x)\equiv\gamma k_{i}=:b_{i},$ $\frac{\partial\tilde{P}}{\partial n}(x)\equiv q_{i}$

for all $x\in\Gamma_{i}$ . Therefore if we define matrices $G=(G_{ij})\in \mathbb{R}^{n\cross n}$ and $H=(H_{ij})\in \mathbb{R}^{n\cross n}$

by

$G_{ij}= \int_{\Gamma_{j}}E(x-x_{i}^{*})ds,$ $H_{ij}= \frac{1}{2}\delta_{ij}+\int_{\Gamma_{j}}\frac{\partial E}{\partial n}(x-x_{i}^{*})ds,$

respectively, then the above relations are equivalent to the following simultaneous equa-

tions:

$Gq=Hb,$

where $q=(q_{1}, q_{2}, \cdots, q_{n})^{T},$ $b=(b_{1}, b_{2}, \cdots, b_{n})^{T}\in \mathbb{R}^{n}$ . Solving the above simultaneous

equations for $q$ , we obtain the averaged normal velocity such as

$\langle v\rangle_{i}=-q_{i}$ $(i=1,2, \cdots, n)$ .

We note that $G_{ij}$ and $H_{ij}$ can be calculated analytically. However, it is unclear whether

CS-property and AP-property hold or not.
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3.5 Step 3: Compute $\{\alpha_{i}\}_{i=1}^{n}$ by the asymptotic uniform distri-
bution method (UDM)

To realize uniform distribution asymptotically (c.f. [12]), we assume that

$r_{i}- \frac{L}{n}=\eta_{i}e^{-f(n,t)}$ , (3.10)

where $f$ is a given function satisfying

$f(n, t)arrow\infty$ as $tarrow T\leq\infty$ or $narrow\infty$

with the final time $T$ of the problem, and

$\sum_{i=1}^{n}\eta_{i}=0, |\eta_{i}|\leq 1 (i=1,2, \cdots, n)$ .

By using a relaxation term $\omega(n, t)=\partial_{t}f(n, t)$ we obtain

$r_{i}- \frac{\dot{L}}{n}=(\frac{L}{n}-r_{i})\omega(n, t)$ $(i=1,2, \cdots , n)$ , $\int_{0}^{T}\omega(n, t)dt=\infty.$

In our experiment, $\omega(n, t)$ is taken such as a constant $\omega=10n$ in \S 4.
Taking into account the relations

$\dot{r}_{i}=(\dot{x}_{i}-\dot{x}_{i-1})\cdot t_{i}=Vs_{i}+V_{-1}s_{i-1}+c_{i}\alpha_{i}-c_{i-1}\alpha_{i-1}=\frac{\dot{L}}{n}+(\frac{L}{n}-r_{i})\omega(n, t)$ ,

we deduce $n-1$ equations for tangential velocities $\alpha_{i}(i=2,3, \cdots, n)$ :

$\alpha_{i}=\frac{\Psi_{i}}{c_{i}}+\frac{c_{1}}{c_{i}}\alpha_{1},$

$\Psi_{i}=\psi_{2}+\psi_{3}+\cdots+\psi_{i},$

$\psi_{i}=-V_{i}s_{i}-$咋 $1^{\mathcal{S}_{i-1}+\frac{\dot{L}}{n}+}( \frac{L}{n}-r_{i})\omega(n, t)$ .

To determine $\alpha_{1}$ , we add one more linear equation of the form $\sum_{i=1}^{n}\alpha_{i}b_{i}=B$ , which is
independent of the above $n-1$ . If we put

$C= \sum_{i=2}^{n}\frac{b_{i}}{c_{i}}\Psi_{i},$ $D=c_{1} \sum_{i=1}^{n}\frac{b_{i}}{c_{i}}$ , (3.11)

we obtain $\alpha_{1}=(B-C)/D$ . Next, we propose two candidates for each $\{b_{i}\}_{i=1}^{n}$ and $B$ , and
choose one of them in the following way:
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Candidate 1

We put

$b_{i}=s_{i} \frac{r_{i+1}-r_{i}}{2}$ $(i=1,2, \cdots, n)$ , $B=- \sum_{i=1}^{n}\langle v\rangle_{i}\frac{r_{i+1}-2r_{i}+r_{i-1}}{4},$

and from (3.11) we calculate $C$ and $D$ . We denote this $D$ by $D_{1}$ . If the above equation

holds, then $err_{A}=0$ and $\dot{A}=\sum_{i=1}^{n}\langle v\rangle_{i}r_{i}$ hold in (3.3). However, if distribution of grid

points is almost uniform, then the above equation is almost nothing. Therefore we need

another candidate.

