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Abstract

The Feynman path integral for the Dirac equation is determined mathematically, in the
form of the sum-over-histories, satisfying the superposition principle. That is, it is given by
the $\langle(sum$” of the probability amplitudes with a common weight, over all possible paths that go
in any direction at any speed forward and backward in time. It has been expected by Feynman
himself for a long time that the Feynman path integral for the Dirac equation is represented

in this form.

\S 1. Introduction

In the present paper the Feynman path integral for the Dirac equation in the general

dimensional space-time is determined mathematically, in the form of the sum-over-
histories, satisfying the superposition principle. That is, it is given by the “sum” of

the probability amplitudes with a common weight, over all possible paths that go in

any direction at any speed forward and backward in time. It has been expected by

Feynman himself for a long time that the Feynman path integral for the Dirac equation

is represented in this form.

Moreover, we will show other mathematical results and some remarks in the present

paper We will not give a detailed proof of our results and so recommend readers inter-

ested in our results to see papers [17], [18] and [19].

We denote the electric strength and the magnetic strength tensor by $E(t, x)=$

$(E_{1}, \ldots, E_{d})\in \mathbb{R}^{d}$ and $(B_{jk}(t, x))_{1\leq j<k\leq d}\in \mathbb{R}^{d(d-1)/2}$ for $(t, x)=(t, x_{1}, \ldots, x_{d})\in$
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WATARU ICHINOSE

$\mathbb{R}^{d+1}$ , respectively. We introduce an electromagnetic potential $(V(t, x), A(t, x))=$

$(V, A_{1}, \ldots, A_{d})\in \mathbb{R}^{d+1}$ , i.e.

(1.1) $E=- \frac{\partial A}{\partial t}-\frac{\partial V}{\partial x},$

$B_{jk}= \frac{\partial A_{k}}{\partial x_{j}}-\frac{\partial A_{j}}{\partial x_{k}} (1\leq j<k\leq d)$ ,

where $\partial V/\partial x=(\partial V/\partial x_{1}, \ldots, \partial V/\partial xd)$ .
Let $t_{i}\in \mathbb{R}$ be an initial time and $f(x)=t(f_{1}(x),$

$\ldots,$
$f_{N}(x)$ ) $\in \mathbb{C}^{N}$ an initial proba-

bility amplitude. We consider a more general equation than the Dirac equation

(1.2) $i \hslash\frac{\partial u}{\partial t}(t)=H(t)u(t)$

$:=[c \sum_{j=1}^{d}\hat{\alpha}^{(j)}(\frac{\hslash}{i}\frac{\partial}{\partialx_{j}}-eA_{j}(t, x))+\hat{\beta}mc^{2}+eV(t, x)]u(t)$

with $u(t_{i})=f$ as in (11) of \S 67, p.257 of [4], where $u(t)=t(u_{1}(t),$
$\ldots,$

$u_{N}(t)$ ) $\in \mathbb{C}^{N},$

$\hat{\alpha}^{(j)}(j=1,2, \ldots, d)$ and $\hat{\beta}$ are constant $N\cross N$ Hermitian matrices, $c$ is the velocity

of light, $\hslash$ is the Planck constant and $e$ is the charge of an electron. For the sake of

simplicity we suppose $\hslash=1$ and $e=1$ hereafter. We note that through the present

paper constant matrices $\hat{\alpha}^{(j)}(j=1,2, \ldots, d)$ and $\hat{\beta}$ are assumed to be simply Hermitian.

Let us take the Hamiltonian function

(1.3) $\mathcal{H}(t, x,p)=c\sum_{j=1}^{d}\hat{\alpha}^{(j)}(p_{j}-A_{j}(t, x))+\hat{\beta}mc^{2}+V(t, x)$

as in (23) of \S 69, p.261 of [4], where $p\in \mathbb{R}^{d}$ is the canonical momentum. We write the

kinetic momentum as $\xi$ $:=p-A(t, x)\in \mathbb{R}^{d}$ . Then the Lagrangian function is given by

(1.4) $\mathcal{L}(t, x, x, \xi)=p\cdot\dot{x}-\mathcal{H}(t, x,p)$

$=\xi\cdot\dot{x}+x\cdot A(t, x)-V(t, x)-(c\hat{\alpha}\cdot\xi+\hat{\beta}mc^{2})$ ,

where $\dot{x}\in \mathbb{R}^{d},p\cdot\dot{x}=\sum_{j=1}^{d}p_{j}\dot{x}_{j},$ $\hat{\alpha}=(\hat{\alpha}^{(1)}, \ldots,\hat{\alpha}^{(d)})$ and $\hat{\alpha}\cdot\xi=\sum_{j=1}^{d}\hat{\alpha}^{(j)}\xi_{j}.$

