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A survey of simple formulas for generalized
conditional Wiener integrals on an analogue of
Wiener space

By

Dong Hyun CHO*

Abstract

Let C[0, T'] denote a generalized Wiener space, the space of real-valued continuous functions
on the interval [0, T]. In this survey paper we will introduce various simple formulas for the
generalized conditional Wiener integrals of functions on C[0,T] with several vector-valued
conditioning functions having a drift and then investigate their relationships. As applications
of the formulas we evaluate more generalized conditional Wiener integrals of functions on
C|0, T] including a time integral which are of interest in the Feynman integration theories and
quantum mechanics.

§1. Introduction

A time integral is simply the Riemann integral of a function of the continuous random
variable X (z,t) = z(t) with respect to the parameter ¢ for z € Cy[0,T] which is the
Wiener space, the space of continuous real-valued functions z on [0,7] with z(0) = 0
[16]. This means that the time integral of X (z,t) is a random variable Y on Cy[0, T
satisfying

T
Y(z) = /O F(t, X(z, t))dmy(t),

where F(t, X (z,t)) is Riemann integrable on [0, 7] and m, is the Lebesgue measure on
R. The Feynman-Kac functional F' : Cy[0,t] — C is given by

F(z) = exp{-— /OT V(t,X(m,t))dmL(t)}
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including the time integral, where X (z,t) is a standard Brownian motion process on
Co[0,T) % [0,T] and V is a complex-valued potential. Calculations involving the condi-
tional expectations of F' are important in defining and studying of a Feynman integral.
To evaluate the conditional expectation of F, Yeh [18, 19] introduced an inversion
formula given by a Fourier-transform which changes the conditional expectation to an
ordinary (i.e., non-conditional) Wiener integral when the conditioning function is single-
valued. But Yeh’s inversion formula for conditional Wiener integrals is very complicated
to apply when the conditioning function is vector-valued. Park and Skoug [13] intro-
duced more simple formula to evaluate the conditional Wiener integral when the value
space of the conditioning function is n-dimensional Euclidean space. Using the formula
they calculated the conditional expectation of F' and then generalized the Feynman-Kac
formula. Furthermore they [15] extended the results of [13] to much more general con-
ditioning functions which need not depend upon the values of the Wiener paths at only
finitely many points in [0,7]. Furthermore, when the conditioning function is single-
valued, they [3, 14] extended the results of [15] to the conditioning function which has
a drift. We note that every Wiener path starts at the origin on the classical Wiener
space Cy[0,T].

On the other hand Ryu and Im [11, 17] introduced an analogue of Wiener measure
space (C[0,T), B(C0,T]), w,), where C|[0, T} is the space of continuous functions on the
interval [0, T], w,, is a probability measure on the Borel class B(C[0,T]) of C[0,T] and
@ is a probability measure on the Borel class of R, that is, it is the initial distribution
of the paths in C[0,7]. On this space C[0,T] the author [4] derived a simple formula
for a conditional expectation which corresponds to the formula in [13] and in which the
conditioning function contains both the initial position z(0) and present position z(7T')
of the paths z in C[0,7T]. Furthermore he [5] generalized the formula in [4] removing the
present position z(T") in the conditioning function. The author [6] also generalized the
formula in [4] using the Paley-Wiener-Zygmund integral in the conditioning function
and he [7] then did the formula in [6] giving a drift to the conditioning function. In the
formulas in [6] and [7] the conditioning functions do not contain the initial positions
of the generalized Wiener paths in C[0,T]. Recently the author [9] generalized the
results in [4, 5, 6, 7] giving the initial position of the generalized Wiener paths to the
conditioning function. We note that all the works on C[0, T'] reduce to those on Cy[0, T}
if we take ¢ = dg, the Dirac measure concentrated at 0.

In this survey paper we will introduce various simple formulas for generalized con-
ditional Wiener integrals of functions on C|[0,T] with the conditioning functions having
a drift and then investigate relationships among the simple formulas. As applications
of the formulas we evaluate more generalized conditional Wiener integrals of the func-
tion F' on C|[0,¢] with the drift which is of interest in the Feynman integration theories
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themselves and quantum mechanics.

