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On the construction of the Feynman path integral for
the Dirac equation

By

Wataru ICHINOSE*

—/ % P

Abstract

The Feynman path integral for the Dirac equation is determined mathematically, in the
form of the sum-over-histories, satisfying the superposition principle. That is, it is given by
the “sum” of the probability amplitudes with a common weight, over all possible paths that go
in any direction at any speed forward and backward in time. It has been expected by Feynman
himself for a long time that the Feynman path integral for the Dirac equation is represented
in this form.

§1. Introduction

In the present paper the Feynman path integral for the Dirac equation in the general
dimensional space-time is determined mathematically, in the form of the sum-over-
histories, satisfying the superposition principle. That is, it is given by the “sum” of
the probability amplitudes with a common weight, over all possible paths that go in
any direction at any speed forward and backward in time. It has been expected by
Feynman himself for a long time that the Feynman path integral for the Dirac equation
is represented in this form.

Moreover, we will show other mathematical results and some remarks in the present
paper We will not give a detailed proof of our results and so recommend readers inter-
ested in our results to see papers [17], [18] and [19].

We denote the electric strength and the magnetic strength tensor by E(t,z) =
(Ei1,...,E4) € R and (Bjx(t, 7)) 1<j<k<d € RUD/2 for (t,z) = (t,21,...,%4) €
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R%t!, respectively. We introduce an electromagnetic potential (V(¢,z), A(t,z)) =
(V, Al, ceey Ad) € Rd+1, i.e.

0A OV
(11) E = "—8t— - _a—ﬂ;’
DAL 0A;

L= <3 <
where 0V/0z = (0V/dz1, . ..,0V/0z4).

Let ¢; € R be an initial time and f(z) = *(fi(z),..., fx(z)) € CV an initial proba-
bility amplitude. We consider a more general equation than the Dirac equation

(1.2) m%%‘(t) = H(t)u(t)

d
N (h O —
= ~D 2 2 A 2
= C;a (z bz, eAg(t,$)> + Bmc® + eV (t, )| u(t)

with u(t;) = f as in (11) of §67, p.257 of [4], where u(t) = *(uy(t),...,un(t)) € CV,

av(j =1,2,...,d) and B are constant N x N Hermitian matrices, ¢ is the velocity

of light, h is the Planck constant and e is the charge of an electron. For the sake of

simplicity we suppose i = 1 and e = 1 hereafter. We note that through the present

paper constant matrices a¥) ( = 1,2,...,d) and B are assumed to be simply Hermitian.
Let us take the Hamiltonian function

d
(1.3) H(t,z,p) =cy_a? (p; — A;(t,z)) + Bmc® + V (t,z)
j=1

as in (23) of §69, p.261 of [4], where p € R? is the canonical momentum. We write the
kinetic momentum as £ := p — A(t,z) € R%. Then the Lagrangian function is given by

(14) c(t7z’m.’ 6) = p * i - H(t’m’p)
=¢ i+ Alt,z) - V(t,z) — (ca- & + Bmc?),

where ¢ € R%,p- & = Y0 pjéj,a = (@Y,...,6@9) and &- £ = 0_, a0)¢;.

In the present paper we will determine the Feynman path integral in phase space
mathematically in terms of the Lagrangian function (1.4). Let ; e R(j = 1,2,...,v—1)
and define a time division A := {7 }J";ll We don’t necessarily assume 7; < 7j41. It is
possible that 7; > 7, for some j hold. Weset o =%; and 7, =t. Let z € R be fixed.
We take arbitrary points /) € R4 (j = 0,1,...,v—1) and determine a piecewise linear
path (©a,qa(z®,...,2¢1 2)) in R¥*! joining (15,z?) (j =0,1,...,v,2) =1) in
order. We also take arbitrary points £¢) € R¢ (j = 0,1,...,v — 1) and determine a
piecewise constant path (©a,&a (€@, ...,£#~1D)) in R%*! by using £a that takes value
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¢0) (j=0,1,...,v~1) for 0 € [r;,7541] if 73 < Tj41 08 0 € [1j41,75] if 741 < 75. We
note that the paths (©a,qa) and (©a,£a) go in any direction forward and backward
in time and that ga has any speed, even the infinite speed.

Let t and s be in R and ¢ # s. For = and y in R? we define

(15) a(0) ==y +-—(z—y)

ins<@<tort<f<s Let £ € RE We consider a path (¢4%(6),£) € R?® in phase
space. Then the classical action is given by

(16) (tszs,y>—/ﬁ<oq 6),d%,(6).6)dh = (2 — ) - €
T / {d50) - A6,455/(0)) — V(6,45,(6)) }ab - (¢ — 5)(cGi - € + Bme?)
1
=<x—y>-s+<w—y>-/0 At~ 8p,z — Bz — y))d8

1
—p/ V(t—6p,z —0(z —y))df — p(c@ - £+ Bmc?), p=t—s
0

from (1.4), where ¢%%,(8) = dg%5,(0)/d6. From (1.6) we define S(s, s;x,,y) by
. .
(1'7) S(Sa 53 xag’y) = (x—y) '§+($'—y) /0 A(s,x—&(x—y))d&,

which we write / L(0,q375(0),4d375(8),£)do formally.