In the present paper we will determine the Feynman path integral in phase space

mathematically in terms of the Lagrangian function (1.4). Let $\tau_{j}\in \mathbb{R}(j=1,2, \ldots, v- l)$

and define a time division $\triangle$ $:=\{\tau_{j}\}_{j=1}^{\nu-1}$ . We don’t necessarily assume $\tau_{j}<\tau_{j+1}$ . It is

possible that $\tau_{j}\geq\tau_{j+1}$ for some $j$ hold. We set $\tau_{0}=t_{i}$ and $\tau_{\nu}=t$ . Let $x\in \mathbb{R}^{d}$ be fixed.

We take arbitrary points $x^{(j)}\in \mathbb{R}^{d}(j=0,1, \ldots, v-1)$ and determine a piecewise linear

path $(\Theta_{\Delta}, q_{\Delta}(x^{(0)}, \ldots, x^{(\nu-1)}, x))$ in $\mathbb{R}^{d+1}$ joining $(\tau_{j}, x^{(j)})(j=0,1, \ldots, \nu, x^{(v)}=x)$ in

order. We also take arbitrary points $\xi^{(j)}\in \mathbb{R}^{d}(j=0,1, \ldots, \nu-1)$ and determine a
piecewise constant path $(\Theta_{\triangle}, \xi_{\Delta}(\xi^{(0)}, \ldots, \xi^{(\nu-1)}))$ in $\mathbb{R}^{d+1}$ by using $\xi_{\Delta}$ that takes value
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$\xi^{(j)}(j=0,1, \ldots, v-1)$ for $\theta\in[\tau_{j}, \tau_{j+1}]$ if $\tau_{j}\leq\tau_{j+1}$ or $\theta\in[\tau_{j+1}, \tau_{j}]$ if $\tau_{j+1}<\tau_{j}$ . We

note that the paths $(\Theta_{\Delta}, q_{\triangle})$ and $(\Theta_{\triangle}, \xi_{\triangle})$ go in any direction forward and backward

in time and that $q\triangle$ has any speed, even the infinite speed.

Let $t$ and $s$ be in $\mathbb{R}$ and $t\neq s$ . For $x$ and $y$ in $\mathbb{R}^{d}$ we define

(1.5) $q_{x,y}^{t,s}( \theta):=y+\frac{\theta-s}{t-s}(x-y)$

in $s\leq\theta\leq t$ or $t\leq\theta\leq s$ . Let $\xi\in R^{d}$ . We consider a path $(q_{x,y}^{t,s}(\theta), \xi)\in \mathbb{R}^{2d}$ in phase

space. Then the classical action is given by

(1.6) $S(t, s;x, \xi, y):=\int_{s}^{t}\mathcal{L}(\theta, q_{x,y}^{t,s}(\theta),\dot{q}_{x,y}^{t,s}(\theta), \xi)d\theta=(x-y)\cdot\xi$

$+ \int_{s}^{t}\{\dot{q}_{x,y}^{t,s}(\theta)\cdot A(\theta, q_{x,y}^{t,s}(\theta))-V(\theta, q_{x,y}^{t,s}(\theta))\}d\theta-(t-\mathcal{S})(c\hat{\alpha}\cdot\xi+\hat{\beta}mc^{2})$

$=(x-y) \cdot\xi+(x-y)\cdot\int_{0}^{1}A(t-\theta\rho, x-\theta(x-y))d\theta$

$- \rho\int_{0}^{1}V(t-\theta\rho, x-\theta(x-y))d\theta-\rho(c\hat{\alpha}\cdot\xi+\hat{\beta}mc^{2}) , \rho=t-s$

from (1.4), where $\dot{q}_{x,y}^{t,s}(\theta)=dq_{x,y}^{t,s}(\theta)/d\theta.$ Fkom (1.6) we define $S(s, s;x, \xi, y)$ by

(1.7) $S(S, \mathcal{S};x, \xi, y) :=(x-y)\cdot\xi+(x-y)\cdot\int_{0}^{1}A(s, x-\theta(x-y))d\theta,$

which we write $\int_{s}^{s}\mathcal{L}(\theta, q_{x_{\rangle}y}^{s,s}(\theta), q_{x,y}^{s,s}(\theta), \xi)d\theta$ formally.