§2. An analogue of Wiener space

Let C denote the set of complex numbers, let m; denote the Lebesgue measure on
the Borel class B(R) of R and let (-,-)g denote the dot product on R™.

For a positive real T, let C[0,T] be the space of all real-valued continuous functions
on the closed interval [0,T] with the supremum norm. For ¢ = (to,t1,- -+ ,tn) with
0=tg <ty <+ <tp <T,let Jr: C[0,T] - R™* be the function given by

Ji(z) = (z(to), z(t1), -+ , z(tn)).

For Bj (j =0,1,--- ,n) in B(R), the subset thl(l_[;.’:O B;) of C[0, T is called an interval
and let 7 be the set of all such intervals. For a probability measure ¢ on (R, B(R)) let

n
My (Ji'_l (H Bj)) :/ / Wn+1(t_3 Ug, U1, " -~ 7un)dmz(u11"' ’un)d(P(uO)a
By H;=1 BJ'

Jj=0
where
W1 (B uo,ua, -+, )
1
_ [H _1_] ; exp{_l 3 Mﬁi}
=1 27T(tj - tj-—l) 2 = tj - tj—l

B(C[0,T]), the Borel g-algebra of C[0,T], coincides with the smallest o-algebra gen-
erated by 7 and there exists a unique probability measure w, on (C[0,T], B(C[0,T]))
such that w,(I) = m,(I) for all I in Z [11, 17]. This measure w, is called an ana-
logue of Wiener measure associated with the probability measure . For t € [0,T]
and z € Cy[0,T] define the Wiener process W; by Wy(z) = z(¢). For t € [0,T) and
z € C[0,T] let X;(z) = z(t). It is well-known that the Wiener process W; is the stan-
dard Brownian motion process. On the other hand X; need not be a Brownian motion
process since Xo(z) = z(0) can take arbitrary values, that is, X; can have arbitrary
initial distribution. We note that W; is normally distributed with mean 0 and variance
t, but X; need not be if ¢ is not the Dirac measure dg concentrated at 0.

Let F : C[0,T] — C be integrable and X, be a random vector on C[0,T] assuming
that the value space of X, is a normed space equipped with the Borel o-algebra. Then we
have the conditional expectation E[F|X,| of F given X, from a well known probability
theory. Furthermore there exists a Px_-integrable complex valued function v on the
value space of X, such that E[F|X;](z) = (¢ o X;)(z) for wy-a.e. z € C[0,T], where
Px_ is the probability distribution of X;. The function 1 is called the conditional
w,-integral of F' given X and it is also denoted by E[F|X,].
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Let {di : k =1,2,---} be a complete orthonormal subset of L[0, 7] such that each
dy, is of bounded variation. For v in L3[0,T] and z in C[0,T] let

n—oo

n_o T
(v,z) = lim Z/o (v, dg)2dk (t)dz(t)

if the limit exists, where (-, )2 denotes the inner product over Ly[0,T]. (v,z) is called
the Paley-Wiener-Zygmund integral of v according to = [17]. Let h € L3[0,T] be of
bounded variation with & # 0 a.e. on [0,7) and let a € C[0,T]. Define Xo(z) = z(0)
for z € C[0,T] and define stochastic processes X,Y,Z : C[0,T] x [0,T] = R by

X(x’t) = (X[O,t]h’m), Y(IE,t) = (X[O,t]hax) + a(t)
and
Z(JJ, t) = (X[O,t]ha 33) + Xo(iE) + a(t)

for 2 € C[0,T] and for ¢ € [0,T). Let b(t) = J5(h(u))?du and let 0 =to < t; < --- <
tn < tp+1 = T be a partition of [0, 7. For j=1,---,n,n+1let

b(t;) — b(t) b(t) — b(tj-1)