We take x € C°(R?), i.e. an infinitely differentiable function in R% with compact
support, such that x(0) = 1. The approximation Kpa(t,t;)f of the Feynman path
integral Kp(t,t;)f for the Dirac equation (1.2) is determined by

(1.8)  Kpa(t,t;)f = / / e*15(taa.88) £ (2D DEA

v—1
= lim / / o*iS(t,aa€a) f(m<°>)H{X(exU))X(egU))}dm((’)~-dm<”—1>
3=0

e—+0

g ... getv-1)

for f = *(f1,---,f1) € S(R})¥, i.e. the Schwartz rapidly decreasing function, where

del) = (2m)~?d¢() and the probability amplitude exp *iS(t, ga, £a) for a path (04, ga, €a)
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is defined as a product of matrices in terms of the Lagrangian function (1.4) by

(1.9)
t Ty—1
expi [ L0675 (0,5t 0.6 )b expi [ LG, 5 0),
Tv—1

Ty—2
T1

G (0,6 7)d0 - expi | LG 0 (6), Qo) a0 (8), €)db.

It will be proved in Theorem 1.1 below that Kpa(t,t;)f is determined independently
of the choice of x. The last equation in (1.8) is called the oscillatory integral and often
written as

os_/.../e*iS(t,qA,ﬁA)f(x(O))dx(O)...dx(v—l)d‘g(ﬂ) o derh)

(cf. p. 45 of [21]).
Let L?(R%) denote the space of all square integrable functions in R4 with inner

product (f,g) := [ f(z)g(z)dz and norm || f||, where g(x) denotes the complex conjugate
of g(z). We denote the product Hilbert space of N copies of L*(R%) by L?(R%)N and
write its norm as || fl| = /Y 5_ lfsll for f =*(f1,..., fa)-

For an z = (z1,...,24) € R? and a multi-index o = (a1,...,aq) we write |o =
Z?.—_l aj, & = z7* - 134,80, = 0/0x; and Oy = O3} ---09¢. The main theorem in
the present paper is the following.

Theorem 1.1 ( [19]). Let 0%E;(t,z) (j =1,2,...,d),09Bjx(t,z) (1 < j <k <d)
and 0;Bji(t, x) be continuous in R for all o. We assume the adiabatic hypothesis:
There exists a sufficient large Ty > 0 such that

(1.10) E(t,z) =0, Bjx(t,z) =0 (1< j<k<d)
for |t| > To (p. 93 in [25]). In addition, we assume

(1.11) 07 Ej(t,2)| < Cay o] 2 1,

(1.12) |02 Bk (t,z)| < Co <z >~ 48 o] > 1

in R with constants 6o > 0 for j,k = 1,2,...,d. Let (V,Ay,...,Aq) be an electro-
magnetic potential inducing E(t,z) and (Bjr(t,x))1<j<k<d Via equation (1.1) such that
V,0,,V,0;Ax and 85, Ak (j,k =1,2,...,d) are continuous in R4t1.

Let us define Kpa(t,t;)f for f € SN by (1.8) for a time division A. We define

v—1

(1.13) o(A) =) (r41 —73)?,

j=0
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where ' means the sum excluding the term (7j41 — 7;)* such that 75,741 > T or
7, Tj+1 < —To. Then we have: (1) Kpa(t,t;) on SV is determined independently of
the choice of x and can be extended to a bounded operator on (L*)N. We have

(1.14) |Kpa(t,t:)fl| < oo 7|

for all t,t; in R with a constant Ko > 0. (2) Let f € (L?)Y. Then, as o(A) — 0,
Kpa(t, t;)f converges in (L?)N uniformly with respect tot € R andt; € R. We call this
limit the Feynman path integral and write it Kp(t,t;)f. (3) Kp(t,t;)f for f € (L®)N
belongs to EX(R; (L*)N) and is the solution to the Dirac equation (1.2) in distribution
sense with u(t;) = f, where £ (R; (L*)N) (j = 0,1,...) denotes the space of all (L?)N -
valued j-times continuously differentiable functions int € R. (4) Let t; < t; <t. Then
we have the rule for two events:

Kp(t,t;)f = Kp(t,t1)Kp(ti,t:)f, Kp(t,t1)f = Kp(t,t:)Kp(ti, t1)f

for f e (L*)N. (5) Let ¢(t,x) be a real-valued function such that 8,,0,,%(t,x) and

B0z, 9(t, ) (j,k =1,2,...,d) are continuous in R and consider the gauge transfor-
mation
oY oY
1.15 "=V -1, A=A4;,+L.
(1.15) v ot =4t 5y

We write (1.8) for this (V/, A’) as Kpa(t,t;)f. Then we have the formula
(1.16) Kpalt,t)f = eV Kpa(t,ti) (e_iw(ti")f)

for all f € (L?)N. (6) Let us define the subset A’ of A with the same ordering as in
A by the compliment of {r; € A (j > 1);7j—1,7j,Tj+1 = To or 7j—1,7j,Tj+1 < —To}.
Then we have

Kpa(t,ti)f = Kpa(t,t:)f.