We take $\chi\in C_{0}^{\infty}(\mathbb{R}^{d})$ , i.e. an infinitely differentiable function in $\mathbb{R}^{d}$ with compact

support, such that $\chi(0)=1$ . The approximation $K_{D\triangle}(t, t_{i})f$ of the Feynman path

integral $K_{D}(t, t_{i})f$ for the Dirac equation (1.2) is determined by

(1.8) $K_{D\triangle}(t, t_{i})f= \iint e^{*iS(t,q_{\Delta},\xi_{\Delta})}f(x^{(0)})\mathcal{D}q_{\Delta}\mathcal{D}\xi_{\triangle}$

$:= \lim_{\epsilonarrow+0}\int\cdots\int e^{*iS(t,q_{\Delta},\xi_{\Delta})}f(x^{(0)})\prod_{j=0}^{\nu-1}\{\chi(\epsilon x^{(j)})\chi(\epsilon\xi^{(j)})\}dx^{(0)}\cdots dx^{(\nu-1)}$

. $d\xi^{(0)}\cdots d\xi^{(\nu-1)}$

for $f=t(f_{1}, \cdots, f_{d})\in S(\mathbb{R}^{d})^{N}$ , i.e. the Schwartz rapidly decreasing function, where
$d\xi^{(j)}=(2\pi)^{-d}d\xi^{(j)}$ and the probability amplitude $\exp*iS(t, q_{\triangle}, \xi_{\triangle})$ for a path $(\Theta_{\triangle}, q_{\triangle}, \xi_{\Delta})$

65



WATARU ICHINOSE

is defined as a product of matrices in terms of the Lagrangian function (1.4) by

(1.9)

$\exp i\int_{\tau_{\nu-1}}^{t}\mathcal{L}(\theta, q_{x,x^{(\nu-1)}}^{t,\tau_{\nu-1}}(\theta),\dot{q}_{x,x^{(\nu-1)}}^{t,\tau_{\nu-1}}(\theta), \xi^{(\nu-1)})d\theta\cdot\exp i\int_{\tau_{\nu-2}}^{\tau_{\nu-1}}\mathcal{L}(\theta, q_{x^{(\nu-1)},x^{(\nu-2)}}^{\tau_{v-1},\tau_{v-2}}(\theta)$ ,

$\dot{q}_{x^{(\nu-1)},x^{(\nu-2)}}^{\tau_{\nu-1},\cdot\tau_{\nu-2}}(\theta)$ , $\xi^{(\nu-2)})d\theta\cdots\cdot\exp i\int_{t_{i}}^{\tau_{1}}\mathcal{L}(\theta, q_{x^{(1)},x^{(0)}}^{\tau_{1},t_{i}}(\theta), \dot{q}_{x^{(1)},x^{(0)}}^{\tau_{1)}t_{i}}(\theta), \xi^{(0)})d\theta.$

It will be proved in Theorem 1.1 below that $K_{D\Delta}(t, t_{i})f$ is determined independently

of the choice of $\chi$ . The last equation in (1.8) is called the oscillatory integral and often

written as

$Os-\int\cdots\int e^{*iS(t,q_{\Delta},\xi_{\Delta})}f(x^{(0)})dx^{(0)}\cdots dx^{(\nu-1)}d\xi^{(0)}\cdots d\xi^{(\nu-1)}$

(cf. p. 45 of [21]).

Let $L^{2}(\mathbb{R}^{d})$ denote the space of all square integrable functions in $\mathbb{R}^{d}$ with inner

product $(f, g)$ $:= \int f(x)\overline{g(x)}dx$ and norm $\Vert f\Vert$ , where $g(x)$ denotes the complex conjugate

of $g(x)$ . We denote the product Hilbert space of $N$ copies of $L^{2}(\mathbb{R}^{d})$ by $L^{2}(\mathbb{R}^{d})^{N}$ and

write its norm as $\Vert f\Vert=\sqrt{\sum_{j=1}^{d}\Vert f_{j}\Vert}$ for $f=t(f_{1}, \ldots, f_{d})$ .

For an $x=(x_{1}, \ldots, x_{d})\in \mathbb{R}^{d}$ and a multi-index $\alpha=(\alpha_{1}, \ldots, \alpha_{d})$ we write $|\alpha|=$

$\sum_{j=1}^{d}\alpha_{j},$ $x^{\alpha}=x_{1}^{\alpha_{1}}\cdots x_{d}^{\alpha_{d}},$ $\partial_{x_{j}}=\partial/\partial x_{j}$ and $\partial_{x}^{\alpha}=\partial_{x_{1}}^{\alpha_{1}}\cdots\partial_{x_{d}}^{\alpha_{d}}$ . The main theorem in

the present paper is the following.