0= ) =30 = b b )

for t € [tj—1,t;] and

a3 (s,t) = a3 (t)B](s)(b(t;) — b(tj-1))
for s,t € [tj—1,t;]. Define random vectors Z, : C[0,T] - R"*! and Z,, : C[0,T] —
R+ by
Zn(z) = (Z(,t0), Z(z, 1a),- -+, Z(T;1n))
and
Zni1(x) = (Z(z,t0), Z(zy 1), -+ Z(Xytn), Z(Tytnt1))

for z € C[0,T]. For any function f on [0,7] define the polygonal function Py pn41(f) of
f by
n+1

(21)  Ponra (O = D Xty 1,6 OG0 F (£5-1) + BV F (1] + x1103 () f (f0)

j=1

for t € [0,T], where X(tj_1,t;) @0d X{z) denote the indicator functions. For 5_;1+1 =
(€0,€1,7+ + €ny Ent1) € R™2 define the polygonal function Py 11 (€ns1) of €nt1 by (2.1),
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where f(t;) is replaced by &; for j = 0,1,--- ,n,n + 1. If &, = (&,&1, -+ ,&) € RV,
P,,,n({n) is interpreted as x[o,tn]Pb,nH(gnH) on [0,T]. For z € C[0,T] and for t € [0, 7]
let
Zymar(@1) = Z(2,8) = Pons1 (22, ))(#) and A(t) = a(t) — Py psn(a)().
For a function F' : C[0,t] = C let Fz(z) = F(Z(z,-)) for z € C[0,T]. We have the

following theorems from [9].

Theorem 2.1. Let F be a complex valued function on C[0,T] and Fz be integrable
over C[0,T]. Then for Pz, ., -a.e. {nyq € R™H2

E[FZ|Zn+1](5n+1) = E[F(Zb,n+1($, ) + Pb,n+1(5n+1))],

where the expectation is taken over the variable x and Pz, . is the probability distribu-

tion of Zp+1 on (R"2, B(R"+2)).

n+1

Theorem 2.2. Let F be a complex valued function on C[0,T] and Fz be integrable
over C[0,T]. Let Pz, be the probability distribution of Z, on (R™*!, B(R")). Then
for Pz, -a.e. & = (£o0,&1,+++ ,&n) € R
. 1 3 -
E{FZIZTL](gn) = |:27T(b(T) — b(tn)):l AE[F(Zb,n+1(m’ ) + Pb,n+1(£n+1))]

(ént1 — a(T) — (6n — altn)))?
X exp} —
p{ 2(6(T) - b(tn))

}dmL (én+1);

where &1 = (€0,€1,++ »&n>Ent1)-

Define the polygonal function [z] of z on [0, T] by the right hand side of (2.1) with
b(t) = t and with replacing f(¢;) by z(¢;) for j = 0,1,--- ,n,n + 1. Similarly for
1 = (€0,&1, 1 €ny€ns1) € R™T2, define the polygonal function [€n11] Of &ny1 on
[0,T] by the right hand side of (2.1) with b(t) = ¢ and with replacing f(t;) by &; for
7=0,1,--- ,n,n+1.

Letting h = 1 and @ = 0 on [0, T] we have Z(z,t) = z(t) and b(t) = t for x € C[0, T
and for ¢ € [0, so that we can obtain the following simple formulas in [4, 5].

Corollary 2.3. Let X, : C[0,T] — R"*2 be given by
(2:2) Xr(z) = (z(to),z(t1), -+, 2(tn), T(tn+1))
and let F' : C[0,T] — C be integrable. Then for Px_-a.e. €ns1 € R™2 we have
E[F|X,)(€nt1) = E[F(z — [2] + [€nsa])],

where Px_ is the probability distribution of X, on (R"+2 B(R"*2)).
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Corollary 2.4. Let X, : C[0,T] = R™""! be given by
Xi(z) = (2(to), 2(t1), -, z(tn))

and X, be given by (2.2). Moreover let F be defined and integrable on C[0,T] and
Px.. be the probability distribution of X, on (R"™, B(R™*1)). Then for Px, -a.e. &, =
(507515 e 1§n) S Rn+1’ we have