We could say from (1.8) that the Feynman path integral Kp(t,t;)f is written in
the form of the sum-over-histories, satisfying the superposition principle. That is, it
is given by the “sum” of the probability amplitudes with a common weight over all
possible paths that go in any direction at any speed forward and backward in time.

This form of the Feynman path integral is the one that Feynman stated repeatedly.
F. Dyson says the following on p.376 of [5]: Thirty-one years ago, Dick Feynman told
me about his “sum over history” version of quantum-mechanics. “The electron does
anything it likes,” he said. “It just goes in any direction at any speed, forward or
backward in time, however it likes, and then you add up the amplitudes and it gives
you the wave-function.” I said to him, “You're crazy.” But he wasn’t.
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We recommend readers interested in this fact to see also p.752 of [6], p.772 of [7]
and p.163 of [9]. We should note that at present, in the physical theory positrons are
represented as electrons going back in time (cf. p.61 of [23], p.54 of 25|, and pp.150
and 240 of [28]).

It is stated on p.38 of [8] that in the relativistic theory of the electron we shall not
find it possible to express the amplitude for a path as et
Moreover, it is stated by Feynman on p.169 of [9] that And, so I dreamed that if I were
clever, I would find a formula for the amplitude of a path ..., which would be equivalent
to the Dirac equation, .... I have never succeeded in that either.

On the other hand, we note that our way of representing the amplitude of an electron
in terms of the Lagrangian function, that I stated in Theorem 1.1 in the present paper,

, or in any other simple way.

is enough simple.

Now we go back to the past studies of the Feynman path integral for the Dirac
equation. There seems to be no past studies of the Feynman path integral in phase
space. All studies were made of that in configuration space. Consider the Dirac equation
in two dimensional spacetime

(1.17) z‘%%(t) = [ca“’) G% — A(t, x)) u+ BOmc + V(¢ x)} u(t),

where u(t) = *(u;(t), u2(t)) € C? and and

20— (10)  go_(0-1)
0-1 -10

Let (V,A) = 0 in (1.17). Suppose that the interval [t;, ] (t; < t) is divided into small
equal steps of length ¢¢ > 0. We consider all zigzags in the spacetime of straight
segments with velocity ¢ that go only forward in time. The amplitude for each zigzag is
given by (i€p)®, where R is the number of its reversals. It follows from the superposition
principle that the Feynman path integral was determined by (2-27), p.35 of [8]. See
Appendix E, p.118 of [27] in detail. In [10] and Theorem 2.1 of [11] the solution to a
general (1.17) was written in terms of a measure on the space of all continuous paths
in [t;,t]. In Theorem, p.8 of [1] and p.221 of [3] the solution to (1.17) was written in
terms of a Poisson process. All results in [1], [3], [10] and [11] does not satisfy the
superposition principle and also don’t consider paths that go backward in time.

Remark. We consider inhomogeneous Lorentz transformations. We set z¢ = ct.
Take a j such that 1 < 7 < d and a constant 0 < 8 < 1. The Lorentz transformation
called a boost is given by

zo = (o — Bx;)/V/1— 02, ;= (z;~ Bro)/V1- % =z =zk (k#])
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In addition, we know a rotation in the configuration space RY, the space reflection,
the time reversal and the translation in the configuration space RZ as other elementary
Lorentz transformations (cf. p.40 of [25]). It is also well known (e.g. Theorem 2 and a
canonical coordinate system of the second kind of the Lie group in §10 of Chapter IV of
[24]) that all inhomogenious Lorentz transformations can be represented as a product
of a finite number of elementary Lorentz transformations.

Let us take an initial point (¢;,2(®)) and a final point (¢,z) arbitrarily, and fix
them. We consider the space of all paths (Oa,qa(z@,...,2~1)) taking arbitrary
A and arbitrary ) € R? (j = 1,2,...,v — 1). Then, we can easily see from the
definition of a piecewise linear path (©a,qga) that this space is invariant under the
Lorentz transformation. So is the space of all zigzags in [8] with velocity c¢. On the
other hand, the space of all continuous paths in [¢;,¢], studied in [1], [3], [10] and [11],
is not invariant under a Lorentz boost.

We will explain an idea for proving our results. Let ¢ and s be in R. Let € > 0 be a
constant and x € C$°(R?) the function taken before. We define an operator

(1.18) (Gult)le) = [[ S0t fy)(ee)apae
for f € S(R?)Y in terms of (1.6) and (1.7). Then we can write
(1.19)  Kpa(t,t:)f = lim Ge(t, 7o—1)x(€)Ge(Tum1, To—2)x(€) - X(€)Ge(m, ti) f

from (1.8) and (1.9).