Theorem 1.1 ([19]). Let $\partial_{x}^{\alpha}E_{j}(t, x)(j=1,2, \ldots, d)$ , $\partial_{x}^{\alpha}B_{jk}(t, x)(1\leq j<k\leq d)$

and $\partial_{t}B_{jk}(t, x)$ be continuous in $\mathbb{R}^{d+1}$ for all $\alpha$ . We assume the adiabatic hypothesis:

There exists a sufficient large $T_{0}>0$ such that

(1.10) $E(t, x)=0, B_{jk}(t, x)=0(1\leq j<k\leq d)$

for $|t|\geq T_{0}$ (p. 93 in [23]). In addition, we assume

(1.11) $|\partial_{x}^{\alpha}E_{j}(t, x)|\leq C_{\alpha}, |\alpha|\geq 1,$

(1.12) $|\partial_{x}^{\alpha}B_{jk}(t, x)|\leq C_{\alpha}<x>^{-(1+\delta_{\alpha})}, |\alpha|\geq 1$

in $\mathbb{R}^{d+1}$ with constants $\delta_{\alpha}>0$ for $j,$ $k=1$ , 2, . . . , $d$ . Let $(V, A_{1}, \ldots, A_{d})$ be an electro-

magnetic potential inducing $E(t, x)$ and $(B_{jk}(t, x))_{1\leq j<k\leq d}$ via equation (1.1) such that
$V,$ $\partial_{x_{j}}V,$

$\partial_{t}A_{k}$ and $\partial_{x_{j}}A_{k}(j, k=1,2, \ldots, d)$ are continuous in $\mathbb{R}^{d+1}.$

Let us define $K_{D\Delta}(t, t_{i})f$ for $f\in \mathcal{S}^{N}$ by (1.8) for a time division $\Delta$ . We define

(1.13) $\sigma(\Delta) :=\sum_{j=0}^{\nu-1}’(\tau_{j+1}-\tau_{j})^{2},$
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where $\sum’$ means the sum excluding the term $(\tau_{j+1}-\tau_{j})^{2}$ such that $\tau_{j},$ $\tau_{j+1}\geq T_{0}$ or
$\tau_{j},$ $\tau_{j+1}\leq-T_{0}$ . Then we have: (1) $K_{D\triangle}(t, t_{i})$ on $S^{N}$ is determined independently of
the choice of $\chi$ and can be extended to a bounded operator on $(L^{2})^{N}$ . We have

(1.14) $\Vert K_{D\Delta}(t, t_{i})f\Vert\leq e^{K_{0}\sigma(\triangle)}\Vert f\Vert$

for all $t,$ $t_{i}$ in $\mathbb{R}$ with a constant $K_{0}\geq 0$ . (2) Let $f\in(L^{2})^{N}$ . Then, as $\sigma(\Delta)arrow 0,$

$K_{D\Delta}(t, t_{i})f$ converges in $(L^{2})^{N}$ uniformly with respect to $t\in \mathbb{R}$ and $t_{i}\in \mathbb{R}$ . We call this

limit the Feynman path integral and write it $K_{D}(t, t_{i})f$ . (3) $K_{D}(t, t_{i})f$ for $f\in(L^{2})^{N}$

belongs to $\mathcal{E}_{t}^{0}(\mathbb{R};(L^{2})^{N})$ and is the solution to the Dirac equation (1.2) in distribution
sense with $u(t_{i})=f$ , where $\mathcal{E}_{t}^{j}(\mathbb{R};(L^{2})^{N})(j=0,1, \ldots)$ denotes the space of all $(L^{2})^{N_{-}}$

valued $j$-times continuously differentiable functions in $t\in \mathbb{R}$ . (4) Let $t_{i}<t_{1}<t$ . Then

we have the rule for two events:

$K_{D}(t, t_{i})f=K_{D}(t, t_{1})K_{D}(t_{1}, t_{i})f, K_{D}(t, t_{1})f=K_{D}(t,t_{i})K_{D}(t_{i}, t_{1})f$

for $f\in(L^{2})^{N}$ . (5) Let $\psi(t, x)$ be a real-valued function such that $\partial_{x_{j}}\partial_{x_{k}}\psi(t, x)$ and
$\partial_{t}\partial_{x_{j}}\psi(t, x)(j, k=1,2, \ldots, d)$ are continuous in $\mathbb{R}^{d+1}$ and consider the gauge transfor-
mation