Candidate 2

The second candidate of a linear equation is the zero-average condition $\sum_{i=1}^{n}\alpha_{i}r_{i}^{*}=0,$

that is, $b_{i}=r_{i}^{*}$ for $i=1$ , 2, $\cdots,$ $n$ and $B=0$ (see [12] in detail). From this and (3.11) we

calculate $C$ and $D$ . We denote this $D$ by $D_{2}.$

Choice one from two candidates

For calculating $\alpha_{1}$ we use Candidate 1, if $|D_{1}|>|D_{2}|$ , and Candidate 2, otherwise.

4 Numerical experiments

The parameters have been chosen as follows:

$\bullet$ $n=100$ (the number of grid points);

$\bullet$ $\gamma=1$ (the surface tension coefficient);

$\bullet$ $z=$ $(1000, 0)^{T}$ (the “dummy” point in mCSM approximation (3.5));

$\bullet$ $\tau=1/(10n^{2})$ (the time-mesh size);

$\bullet$ $\omega=10n$ (the relaxation term);

$\bullet$ $d=n^{-1/2}$ (the parameter controlling accuracy of mCSM).

The initial curve $\Gamma$ : $[0, 1]\ni u\mapsto(x_{1}(u), x_{2}(u))^{T}\in \mathbb{R}^{2}$ is given by

$x_{1}(u)=\cos z(u)$ , $x_{2}(u)=0.7\sin z(u)+\sin x_{1}(u)+x_{3}(u)^{2},$

where $z=2\pi u,$ $x_{3}(u)=\sin(3z(u))$ for $u\in[0$ , 1$]$ . See Figure 4.1 (a). Let us examine the

results of our numerical computation in order.

128



(d) Length $L$ (e) Area $A$ (f) Accuracy of area

Figure 4.1: Results of numerical computation: (a) the initial curve; time evolution of
boundary curves (b) $mCSM;(c)$ BEM; (d) time evolution of length; (e) time evolution of
area; (f) the accuracy of area

$\bullet$ Time evolutions of boundary curves are indicated in Figure 4.1 (b) and (c), when
the normal velocity is computed by mCSM and BEM, respectively. Although in

both cases the boundary curves converge to circles, their size seem to be different.

$\bullet$ Figure 4.1 (d) shows the time evolution of the length $L(t)$ of the boundary curve,
where the horizontal axis and the vertical axis represent the time $t$ and the length
$L$ , respectively. It can be observed that the length decreases monotonically for both
methods: mCSM and BEM. As we have seen in \S 3.4, when the normal velocity
is computed by mCSM, we can prove that $\dot{L}$ takes a negative value plus a small
error for a large $n$ or $t$ , since the approximate solution by mCSM is smooth in
a neighborhood of St, On the other hand, when the normal velocity is computed
by BEM, there exist singularities on the boundary curve $\Gamma$ , therefore we can not
use a useful mathematical tool such as the divergence theorem, and this makes it
difficult to analyze the evolution of the length. However, CS-property is observed
numerically.

$\bullet$ Figure 4.1 (e) shows the time evolution of the enclosed area $A(t)$ of the boundary
curve, where the horizontal axis and the vertical axis represent the time $t$ and
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the area $A$ , respectively. Concerning the time evolution of the area, there is a
big difference. In both methods of mCSM and BEM, the tangential velocity is

computed by UDM, therefore $err_{A}$ converges to $0$ exponentially as $tarrow T$ or $narrow$

$\infty$ . When we compute the normal velocity by mCSM, AP-property is achieved in

maximal accuracy in double-precision arithmetic. On the other hand, when the

normal velocity is computed by BEM, AP-property does not hold. Indeed, the area
increases in time. We can guess that this is a reason why the size of limiting circles

are different.