We will prove that {Ge(t,5)},_.., is a bounded family of operators from S(R%)™
into itself, that there exists an operator G(t, s) on S(R%)" independent of the choice of
x satisfying

(120) G(ta S)f = EIII(I) Ge(ta S)f
in S(R)N for f € S(R?)Y, that the stability
(1.21) IG(2, 8) £ < e £]

holds with a constant K, > 0 and that the consistency

(1.22) lim

lgﬂ#wm<>Mﬂ

G%—H@)aw@f

holds with a constant C' > 0 and a positive integer M, where < z >= /1 + |z|? and
f e SRHYN.
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From (1.19) and (1.20) we can easily see
(123) KDA(t, t,)f = G(t, Ty—l)G(Ty_l, 7',,_2) v G(Tl, ti)f

for f € S(RY)Y, which is determined independently of the choice of x. Let U(t,t;)f
for f € S(R%)" be the solution to (1.2) with u(¢;) = f. From (1.21) and (1.22) we will
prove that

“KDA(t> ti)f - U(t’ t’t)f” = ”G(ta Tl/"‘l) Tt G(Tlv tl)f - U(ta 7—1/—1) e U(Tla tz)f”

for f € L2(R4)N converges to 0 uniformly in t € R and ¢; € R as 0(A) — 0. It should
be emphasized that the theory of pseudo-differential operators plays an important role
to prove (1.21) and (1.22).

The plan of the present paper is as follows. In §2 some other theorems in addition to
Theorem 1.1 and some remarks will be stated. In §§3 and 4, a roughly sketched proof of
(1.21) and (1.22) will be given, respectively. In §5 a roughly sketched proof of theorems
in the present paper will be given.

§2. Other theorems and some remarks

Let M and a be positive integers. We introduce the weighted Sobolev spaces
By, (R := (£ € L2RYY; Ifllmg, = 171+ jagane 101 + Xjai—q 1021 < o).
Let By (R%)N denote their dual spaces. We set B}, (R%)N := LZ(R%)N. We can easily
prove

(2.1) S[RY) =NgZBy(RY), S'(RY) =UsZeBi (RY).

In the present paper we often use symbols C,C,,Cq4 s and C, to write down con-
stants, though these values are different in general. We note again that throughout the
present paper constant matrices @) (j = 1,2,...,d) and B in (1.2) are assumed to be
simply Hermitian.

We can prove the following on the Feynman path integral in the weighted Sobolev
spaces.

Theorem 2.1. We assume (1.10) - (1.12) in Theorem 1.1. Let (V, A) be an electro-
magnetic potential inducing E(t,z) and (Bjk(t,x))1<j<k<d via equation (1.1). We also
assume

(2.2) 02 4;(t, )] < Ca, ol 21
in [—2Ty, 2Tp] % R¢ for j =1,2,...,d and that there ezists an integer M > 1 satisfying

(2.3) 83V (t,x)| < Co <z >M, o] 21
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and
(2.4) 1020, A;(t,x)| < Coq <z >M

for all a in [—2Tp, 2T x Re. Let Lo > 0 an arbitrary constant. We consider only a
family of time divisions A = {; };;3 such that

v—1

(2.5) > i =7l < Lo

Jj=0

We set |A| := maxo<j<y—1|Tj+1 — 75|

Then we have: (1) Kpa(t,t;) on SN can be extended to a bounded operator on
(Be)N (@ = 0,£1,+2...). (2) Let f € (BY,,)Y. Then, as |A] — 0 under the
assumption (2.5), Kpa(t,t;)f converges to Kp(t,t;)f in (B )Y uniformly int € R
and t; € R.

Remark. Under the assumptions of Theorem 1.1 on E(¢,z) and Bjx(t, ) we can find
an electromagnetic potential (V, A) satisfying (2.2) - (2.4) with M = 1. See Lemma 6.1
in [14].

Remark. Let us compare the result of Theorem 2.1 to Theorem 1.1 in the case of
L?(R4)N. We can easily see that Theorem 1.1 gives a generalization of Theorem 2.1

because of

N
|
-

o(A) =) '(tj41—15)* < |A|Lg

<.
Il
o

from (2.5).

Let A\;(€) (j =1,2,...,N) be the eigenvalue of & - £ and set

(26) Amax =, 1% o A8
We can easily see Amax > 0 because of \;(s§) = sA;(€) (s € R).

We can prove the following two theorems on causality of the Feynman path integral
Kp(t,t;)f. That is, Kp(t,t;)f has the propagation speed not exceeding the velocity

CAmax-

Theorem 2.2. Let f € (L*)N and Kp(t,t;)f the Feynman path integral determined
in Theorem 1.1. Then, Kp(t,t;)f has the propagation speed not exceeding the velocity
CAmax. That is, if supp f(-) C {z € R% |z —b] < R} for b € RY, then we have
supp Kp(t,t;)f(-) C {z € R% |z — b < cAmax|t — t:| + R}.
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Theorem 2.3. Let f € (B%,1)"Y (a=0,£1,%2,...) and Kp(t,t;)f the Feynman
path integral determined in Theorem 2.1. Then, Kp(t,t;)f has the propagation speed
not exceeding the velocity cAmax-