(1.15) $V’=V- \frac{\partial\psi}{\partial t}, A_{j}’=A_{j}+\frac{\partial\psi}{\partial x_{j}}.$

We write (1.8) for this $(V\prime, A’)$ as $K_{D\triangle}’(t, t_{i})f$ . Then we have the $f_{07}mula$

(1.16) $K_{D\triangle}’(t, t_{i})f=e^{i\psi(t,\cdot)}K_{D\triangle}(t, t_{i})(e^{-i\psi(t_{l},\cdot)}\prime f)$

for all $f\in(L^{2})^{N}$ . (6) Let us define the subset $\triangle^{J}$ of $\Delta$ with the same ordering as in
$\triangle$ by the compliment of $\{\tau_{j}\in\triangle(j\geq 1);\tau_{j-1}, \tau_{j}, \tau_{j+1}\geq T_{0} or \tau_{j-1}, \tau_{j}, \tau_{j+1}\leq-T_{0}\}.$

Then we have
$K_{D\triangle}(t, t_{i})f=K_{D\triangle}\prime(t, t_{i})f.$

We could say from (1.8) that the Feynman path integral $K_{D}(t, t_{i})f$ is written in

the form of the sum-over-histories, satisfying the superposition principle. That is, it

is given by the “sum of the probability amplitudes with a common weight over all

possible paths that go in any direction at any speed forward and backward in time.

This form of the Feynman path integral is the one that Feynman stated repeatedly.

F. Dyson says the following on p.376 of [5]: Thirty-one years ago, Dick Feynman told

me about his “sum over history” version of quantum-mechanics. “The electron does

anything it likes he said. “It just goes in any direction at any speed, forward or
backward in time, however it likes, and then you add up the amplitudes and it gives

you the wave-function.”’ I said to him, “You’re crazy But he wasn’t.
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We recommend readers interested in this fact to see also p.752 of [6], p.772 of [7]

and p.163 of [9]. We should note that at present, in the physical theory positrons are

represented as electrons going back in time (cf. p.61 of [23], p.54 of [25], and pp.150

and 240 of [28]).

It is stated on p.38 of [8] that in the relativistic theory of the electron we shall not

find it possible to express the amplitude for a path as $e^{iS}$ , or in any other simple way.

Moreover, it is stated by Feynman on p.169 of [9] that And, so I dreamed that if I were
clever, I would find a formula for the amplitude of a path. . . , which would be equivalent

to the Dirac equation, . . . . I have never succeeded in that either.

On the other hand, we note that our way of representing the amplitude of an electron

in terms of the Lagrangian function, that I stated in Theorem 1.1 in the present paper,

is enough simple.

Now we go back to the past studies of the Feynman path integral for the Dirac

equation. There seems to be no past studies of the Feynman path integral in phase

space. All studies were made of that in configuration space. Consider the Dirac equation

in two dimensional spacetime

(1.17) $i \frac{\partial u}{\partial t}(t)=[c\hat{\alpha}^{(0)}(\frac{1}{i}\frac{\partial}{\partial x}-A(t, x))u+\hat{\beta}^{(0)}mc^{2}+V(t, x)]u(t)$ ,

where $u(t)=t(u_{1}(t),$ $u_{2}(t)$ ) $\in \mathbb{C}^{2}$ and and

$\hat{\alpha}^{(0)}=(\begin{array}{ll}1 00-1 \end{array}), \hat{\beta}^{(0)}=(\begin{array}{l}0-1-10\end{array}).$

Let $(V, A)=0$ in (1.17). Suppose that the interval $[t_{i}, t](t_{i}<t)$ is divided into small

equal steps of length $\epsilon_{0}>$ O. We consider all zigzags in the spacetime of straight

segments with velocity $c$ that go only forward in time. The amplitude for each zigzag is

given by $(i\epsilon_{0})^{R}$ , where $R$ is the number of its reversals. It follows from the superposition

principle that the Feynman path integral was determined by (2-27), p.35 of [8]. See

Appendix $E$ , p.118 of [27] in detail. In [10] and Theorem 2.1 of [11] the solution to a

general (1.17) was written in terms of a measure on the space of all continuous paths

in $[t_{i}, t]$ . In Theorem, p.8 of [1] and p.221 of [3] the solution to (1.17) was written in

terms of a Poisson process. All results in [1], [3], [10] and [11] does not satisfy the

superposition principle and also don’t consider paths that go backward in time.