E[F|X,)(&,) = {m]%AE[F(x— [=] + [&H])]exp{—(—%&_}l:——fﬁ)—z}

dmr(€n+1),
where &, = (§0,61,+ 1 6n) and &nt1 = (€0,61,++  ns Ent1)-
Define random vectors Yy, : C[0,T] = R™ and Y,,11 : C[0,T] = R™*! by
Yo(z) = (Y(z,t1), -, Y(z,tn))
and
Your(z) = (Y(,t1), -, Y@, t), Y (@, tny1)) for @ € C[O, T).

For f_;ﬂrl = (&1, ,&n,€nr1) € R™M! define the polygonal function Pb,n+1,0(gn+1) of
§n+1 by the right hand side of (2.1), where f(¢;) is replaced by §; for j = 0,1,--- ,n,n+1
with o = 0. Let o € R and let ¢, be a measure on (R, B(R)) such that ¢,(B) =
¢(B + a) for B € B(R).

We now have the following theorems [7].

Theorem 2.5. Let F : C[0,T] — C be a function and Fy(z) = F(Y(z,-)) be
W, -integrable over the variable z. Then for Py, -a.e. &np1 € R (hence for a.e.
§n+1 € Rn+1>

E[Fy|Yn41](nt1) = B[F(Y (z,") = Ponra(Y(@,-)) + Ponrroasn))],

where the expectation is taken over w,, and Py, is the probability distribution of Y, 11
on (R*1 B(R™*1)).

Theorem 2.6. Let F : C[0,T] — C be a function and Fy be w,_-integrable over
the variable x. Moreover let Py, be the probability distribution of Y, on (R™, B(R™)).
Then for Py, -a.e. 5n = (&1, ,&n) € R™ (hence for a.e. o € R™)

1
27 (b(T) — b(tn))

F/RE[F(Y(% ) = Pons1(Y(,-))

- — a(T) = (én — a(tn)))?
Hneolen) exp{’” (o }dmL(§"+l)’

BRIV )(E,) = [

where €n+1 = (&1, ,&n,&n+1) and the expectation is taken over w,,, .
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Define a random vector X, : C[0,T] — R™ by
Xn(z) = (X(z,t1), -, X(2,tn))
and define X, : C[0,T] —» R**! by
Xny1(z) = (X(2, 1), , X (2, tn), X (2, tnt1))

for z € C[0,T).
Letting a = 0 we have the following corollaries [6].

Corollary 2.7. Let F : C[0,T] — C be a function and Fx(z) = F(X(z,-)) be
W, -integrable over the variable x. Then for Px,_ -a.e. 5n+1 € R™"*! (hence for a.e.
€ns1 € R™HY)

E[Fx|Xns1](én+1) = EIF(X(2,") = Pons1(X (2, ")) + Pony1,0Ent1))),

where the expectation is taken over w,, and Px is the probability distribution of

Xnt1 on (R*1 B(R™F1)).

n+1

Corollary 2.8. Let F : C[0,T] — C be a function and Fx be w,, -integrable over
the variable x. Moreover let Px, be the probability distribution of X,, on (R™, B(R")).
Then for Px, -a.e. &, = (€1, ,&) € R™ (hence for a.e. &, € R™)

E[Fx|X.)(&) .
[27l’(b(T)_b(tn } /E[F X(z,) - Pb’"+1(X(m"))+Pb,n+1,0(€n+1))]

(fn 1 _gn)
X exp{—Q(b(;) b)) }dmL(§n+1)>

where §:;L+1 = (&1, ,€n,&ny1) and the expectation is taken over w,, .