Example 2.4. Let Ty > 0 be the constant in Theorem 1.1. Let n > 1 be an
arbitrary integer and take an arbitrarily large tx (k = 1,2,...,n) such that tx > Tp

and an arbitrarily small ¢, (k = 1,2,...,n) such that ¢}, < —Tp. Then we can easily
determine a time division A, = {7; ;’;11 (v = n®) such that t, t; € A, (k=1,2,...,n)
by taking

|m1 — 70| < 4Ton "2, |Tje1 — 75| = 4Tyn "2

if 7; € [-To, To] or Tj41 € [—To, To). We can easily see

I
—

v

_ 1
o(An) =) (rj+1— 1)} <nP(4T0)*nt = (4To)2ﬁy
j

Il
o

which shows 0(A,) — 0 asn — oo. Hence it follows from Theorem 1.1 that Kpa,, (¢, ;) f
— Kp(t,t;)f in (L?)Y as n — oo for f € (L?)V.

Remark. It is stated by Feynman on p.163 of [9]: Professor Wheeler telephoned to
Feynman that “suppose that the world lines . . . were a tremendous knot, and then, when
we cut through the knot, by the plane corresponding to a fixed time, we would see many,
many world lines and that would represent many electrons, except for one thing. ....”

Now, let us consider the time divisions A, determined in Example 2.4 and cut
thorough the knot by the plane corresponding to a time ¢ such that |t| < Tp. Then
we see more than n electrons and more than n positrons. Letting n — oo, we can see

countably infinite electrons and positrons.

Remark. Let us consider the time divisions A,, determined in Example 2.4 again.
Let f € (L%)N. We consider the limit of Kpa, (t,t;)f as tx — oo,t] —» —oo (j,l =
1,2,...,n), which we write KDBn(t’ti)f' It follows from (6) in Theorem 1.1 that
Kpa,(t,t;)f is equal to Kpa (t,t:)f and so, KDBn(t’ti)f = Kpa:(t,t;)f. Hence
Kpa, (t,t;)f converges to Kp(t,t)f in (L?)N as n — oco. We note that the path
integral Kp,x (t,t;) f is defined by the paths going across the infinite past and future n
times.

Example 2.5. Let Ty > 0 be the constant in Theorem 1.1. We take an Lg such
that Ly > 4Ty. Let lyp > 1 be the greatest integer less than or equal to Lo/(47p)
and take an arbitrarily large tx (kK = 1,2,...,lp) such that tx > Tp and an arbitrarily
small t}, (k = 1,2,...,lp) such that t;, < —Tp. Let n > 1 be an arbitrary integer.

Then we can easily see determine a time division A, = {7; ;’;11 (v = nlp) such that
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te, b, € Ay (k=1,2,...,1p) by taking
|71 — 70| < 4Ton ™, ITjv1 — 75 = 4Ton ™1 (1=12,...,v—-1)
if 7; € [=To,To] or 741 € [—To, Tp]. We can easily see

v—1 4T0

> e — 5l < mlo - - < Lo,
=0

which satisfies (2.5) and |A,| — 0 as n — oo. Hence it follows from Theorem 2.1 that
Kpa, (t,t)f — Kp(t,t;)f in (BY)Y asn — oo for f € (BY,)V.

Let us consider the scattering problem as in §6-4 of [8]. Let Up(t, t;) f be the solution
with u(t;) = f to the free Dirac equation (1.2), i.e. with (V, A) = 0. Let Tp > 0 be the
constant in Theorem 1.1. We consider the scattering operator

(2.7) Sf = (W) W_f := lim Uo(t,0)71U(¢,0) lim Ut 0) U (t;, 0) f
as in p.527 of [20]. Then we have

Theorem 2.6. Let A be time divisions such that Ty € A and —Tg € A. Then under
the assumptions of Theorem 1.1 we have

(2.8) Sf = UO(T(), 0)* a(IAiI)I-l»o KDA(T(), —To)Uo(O, -—TQ)*f

for f € (LHN.

§3. A roughly sketched proof of (1.21)

Hereafter, where no confusion can arise, we write S(R%)V, L2(R¢)" and B¢,(R%)N
as S(R?), L2(R?%) and B%,(R%), respectively for the sake of simplicity, omitting the
superscript N.

The following gives a formula of derivatives of a matrix-valued function. We will use
this formula repeatedly.

Lemma 3.1. Let A(w) (w € R?) be an N x N matriz whose all components are
continuously differentiable with respect to w. Then we have

d ' dA
3.1 0 Aw) =/ (1-r)Aw) 94 raw) g
(3.1) awje A e au; (w)e T
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Proof. We set u(t; w) = et4(®), Then

%;i(t;w) = A(w)u(t; w).
So
d Ou ou A
aa—wj(t; w) = A(w)a—w—j(t;w) + %(w)u(t;w)

with Ou(0;w)/0w; = 0. Consequently we have

Ou / " t-maw) OA A(
—(t,w) = et T — (w)e™ @ dr,
8wj( ) A 8wj( )

which shows (3.1). O
Let us write
(3.2) a3, % (0) = (0,445, (0)) e R (s<f<tort<H<s).