Remark. We consider inhomogeneous Lorentz transformations. We set $x_{0}=ct.$

Take a $j$ such that $1\leq j\leq d$ and a constant $0\leq\beta<1$ . The Lorentz transformation

called a boost is given by

$x_{0}’=(x_{0}-\beta x_{j})/\sqrt{1-\beta^{2}},$ $x_{j}’=(x_{j}-\beta x_{0})/\sqrt{1-\beta^{2}},$ $x_{k}’=x_{k}(k\neq j)$ .
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In addition, we know a rotation in the configuration space $\mathbb{R}_{x}^{d}$ , the space reflection,

the time reversal and the translation in the configuration space $\mathbb{R}_{x}^{d}$ as other elementary

Lorentz transformations (cf. p.40 of [25]). It is also well known (e.g. Theorem 2 and a
canonical coordinate system of the second kind of the Lie group in \S 10 of Chapter IV of

[24]) that all inhomogenious Lorentz transformations can be represented as a product

of a finite number of elementary Lorentz transformations.

Let us take an initial point $(t_{i}, x^{(0)})$ and a final point $(t, x)$ arbitrarily, and fix

them. We consider the space of all paths $(\Theta_{\Delta}, q_{\Delta}(x^{(0)}, \ldots, x^{(\nu-1)}))$ taking arbitrary
$\triangle$ and arbitrary $x^{(j)}\in \mathbb{R}^{d}(j=1,2, \ldots, \nu-1)$ . Then, we can easily see from the

definition of a piecewise linear path $(\Theta_{\triangle}, q_{\triangle})$ that this space is invariant under the

Lorentz transformation. So is the space of all zigzags in [8] with velocity $c$ . On the

other hand, the space of all continuous paths in $[t_{i}, t]$ , studied in [1], [3], [10] and [11],

is not invariant under a Lorentz boost.

We will explain an idea for proving our results. Let $t$ and $s$ be in $\mathbb{R}$ . Let $\epsilon>0$ be a

constant and $\chi\in C_{0}^{\infty}(\mathbb{R}^{d})$ the function taken before. We define an operator

(1.18) $(G_{\epsilon}(t, s)f)(x)= \iint e^{iS(t,s;x,\xi,y)}f(y)\chi(\epsilon\xi)d\Phi\xi$

for $f\in S(\mathbb{R}^{d})^{N}$ in terms of (1.6) and (1.7). Then we can write

(1.19) $K_{D\triangle}(t, t_{i})f= \lim_{\epsilonarrow 0}G_{\epsilon}(t, \tau_{\nu-1})\chi(\epsilon\cdot)G_{\epsilon}(\tau_{v-1}, \tau_{\nu-2})\chi(\epsilon\cdot)\cdots\chi(\epsilon\cdot)G_{\epsilon}(\tau_{1}, t_{i})f$

from (1.8) and (1.9).

We will prove that $\{G_{\epsilon}(t, s)\}_{0<\epsilon\leq 1}$ is a bounded family of operators from $S(\mathbb{R}^{d})^{N}$

into itself, that there exists an operator $G(t, s)$ on $S(\mathbb{R}^{d})^{N}$ independent of the choice of
$\chi$ satisfying

(1.20) $G(t, s)f= \lim_{\epsilonarrow 0}G_{\epsilon}(t, s)f$

in $S(\mathbb{R}^{d})^{N}$ for $f\in S(\mathbb{R}^{d})^{N}$ , that the stability

(1.21) $\Vert G(t, s)f\Vert\leq e^{K_{O}(t-s)^{2}}\Vert f\Vert$

holds with a constant $K_{0}\geq 0$ and that the consistency

(1.22) $\lim_{\epsilonarrow 0}\Vert(i\frac{\partial}{\partial t}-H(t))G_{\epsilon}(t, s)f\Vert\leq C|t-s <\cdot>^{M}f\Vert$

holds with a constant $C\geq 0$ and a positive integer $M$ , where $<x>=\sqrt{1+|x|^{2}}$ and
$f\in S(\mathbb{R}^{d})^{N}.$
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FYom (1.19) and (1.20) we can easily see