Remark. 1. The conditioning functions X;, Xp4+1, Yn+1 and Z,;; contain the
present positions of the generalized Wiener paths, but X, X,, Y, and Z, do
not. Moreover the conditioning functions X, X, Z, and Z,; contain the initial
positions of the generalized Wiener paths, but X,,, Y, X,,+1 and Y,,;; do not them.
These mean that we can not obtain Theorems 2.5, 2.6 and Corollaries 2.7, 2.8 from
Theorems 2.1 and 2.2.

2. Ifh = 1 on [0,T), then Fx (z) = F(z—=(0)) and Xp11(z) = ((t1)—(0),--- ,z(tn)—
z(0), z(tn4+1) — 2(0)) so that Corollary 2.7 generalizes Theorem 3 in [13] with
Wy, = 6o which is the Dirac measure concentrated at 0.
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3. If ¢ = &, then w,, is the Wiener measure on Cy[0,t] so that Corollary 2.7 is a
generalization of Theorem 3 in [14].

4. Corollary 2.7 is a generalization of Theorem 2.9 in [4] only when ¢ = d.

5. If a(0) = 0, h = V¥ and ¢, = &, then we can obtain the space C, [0, 7] in [2]
by Theorem 12 in [7]. Furthermore if Y is replaced by the generalized Brownian
motion process z(t) on C,3[0,T] x [0,T] and we let ¢, = Jg, then we can also
obtain Theorem 3.4 in [2] by Theorem 2.5. If we let a = 0 and ¢, = Jo, then we
can obtain Theorem 3 in [14] by Theorem 2.5. If we let n = 0 and ¢, = o, then
we can obtain Remark 2.2 in [3] by Theorem 2.1. Finally if we let h = 1, ¢, = &9
and a = 0, then we can obtain Theorem 2 in [13] by Theorem 2.5 which is among
the first result expressing the conditional Wiener integrals of functions on Cy[0, T
as ordinary (non-conditional) Wiener integrals.

6. All the results of this paper do not depend on a particular choice of the initial
distribution ¢ on (R, B(R)).

§3. Conditional expectations of functions on time integrals

In this section we evaluate generalized conditional Wiener integrals of the function
exp{ fOT Z(z,t)dm(t)} including a time integral.
To do this let ¥,,(8) = [0(s1, Sk)}mxm be the matrix given by

o(sy,8K) = ag(min{sl, Sk}, max{sy, sk })

and let

1
(2m)™|Zm (3)]
for @ € R™ and § = (s1,--+,8m) € R™, where t;_; < 83 < ++- < 8, < t; and

A(3) = (A(s1), -+, A(sm))-
Applying Theorem 2.1 we have the following theorem [9].

U0 (5,) = * exp] L5 (91— A@). T AD)x
| | e }

Theorem 3.1. Let tj—1 < $1 < -++ < 8, < t; and let Hp(5,2) = z(s1) -+ - x(5m)
for z € C[0,T)]. Suppose that [ |u|™dp(u) < co. Then for Pz, -a.e. €ny1 € RMT2

E[(Hn(5,))2|Zn41](6ns1)
= Jen (w1 + Poni1 (Gni1) (1)) -+~ (um + Pogntr (Eni) (sm)) U (8, @) d(mp)™ (@),

where €@ = (U1, , Up).
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Example 3.2. If m = 1, then by Theorem 3.1 we have for Pz, -a.e. €n+1 € Rnt+2

E[(H;(s1, ‘))Z|Zn+1](gn+1) = A(s1) + Pb,n+1(€n+1)($1)-

If m = 2, then
_ |0%(s1,81) 02(s1,82) | _ (b(t;) — b(s2))(b(s2) — b(s1))(b(s1) — b(t;-1))
|E2(‘§)l ) b -
05(s1,82) 07(52, 52) b(t;) — b(tj-1)
and
b(s2)—b(t;—1) . b(s1)—b(t;—1)
— bz—bl bl—btj_l b(s —b31 b -b j—
221(5') — {_( (s2) gS(sz))(_gft])_l)( ) (b(s2) b((tj))—(b(z;) (t-1)) | |
(b(s2)—b(s1))(b(s1)—b(t;-1))  (b(t;)—b(s2))(b(s2)—b(s1))

Moreover for Pz, -a.e. £nq1 € R*12

E[(H3(3,)) 2| Zn+1](Ens1) = 05(s1, 82) + (A(51) + Pon1(€nt1)(51))
X (A(s2) + Pont1(€nt1)(s2))

which is a generalization of (2) in Theorem 23 of [7].
By Theorem 2.2 we have the following theorem [9)].