Lemma 3.2. Lett and s be in R such that t # s. Then we have

(3.3) ( /q

where U = (Uy,...,¥,) € R? and
1
B4 Yitso,02) =~ [ Ajls,z+0—)ds
0
1 1
+(t—s)/ / o1Ej(t — o1(t — s),y + 01(2 — y) + 0102(x — 2))dordo,
o Jo
d 1 1
+Z(yk—zk)/ / Bjr(t — o1(t — 5),y + 01(2 — y) + 0102(z — 2))do1do3.
- 0o Jo

k=1

Proof. We can prove Lemma 3.2 from the Stokes theorem

(3.5) ( —/ +/ )(A-d:v»—th)://d(A-dx—th)
ayy> Japc Jail A

and
d
(3.6) d(A-dz—Vdt)= - Ej(t,z)dtAdz;+ Y Bjda; Aday,
Jj=1 1<j<k<d
where A is the 2-dimensional plane in R4*! with oriented boundary consisting of
q;’;;, —qz’fz and q%3. O

To avoid the complexity we suppose hereafter that x in (1.8) and (1.18) is real-valued.
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Proposition 3.3. Lett and s be in R such that t # s. Let ¥ = U(t,s;z,y, 2) be the
function defined by (3.3). Then for f € S we have

(3.7) (Ge(t,s)*GE(t7s)f) (:L‘) = // ei(w~z)-5dzd£ // e—in'wei(t——s)(c&-E—{—c&-@—f—ﬁmc?)
x e ilt=8)(@E+eaU+Bme —cim)y (¢(¢ + ) x(e(€ + ¥ — 1)) f(2)dudn

with ¥ = U(t,s;z,w + z,2), where n € R, w € R* and G.(t, s)* denotes the formally
adjoint operator of G¢(t, s).

Proof. Since S(t,s;z,&,y) is a Hermitian matrix from (1.6), G(t,s)* is written as
(Gulty ) Do) = [[ et ) (ec)ae
from (1.18). From this formula we can prove Proposition 3.3 directly. O
Proposition 3.4. Under the assumptions (1.10) - (1.12) and (2.2) we have
(3.8) '8;‘858;\Ilj(t, $;2,Y,2)| < Capry, la+8+721
in s,t € [-2Tp,2T0) and z,y,2 € R for j =1,2,...,d.
Proof. Proposition 3.4 follows from (3.4) and the assumptions. O

Lemma 3.5. Let A and B be N x N matrices. Then we have

1 1
(A+B :eA+/ d9/ o(1=T)(A+6B) g r(A+6B) g .
0 0

Proof. We can prove Lemma 3.5 from Lemma 3.1. O

From Proposition 3.3 and Lemma 3.5 we can prove
39)  (Gult,s)'Gult, o)) @) = [[ e sarate [[[emoxiete+w)
X x(e(€ + ¥ — n))dwdn + c(t — s) // ei@*z)'édﬂg/; d0/01 dr
y / / §i(8=6) (C@6+6-T+Fme) o —ilt—5) (1-7) (B¢ e U+Bmc —6c@n) g=inw g .

« e_i(t_s)T(ca.§+ca.\I/+§mc2_0ca~n)x(6(£ + \I}))X(e(g + ¥ — n))f(z)dwfn,

where ¥ = U(t, s;x,w + z,2). Then we can complete the proof of (1.21), applying the
Calder6n-Vaillancourt theorem to (3.9).

§4. A roughly sketched proof of (1.22)

Let G(t, s) be the operator defined by (1.18).
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Proposition 4.1. Let H(t) be the Dirac operator defined by (1.2). Then for f € S
we have

(4.1) [zg—t — H(t )] Ge(t,8)f = Re(t,s)f
= [[ rtesispestemen sxeesat,
where
1

@2 sz =@y [ Q-0BE-0(t— )2 -0 y)ds

—cZaU) / {4;t-0(t—s),z—0(z—y)) — A;(t,z)}do

+(z-p)- / (1 —9)-— t—8(t—s),2 — O(z — 1))d8

. s)/o (1— 9)55@ —8(t—s), 3 — Oz — y))db)|.

Proof. This proposition follows from the direct calculations. O

We note that r(t, s; z,y) defined by (4.2) is a Hermitian matrix. So as in the proof
of Proposition 3.3 we have

(4.3) (Re(t,8)* f)(z / / —iSv D (1, 5;y, 2) f () x(cE) .

Consequently we can prove

(44)  (Re(t,8)"Re(t,8)f) (z) = // ~ISESTED (1, 51y, 2)x(c6)dudlt

< [[ 51y, eisteonn) fay(enydatn = [ [ et <azte

// —in-w z(t 8)(c&-&+ca- ‘Il+ﬁmc ) (t S;w+ 2, :z;)r(t S, w+ 2, Z)
9 e—i(t—s)(ca-£+c&‘-‘1’+ﬁmcz—Ca'n)x(e(f + U))x(e(€ + ¥ — 7)) f(2)dudn

with ¥ = U(t, s; 2, w + 2, z) as in the proof of (3.7). Hence we can complete the proof
of (1.22) as in the proof of (1.21), applying the Calderén-Vaillancourt theorem to (4.4).