(1.23) $K_{D\triangle}(t, t_{i})f=G(t, \tau_{\nu-1})G(\tau_{\nu-1}, \tau_{\nu-2})\cdotsG(\tau_{1}, t_{i})f$

for $f\in S(\mathbb{R}^{d})^{N}$ , which is determined independently of the choice of $\chi$ . Let $U(t, t_{i})f$

for $f\in S(\mathbb{R}^{d})^{N}$ be the solution to (1.2) with $u(t_{i})=f$ . Rom (1.21) and (1.22) we will

prove that

$\Vert K_{D\Delta}(t, t_{i})f-U(t, t_{i})f\Vert=\Vert G(t, \tau_{v-1})\cdots G(\tau_{1}, t_{i})f-U(t, \tau_{\nu-1})\cdots U(\tau_{1}, t_{i})f\Vert$

for $f\in L^{2}(\mathbb{R}^{d})^{N}$ converges to $0$ uniformly in $t\in \mathbb{R}$ and $t_{i}\in \mathbb{R}$ as $\sigma(\triangle)arrow 0$ . It should

be emphasized that the theory of pseudo-differential operators plays an important role

to prove (1.21) and (1.22).

The plan of the present paper is as follows. In \S 2 some other theorems in addition to

Theorem 1.1 and some remarks will be stated. In \S \S 3 and 4, a roughly sketched proof of

(1.21) and (1.22) will be given, respectively. In \S 5 a roughly sketched proof of theorems

in the present paper will be given.

\S 2. Other theorems and some remarks

Let $M$ and $a$ be positive integers. We introduce the weighted Sobolev spaces

$B_{M}^{a}( \mathbb{R}^{d})^{N}:=\{f\in L^{2}(\mathbb{R}^{d})^{N};\Vert f\Vert_{B_{M}^{a}}:=\Vert f\Vert+\sum_{|\alpha|=aM}\Vert x^{\alpha}f\Vert+\sum_{|\alpha|=a}\Vert\partial_{x}^{\alpha}f\Vert<\infty\}.$

Let $B_{M}^{-a}(\mathbb{R}^{d})^{N}$ denote their dual spaces. We set $B_{M}^{0}(\mathbb{R}^{d})^{N}$ $:=L^{2}(\mathbb{R}^{d})^{N}$ . We can easily

prove

(2.1) $S( \mathbb{R}^{d})=\bigcap_{a=0}^{\infty}B_{M}^{a}(\mathbb{R}^{d}) , S’(\mathbb{R}^{d})=\bigcup_{a=0}^{\infty}B_{M}^{-a}(\mathbb{R}^{d})$ .

In the present paper we often use symbols $C,$ $C_{\alpha},$ $C_{\alpha,\beta}$ and $C_{a}$ to write down con-
stants, though these values are different in general. We note again that throughout the

present paper constant matrices $\hat{\alpha}^{(j)}(j=1,2, \ldots, d)$ and $\hat{\beta}$ in (1.2) are assumed to be

simply Hermitian.

We can prove the following on the Feynman path integral in the weighted Sobolev

spaces.

Theorem 2.1. We assume (1.10) - (1.12) in Theorem 1.1. Let $(V, A)$ be an electro-

magnetic potential inducing $E(t, x)$ and $(B_{jk}(t, x))_{1\leq j<k\leq d}$ via equation (1.1). We also

assume

(2.2) $|\partial_{x}^{\alpha}A_{j}(t, x)|\leq C_{\alpha}, |\alpha|\geq 1$

in $[-2T_{0}, 2T_{0}]\cross \mathbb{R}^{d}$ for $j=1$ , 2, . . . , $d$ and that there exists an integer $M\geq 1$ satisfying

(2.3) $|\partial_{x}^{\alpha}V(t, x)|\leq C_{\alpha}<x>^{M}, |\alpha|\geq 1$
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and

(2.4) $|\partial_{x}^{\alpha}\partial_{t}A_{j}(t, x)|\leq C_{\alpha}<x>^{M}$

for all $\alpha$ in $[-2T_{0}, 2T_{0}]\cross \mathbb{R}^{d}$ . Let $L_{0}\geq 0$ an arbitrary constant. We consider only a

family of time divisions $\triangle=\{\tau_{j}\}_{j=0}^{\nu-1}$ such that

(2.5) $\sum_{j=0}^{v-1}’|\tau_{j+1}-\tau_{j}|\leq L_{0}.$

We set $|\Delta|$ $:= \max_{0\leq j\leq v-1}|\tau_{j+1}-\tau_{j}|.$

Then we have: (1) $K_{D\triangle}(t, t_{i})$ on $S^{N}$ can be extended to a bounded operator on
$(B_{M}^{a})^{N}(a=0, \pm 1, \pm 2\ldots)$ . (2) Let $f\in(B_{M+1}^{a})^{N}$ . Then, as $|\Delta|arrow 0$ under the

assumption (2.5), $K_{D\triangle}(t, t_{i})f$ converges to $K_{D}(t, t_{i})f$ in $(B_{M+1}^{a})^{N}$ uniformly in $t\in \mathbb{R}$

and $t_{i}\in \mathbb{R}.$

Remark. Under the assumptions of Theorem 1.1 on $E(t, x)$ and $B_{jk}(t, x)$ we can find

an electromagnetic potential $(V, A)$ satisfying $(2.2)-(2.4)$ with $M=1$ . See Lemma 6.1

in [14].