Theorem 3.3. Let the assumptions and notations be as given in Theorem 3.1 and
let j € {1,--- ,n—1}. Then for Pz, -a.e. & = (0,1, ,&n) € R™F!

E[(Hm(g’ '))ZlZn](é:n) .
= [+ Pal@)(60) -t + Pon(E)5m) W5, D) @)

Example 3.4. If m = 1, then by Theorem 3.3 we have for Pz,_-a.e. &, € R™+!
E[(Hi(s1,)21Z4)(€) = A1) + Pon(€n) (s1)-
If m = 2, then we have for Pz_-a.e. &, € R*H!
E[(Hz2(5, )21 Za)(&) = 03(s1, 52) + (A(s1) + Pon(€n) (51)) (A(52) + Pon(En)(s2))
which is a generalization of (2) in Theorem 24 of [7].
We also have the following theorem by Theorem 2.2 [9].

Theorem 3.5. Let the assumptions and notations be as given in Theorem 3.1 and
letth<s1< - <8m<tpp1=T. Foré, €R and @ = (u1, -+ ,um) € R™ let

b(s1) — b(tn) b(s1) — bltn)
B a(any @D —altn)) + Zrmms z) .

b(sm) — b(tn) b(sm) — b(tn)
b(T) — b(t,) (alT) = alta)) + b(T) — b(tn)z)

Pg,g,gn (z) = <U1 + & +

X('U'm‘f'fn"‘
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m
Z a/l(g) ﬁa E’n)zl
=0

for z € R, where §=(s1,--- ,5m). Then for Pz -a.e. &, = (€0,€1, -+ ,&) € R™H!

L EHoap
El(Hn(5 D2l Z(E) =3 T [ 08,605 Dilme)" (@),
=0 : m

»f3

where [3] denotes the greatest integer less than or equal to %

Example 3.6. Let the assumptions and notations be as given in Theorem 3.5. If
m = 1, then by Theorem 3.5 we have for Pz _-a.e. & = (&0, &1, -+ ,&n) € RPHL

E[(Hi(s1,))21Z0)(&) = a(s1) = a(tn) + &n.
If m = 2, then we have for Pz -a.e. &, = (€o,&1,--- ,&) € R
E[(H2(3,)) 2| Za] (60)
=& + En(A(s1) + A(s2) + (a(T) — a(tn)) (Baya(s1) + Brsa(52))) + (A(s1)
+Bp11(51)(al(T) = a(tn)))(A(s2) + Bhs1 (s2)(a(T) = a(tn))) + Bhi1(s1)
% Bp41(s2)(O(T) = b(tn)) + o1 (51, 52)
which is a generalization of (5) in Theorem 24 of [7].

Now we have the following two theorems [9].

Theorem 3.7. Let the notations be as given in Theorem 3.1 and let
T
H(z) = exp{/ x(t)dmL(t)} for a.e. x € C[0,T].
0

Suppose that [ exp{T|u|}dp(u) < oo and E[exp{lftij_1 X(,t)dmp(t)|}] < oo for j =

1,-- ,n+1. Then for Pz, ,-a.e. ént1 € R*? Elexpf| fttjj_l Z(, )dmp ()|} Znt1] (Ensr)
exists and

n+1 )
E[HZIZn+1}(gl+1) = H ':1 + Z /A E[(Hm(g, '))Z|Zn+l](§n+1)d(mlz)m(§) )
j=1 m=1 m,j
where Ap, j = {(s1,-+ ,8m) 1 tjm1 < 1 < -+ < S < t;} and E[(Hp(8,°))z|Zn+1] is