§ 5. A roughly sketched proof of theorems

We can easily prove the following.
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Lemma 5.1. Let E(t,z) = 0 and Bj(t,z) = 0 for all j < k in R*L,  Define
G(t,s)f by (1.20) for f € S. Then we have

(5.1) G(t,s)f =U(t,s)f.
Proof. Lemma 5.1 follows from (3.6). O
The theorem below has been proved in Example 1.1, p.329 of [12].
Theorem 5.2. Let T > 0 be an arbitrary constant. We assume
05 4;(t,2) < Ca <z >M, Jo] 21

in [-T,T) x R? for j = 1,2,...,d and (2.3) with an integer M > 1. Let t and t;
be in [-T,T) and consider the Dirac equation (1.2) with u(t;) = f € B§; (a =
0,+1,%2,...). Then there exists a unique solution U(t,t;)f € EX([~T,T); B4;41) N
EN([-T, T); B3r), which satisfies

(5.2) 10 Fl = Il U g, ., < CalDI g,
intt; € [-T,T).

Proposition 5.3. Under the assumptions of Theorem 2.1 we have
(53)  lIG(t,8)f = U(t,9)flpg,,, < Calt =) fllpgrz,, —2T0 <t,8 < 2T
fora=0,1,2,... and f € S.

Proof. Let us write p =t — s for a while. From (4.1) we can easily see

Z,Gs(erp,s)fp U(s+p,s)f:/0 Re(8+9ﬂ’3)fd9+/0 H(s+ 0p)

~{G€(3+9p,s)f——f}dc9~/0 H(s+0p){U(s+6p,s)f — f}db.

Then we can complete the proof of Proposition 5.3 from (5.2) and a generalization of
(1.21), which will be stated later as (5.7). O

From Lemma, 5.1 we can easily see

(54) KDA(t,ti)f et U(t,ti)f = G(t,Ty—l) s G(’I’l,ti)f — U(t,’l’,,_l) .. U(Tl,ti)f

= ZG(t, 7',,_1) s G(Tj+1,Tj){G(Tj,Tj-1) - U(Tj,Tj_l)}U(Tj_l,ti)f
j=1

= Z/G(t, 7',,_1) .. °G(Tj+1, Tj){G(Tj,Tj._l) — U(Tj,Tj_l)}U(Tj_hti)f.
j=1
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Applying (1.13), (1.21), (5.2) and (5.3) with M =1 to (5.4), we get

(55)  |Kpat t:)f — Ut t)fll < Co Dy 'eXoo®)(r; — 1 1)?|U(rj-1,t:) || B3

j=1
< CoeHor g (A)| fIl g2

with constants Cp and Cj.
Let f € L? and g € BZ. Then we have

(5.6) ||Kpa(t.ti)f = U t)f|| < ||Kpa(t,ts)g — Ut ti)gll + || Kpa(t, t)(f — 9)ll
+ U, t:)(f — 9)ll
< Coefor®o(A)|lgll gz + (1 + 7)1 f —g|

from (1.21), (1.23), (5.2) and (5.5). Hence we can complete the proof of Theorem 1.1.
Let us give a proof of Theorem 2.1. We can prove

(5.7) IG(t,5)fllBg, < eX="~*l] £l g,

with a constant K, > 0 for a = 1,2,..., which corresponds to (1.21). Using (5.7), we
can prove Theorem 2.1 as in the proof of Theorem 1.1.
Let us give a proof of Theorems 2.2 and 2.3. We know

Theorem (Paley-Wiener, Theorem IX.11 in [26]). An entire analytic function of n
complex variables g(¢) is the Fourier transform of a C§°(R®) function with support in
the ball {x € RY; x| < R} if and only if for each N there is a Cn so that

CyeRlim ¢
19(¢)] < GERLE

for all ¢ € C¢, where Im ( denotes the imaginary part of (.

Consider the operator G(t,s) defined by (1.20) with (V, A) = 0. We can easily see
from the Paley-Wiener theorem that G(t,s) f with (V, A) = 0 has the finite propagation
speed not exceeding the velocity cApnax. Consequently, we can prove in terms of the
Fourier expansion that general operators G(t, s) f also have the finite propagation speed
not exceeding the velocity cApax. It follows from Theorems 1.1 and 2.1 that we have
only to prove Theorems 2.2 and 2.3 for Kpa(t,t;)f with A such that t; <7 < ... <
Two1 < Ty =tort; >71 < ...>T,1 > T, =t Applying the result above for
G(t,s)f to (1.23), we can see that Kpa(t,t;)f also has the finite propagation speed not
exceeding the velocity cAmax. Thus we can prove Theorems 2.2 and 2.3 from Theorems
1.1 and 1.2, respectively.
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Let us give a proof of Theorem 2.6. Let t > Tj and t; < —Ty. Then we can see

(5.8) Uo(t, 0)"2U(t,0)U (t5,0) " Uo(t;,0) = Uo(0,t)U(t,0)U (0, t;)Uo(t;, 0)

= Uo(0,){U(t, To)U(To, 0) } {U (0, —To)U(—To, t:) }Us(t:, 0)
= Up(0,){Uo(t, To)U(To, 0) } {U (0, =To)Uo(~To, t:) } Uo(t:, 0)
= Uo(o, To)U(T(), '—To)Uo(—To, 0) = Uo(To, 0)_1U(T0, —To)U(O, ——To)_l.