$\bullet$ Figure 4.1 (f) shows the accuracy of area, where the horizontal axis and the vertical

axis represent the number of grid points $n$ and the error err $(n)$ , respectively. The

error is measured by

err $(n)= \max_{1\leq j\leq M}|\frac{A^{j}(n)-A^{0}(n)}{A^{0}(n)}|,$

where

$-n$ is the number of grid points, which is taken such as $n=4k(k=5,6,$ $\cdots,$
$75$

$-A^{0}(n)$ denotes the enclosed area of the initial $n$-sided closed polygonal plane

curve;

$-A^{j}(n)$ denotes the enclosed area of the boundary curve with $n$ vertices at the

j-th step;

$-M$ denotes the calculation frequency, and it is chosen as $M=1000$ here.

It can be observed that there are differences of accuracy about 6-7 digits between

in two methods, and this implies that our proposal scheme computing the normal

velocity by mCSM is much better than that by BEM.

5 Conclusion

In the present paper, a modified charge simulation method combined with the asymptotic

uniform distribution method was proposed for an approximation scheme of the one-phase

interior Hele-Shaw problem. The methods satisfy the asymptotic curve-shortening prop-

erty and the area-preserving property, while the boundary element method does not satisfy

area-preserving property.

Our methods can be applied for Hele-Shaw problems in several situations including

one-phase exterior Hele-Shaw problem, one-phase Hele-Shaw problem with sink or source,

and so on. These results will be reported in the forthcoming paper.
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A The original invariant scheme of CSM

We explain the invariant scheme of the charge simulation method (CSM) [9, 10] briefly.

Let $\mathscr{D}$ be a bounded region in $\mathbb{R}^{2}$ with a smooth boundary $C=\partial \mathscr{D}$ . We consider the

following potential problem:

$\{\begin{array}{ll}\triangle p=0 in \mathscr{D},p=f on C,\end{array}$ (A.1)

where $f$ is a given function defined on $C$ . The invariant scheme of CSM gives an approx-

imate solution $P$ as in the following three steps:

(1) Put $n$ points $\{y_{j}\}_{j=1}^{n}$ in $\mathbb{R}^{2}\backslash \overline{\mathscr{D}}.$

(2) Construct the approximate solution $P$ as follows:

$P(x)=Q_{0}+ \sum_{j=1}^{n}Q_{j}E(x-y_{j}) , E(x)=\frac{1}{2\pi}\log|x|$

with the constraint

$\sum_{j=1}^{n}Q_{j}=0$ . (A.2)

(3) Determine coefficients $\{Q_{j}\}_{j=0}^{n}$ by the collocation method: Put $n$ points $\{x_{i}\}_{i=1}^{n}$ on

the boundary $C$ , and impose the conditions

$P(x_{i})=f(x_{i})$ $(i=1,2, \cdots, n)$ . ( $A$ .3)

The above procedure is typical algorithm of the invariant scheme of CSM. We note

that $P$ satisfies the Laplace equation exactly in $\mathscr{D}$ . Furthermore, the conditional expres-

sions (A.2) and (A.3) are equivalent to the system of $n+1$ linear equations as follows:

$(\begin{array}{ll}0 1^{T}1 G\end{array})(\begin{array}{l}Q_{0}Q\end{array})=(\begin{array}{l}0f\end{array})$ , (A.4)

where

$G=(E(x_{i}-y_{j}))\in \mathbb{R}^{n\cross n},$ $1=(1,1, \cdots, 1)^{T}\in \mathbb{R}^{n},$

$Q=(Q_{1}, Q_{2}, \cdots, Q_{n})^{T},$ $f=(f(x_{1}), f(x_{2}), \cdots, f(x_{n}))^{T}\in \mathbb{R}^{n}.$

CSM is a very simple numerical scheme for potential problems since we do not need

to perform mesh division in $\mathscr{D}$ such as the finite element method, but only choose points

outside and on the boundary of $\mathscr{D}$ . Nevertheless, under some conditions, the error of the
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approximate solution decays exponentially with respect to $n$ . Owing to this impactful

property, the computational cost is low. Moreover, coding the program is very easy, since

we only have to solve the linear equation (A.4). We note that $P$ is invariant under the

trivial affine transformation

$xarrow sx,$ $y_{j}arrow sy_{j},$

where $\mathcal{S}\neq 0$ is a real constant, and the origin shift of the boundary data