as given in Theorem 8.1. Moreover if Elexp{| fttjj—l Z(-,t)dmp,(t)|}| Zns1](0) exists for
j=1,---,n+1, then E[HZ!Z,LH](EnH) can be represented by

n+1

BlH 2 Eor) =ex0] [ PraEorn)ame 0} TL[14

j=1

2/Am,j /m w1 U U (5, ﬁ)d(mL)m(ﬁ)d(mL)m(g)].
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Theorem 3.8. Let the notations and the first part of the assumptions in Theorem
3.7 be given. Then for Pz, -a.e. £, € R E[Hz|Z,)(€,) is given by the right hand
side of the first equality in Theorem 3.7 with replacing E[(Hm(S, .))Z[Zn+1](§n+1) by
E[(Hm(3,))z|2:)(&,), where the E[(Hpm(5,-))z|Zn)(€x)s are as given in Theorems 3.3
and 8.5. Moreover if the second part of the assumptions in Theorem 8.7 holds, then
E[H Z|Zn](fn) 1s given by the right hand side of the second equality in Theorem 3.7 with
replacing

exp{ /0 ' Pb,n+1(§“n+1)(t)dmL(t)}

exp{ [ Pun(E)(0dmu(0) + J0(T) - ben) (B(T) - Bt))

Ha(T) — ata))(B(T) = B(ta)) + &u(T — m},

where $B(t) = B4, () = RR—a and & = (€0,&1,+ ,6n).

Example 3.9. 1. Let h = 1. Then X(z,t) = z(t)—z(0) sothat for j = 1,--- ,n+1

E{exp{
tj-1

which is finite by Theorem 1.4 of [12]. Hence E[Hz|Z,+1] and E[Hz|Z,] are given
by Theorems 3.7 and 3.8, respectively, with b(t) = ¢ and £B(t) = A= for ¢t €
[0, 7.

tj

X(~,t)dmL(t)m SE[exp{T sup lw(t)—-m(O)IH

0<t<T

2. Let h(u) = T — u for u € [0, 7] and suppose that [ exp{M|u|}dp(u) < oo, where
M = max{T,2T?}. Then for j =1,--- ,n+ 1 and z € C[0,T] we have
tj

X(z,t)mm)] <21 sup_ [a(t) - 2(0) + T70(0)

ti—1

so that

/ exp{
Clo,T) ti 1

<| [ ew(ar?ultdot) % | o exp{4r? s Ja(t) - 20| fdu, ()]

which is finite by Theorem 1.4 of [12]. Now E[Hz|Z,+1] and E[Hz|Z,] are given
by Theorems 3.7 and 3.8, respectively, with b(t) = 3[T® — (T — t)®] and £ B(t) =

1—(F=E)3 for t € [0, T).

tj

X(z,t)ymp(t) 1 }dw¢(m)

1
2
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§4. Evaluation formulas for other functions

In this section, using the simple formulas in the previous section, we derive evaluation
formulas for generalized conditional Wiener integrals of various functions which are
interested in Feynman integration theories themselves and quantum mechanics.

We have the following theorems from Theorem 3.2 of [8] and Theorems 21, 22, 23,
24, 25 and 26 of [7].

Theorem 4.1. Let m € N and F, fo z(t))™dmy(t) for z € C[0,T]. Suppose
that [, |u|™dp(u) < co. Then for PZ -a.e. &ppq € ROT2

n+4+1

[(Fm)Z’Zn+1](gn+1)

n+1 [F
—zzm.(m ol / (A) + Ponsr (Ens) ()™ 2 (03(t, ) dm (8),
Jj=11=0

where %] denotes the greatest integer less than or equal to 3

Theorem 4.2. Let the assumptions be as given in Theorem 4.1 and for En = (o, &1,
Ty gn) S Rn+1 let

m/!