Hence we can complete the proof of Theorem 2.6 from Theorem 1.1.

[1]

[10]
[11]

[12]

References

Blanchard, Ph., Combe, Ph., Sirugue, M., Sirugue-Collin, M., Jump processes related to
the two dimensional Dirac equation, In: Stochastic Processes - Mathematics and Physics
IT (Bielefeld, 1985), Lecture Notes in Math. 1250, Berlin-Heidelberg: Springer-Verlag,
1987, 1-13.

Calderén, A.P., Vaillancourt, R.:, On the boundedness of pseudo-differential operators, J.
Math. Soc. Japan 23 (1971), 374-378.

Cartier, P., DeWitt, C.M., Functional Integration: Action and Symmetries. Cambridge,
Cambridge University Press, 2006.

Dirac, P.A.M., The Principles of Quantum Mechanics, 4th edition. Oxford: Oxford Uni-
versity Press, 1958.

Dyson, F., Comment on the topic “Beyond the black hole”, In: Some Strangeness in the
Proportion: A Centennial Symposium to Celebrate the Achievements of Albert Einstein.
Reading, Addison-Wesley, 1980, pp. 376-380.

Feynman, R.P., Theory of positrons, Phys. Rev. 76 (1949), 749-759.

Feynman, R.P., Space-time approach to quantum electrodynamics, Phys. Rev. 76 (1949),
769-789.

Feynman, R.P., Hibbs, A.R., Quantum Mechanics and Path Integrals, New York, McGraw-
Hill, 1965.

Feynman, R.P., The development of the space-time view of quantum electrodynamics, In:
Nobel Lectures, Physics [4]; 1963-1970, Published for the Nobel Foundation, Amsterdam-
London-New York, Elsevier, 1972.

Ichinose, T., Path integral for the Dirac equation in two space-time dimensions, Proc.
Japan Acad. , 58 A(1982), 290-293.

Ichinose, T., Path integral for the Dirac equation [translated of Stigaku 42 (1990), 219-
230]. Sugaku Fzposition, 6 (1993), 15-31.

Ichinose, W., A note on the existence and A-dependency of the solution of equations in
quantum mechanics, Osaka J. Math. , 32 (1995) , 327-345.

Ichinose, W., On the formulation of the Feynman path integral through broken line paths,
Commun. Math. Phys. , 189 (1997), 17-33.

Ichinose, W., On convergence of the Feynman path integral formulated through broken
line paths, Rev. Math. Phys. , 11 (1999), 1001-1025.

Ichinose, W., The phase space Feynman path integral with gauge invariance and its con-
vergence, Rev. Math. Phys. , 12 (2000), 1451-1463.

79



80

WATARU ICHINOSE

[16] Ichinose, W., A mathematical theory of the Feynman path integral for the generalized
Pauli equations, J. Math. Soc. Japan, 59 (2007), 649-668.

[17] Ichinose, W., On the Feynman path integral for the Dirac equation in the general dimen-
sional spacetime, Commun. Math. Phys. , 329 (2014), 483-508.

[18] Ichinose, W., On the Feynman path integral in the space of tempered distributions, in
preparation.

[19] Ichinose, W., On the Feynman path integral for the Dirac equation in the L? space, in
preparation.

[20] Kato, T., Perturbation Theory for Linear Operators, Berlin, Springer, 1966.

[21] Kumano-go, H., Pseudo-Differential Operators, Cambridge, MA, MIT Press, 1981.

[22] Lax, P.D., Richtmyer, R.D., Survey of the stability of linear finite difference-equations,
Comm. Pure Appl. Math., 9 (1956), 267-293.

[23] Mandle, F., Shaw, G., Quantum Field Theory (2nd edition), West Sussex, John Wiley &
Sons, 2010.

[24] Matsushima, Y., Differential Manifolds, New York, Marcel Dekker, 1972.

[25] Peskin, M.E., Schroeder, D.V., An Introduction to Quantum Field Theory, Cambridge,
MA, Westview Press, 1995.

[26] Reed, M., Simon, B., Methods of Modern Mathematical Physics I: Functional Analysis,
New York, Academic Press, 1980.

[27] Rosen, G., Formulations of Classical and Quantum Dynamical Theory, New York, Aca-
demic Press, 1969.

[28] Sakurai, J.J., Advanced Quantum Mechanics, Reading, Addison-Wesley, 1967.