$f(x)arrow f(x)+c,$

where $c\in \mathbb{R}^{2}.$

Since CSM’s approximate solution is sufficiently smooth in a neighborhood of $\overline{\mathscr{D}}$ , if we

approximate the pressure and compute the normal velocity by CSM, then CS-property

holds approximately. However, AP-property does not hold in general, since $\sum_{i=1}^{n}\langle v\rangle_{i}r_{i}=0$

is not assured even if $err_{A}=$ O. Therefore we have used a modified invariant scheme of

CSM in order to satisfy $\sum_{i=1}^{n}\langle v\rangle_{i}r_{i}=0$ in (3.9).

Comparison argument with the boundary element method (BEM)

In order to solve (A.1) by the boundary element method (BEM) which is popular for

solving partial differential equations, we have to derive some integral equation as follows:

$\frac{\theta(\xi)}{2\pi}\tilde{P}(\xi)=\int_{C}E(x-\xi)\frac{\partial\tilde{P}}{\partial n}(x)ds-\int_{C}f(x)\frac{\partial E(x-\xi)}{\partial n}ds$ $(\xi\in C)$ , (A.5)

where $\tilde{P}$ is an approximate solution of (A.1) and $\theta(\xi)$ is a function defined by

$\theta(\xi)=\{\begin{array}{ll}inner angle at \xi if \xi is a corner,\pi if \xi is a smooth point.\end{array}$

In general, we divide $C$ into finite line segments which are called boundary elements, and

the above integral equation is represented as a finite sum of integrals on each boundary

element, that is, the boundary $C$ is approximated by a polygon.

References

[1] M. Bene\v{s}, M. Kimura and S. Yazaki, Second order numerical scheme for motion of
polygonal curves with constant area speed, Interfaces Free Bound. 11 (2009) 515-536.

[2] C. L. Epstein and M. Gage, The curve shortening flow, Math. Sci. Res. Inst. Publ.

7 (1987) 15-59.

132



[3] B. Gustafsson and A. Vasil’ev, Conformal and Potential Analysis in Hele-Shaw Cells,
Birkhaeuser (2006).

[4] H. S. Hele-Shaw, The flow of water, Nature 58 (1898) 34-36, 520.

[5] M. Katsurada and H. Okamoto, A mathematical study of the charge simulation
method. $I$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988) 507-518.

[6] M. Kimura, Numerical analysis for moving boundary problems using the boundary
tracking method, Japan J. Ind. Appl. Math. 14 (1997) 373-398.

[7] M. Kimura and H. Notsu, A level set method using the signed distance function,
Japan J. Indust. Appl. Math. 19 (2002) 415-446.

[8] H. Lamb, Hydrodynamics, 6th edition, Dover Publications (1945).

[9] K. Murota, $On$ “invariance” of schemes in the fundamental solution method
(Japanese), Information Processing Society of Japan 43 (1993) 533-535.

[10] K. Murota, Comparison of conventional and “invariant schemes of fundamental
solutions method for annular domains, Japan J. Indust. Appl. Math. 12 (1995) 61-
85.

[11] H. Okamoto and M. Katsurada, A rapid solver for the potential problems (Japanese),
The Japan Society for Industrial and Applied Mathematics 2 (1992) 212-230.

[12] D. \v{S}ev\v{c}ovi\v{c} and S. Yazaki, On a gradient flow of plane curves minimizing the
anisoperimetric ratio, IAENG International Journal of Applied Mathematics 43
(2013) 160-171.

[13] M. J. Shelley, F.-R. Tian and K. Wlodarski, Hele-Shaw flow and pattern formation
in a time-dependent gap, Nonlinearity 10 (1997) 1471-1495.

[14] M. Shoji, An application of the charge simulation method to a free boundary problem,
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986) 523-539.

[15] S. Yazaki, A numerical scheme for the Hele-Shaw flow with a time-dependent gap
by a curvature adjusted method, Advanced Studies in Pure Mathematics 64 (2014)
253-261.

133