=) =3 s / :(Au) T Py () (O)™ 2 (002, ) dm (1),

Then for Pz, -a.e. &, € R™+1

E[(Fm)z|2n) ()

%‘“ m—21

k(5]
CeF = a(tn))P 2 (b(T) = b(tn))?
=&+ 2::5;: 2l+ql'q'(k p)l(p — 29)!(m — 2 — k)!

x / <a£;+1<t,t))l(ﬁzﬂ<t>>P<A(t>>M~2l~kdmL<t>.

Theorem 4.3. Let 0 < 57 < s < T and let s; € [t;_1 — t], s2 € [tj—1 —t;]. For
x € C[0,T] let G(z) = z(s1)x(s2) and suppose that [, u?dp(u) < oo.

1. Ifl # j, then for Py, -a.e. £nqq € R7T2

E|G2|Zn41](€ns1) = (A(51) + Pon1(Ens1) (1)) (A(s2) + Por1(€ns1)(s2)).
2. IfI<n, j <n andl# j, then for Pz -a.e. &, € R*1

E[Gz|Zn)(€n) = (A(51) + Pon(€2)(51))(A(52) + Pon(€n)(52)).
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3. Ifl<n and j =n+1, then for Pz -a.e. En = (&, &1, ,&,) € R

E[Gz|Zn)(6n) = (A(52) + &n + Br11(52)(a(T) = a(tn))) (A(s1) + Pon(€n) (51))-

For j =1,---,n+1, let g; = _—b(—tﬁw—\/—.}b(_tj_—-_l)x(t"‘l’t"]h’ let V' be the subspace of
L3[0,T] generated by {g1, -+ ,9gn+1}, let VL be the orthogonal complement of V and
PL . L3[0,T] — V= be the orthogonal projection. Let M(L3[0,T]) be the class of all
complex valued Borel measures of bounded variation over L;[0,T] and let S,,, be the
space of all functions F which for ¢ € M(L3[0,T]) have the form

(4.1) F(z) :/L o exp{i(v, z) }do(v)

for w,-a.e. € C[0,T]. We note that S,,, is a Banach algebra [11].

Theorem 4.4. Let a be absolutely continuous on [0,T]. Let F € Sy, and o €
M(L3[0,T)) be related by (4.1). Then for Pz, -a.e. ni1 € RM2 E[Fz|Zpi1](Enst)
is given by

E[Fz| Zn41)(€nt1)
= / exp{i(v, A(t) + Pont1(€ns1))} exp{—%”?"‘(vh)”%}da(v).
L, [0,T]

Theorem 4.5. Let the assumptions be as given in Theorem 4.4 and for En € Rt
let

Do) = exp{itv, A + Pon(E) — 5IPH )3}

Then for Pz -a.e. &, € R E[Fz|Z,)(€,) is given by

E[FZ|Zn](5n)
(vh, gni1)2(a(T) — al(tn))

- ' 1 i
= /Lz[O,T] D(v,fn)exp{z bT) — () - §(vh,gn+1)2}do—(v),

Remark. 1. & =01in [1, 2, 3, 6, 7, 13, 14, 15] because the conditioning functions
in the references have no initial distribution, that is, they have the Dirac measure
@ = o as a initial distribution. On the other hand &, in [4, 5, 9, 11] can have
arbitrary real number according to the initial distribution ¢.

2. Using the methods as used in [10, 20, 21] with the conditioning functions Z, and
Zn+1 We can obtain the conditional w,-integrals of the cylinder functions and the
product of the cylinder functions and F' given by (4.1).
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Suppose that fR u?dp(u) < oo, if necessary, in each theorem, corollary and example
of this paper. Then by Lemma 2.5 of [8] both E[Xy] and Var[Xy] exist. Let
mz(t) = a(t) + E[Xo] and bz(t) = b(t) + Var[Xo] for t € [0,T]. Since for t1,t; €
[0, T]

mz(tz) - mz(tl) = a(tg) - a(tl) and bz(tz) - bz(tl) = b(tz) — b(tl),

a and b can be replaced by mz and bz, respectively, in each result of this paper.
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