Remark. Let us compare the result of Theorem 2.1 to Theorem 1.1 in the case of
$L^{2}(\mathbb{R}^{d})^{N}$ . We can easily see that Theorem 1.1 gives a generalization of Theorem 2.1

because of

$\sigma(\triangle)=\sum_{j=0}^{\nu-1}’(\tau_{j+1}-\tau_{j})^{2}\leq|\triangle|L_{0}$

from (2.5).

Let $\lambda_{j}(\xi)(j=1,2, \ldots, N)$ be the eigenvalue of $\hat{\alpha}\cdot\xi$ and set

(2.6)
$\lambda_{\max}=j=1,2,..,N_{|\xi|=1}max.\sup\lambda_{j}(\xi)$

.

We can easily see $\lambda_{\max}\geq 0$ because of $\lambda_{j}(s\xi)=s\lambda_{j}(\xi)(s\in \mathbb{R})$ .
We can prove the following two theorems on causality of the Feynman path integral

$K_{D}(t, t_{i})f$ . That is, $K_{D}(t, t_{i})f$ has the propagation speed not exceeding the velocity
$c\lambda_{\max}.$

Theorem 2.2. Let $f\in(L^{2})^{N}$ and $K_{D}(t, t_{i})f$ the Feynman path integral determined

in Theorem 1.1. Then, $K_{D}(t, t_{i})f$ has the propagation speed not exceeding the velocity

$c\lambda_{\max}$ . That is, if supp $f$ $\subset\{x\in \mathbb{R}^{d};|x-b|\leq R\}$ for $b\in \mathbb{R}^{d}$ , then we have

supp $K_{D}(t, t_{i})f(\cdot)\subset\{x\in \mathbb{R}^{d};|x-b|\leq c\lambda_{\max}|t-t_{i}|+R\}.$
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Theorem 2.3. Let $f\in(B_{M+1}^{a})^{N}(a=0, \pm 1, \pm 2, \ldots)$ and $K_{D}(t, t_{i})f$ the Feynman

path integral determined in Theorem 2.1. Then, $K_{D}(t, t_{i})f$ has the propagation speed

not exceeding the velocity $c\lambda_{\max}.$

Example 2.4. Let $T_{0}>0$ be the constant in Theorem 1.1. Let $n\geq 1$ be an
arbitrary integer and take an arbitrarily large $t_{k}(k=1,2, \ldots, n)$ such that $t_{k}>T_{0}$

and an arbitrarily small $t_{k}’(k=1,2, \ldots, n)$ such that $t_{k}’<-T_{0}$ . Then we can easily

determine a time division $\Delta_{n}=\{\tau_{j}\}_{j=1}^{\nu-1}(\nu=n^{3})$ such that $t_{k},$ $t_{k}’\in\Delta_{n}(k=1,2, \ldots, n)$

by taking
$|\tau_{1}-\tau_{0}|\leq 4T_{0}n^{-2}, |\tau_{j+1}-\tau_{j}|=4T_{0}n^{-2}$

if $\tau_{j}\in[-T_{0}, T_{0}]$ or $\tau_{j+1}\in[-T_{0}, T_{0}]$ . We can easily see

$\sigma(\Delta_{n})=\sum_{j=0}^{\nu-1}’(\tau_{j+1}-\tau_{j})^{2}\leq n^{3}(4T_{0})^{2}n^{-4}=(4T_{0})^{2}\frac{1}{n},$

which shows $\sigma(\Delta_{n})arrow 0$ as $narrow\infty$ . Hence it follows from Theorem 1.1 that $K_{D\Delta_{n}}(t, t_{i})f$

$arrow K_{D}(t, t_{i})f$ in $(L^{2})^{N}$ as $narrow\infty$ for $f\in(L^{2})^{N}.$

Remark. It is stated by Feynman on p.163 of [9]: Professor Wheeler telephoned to

Feynman that (suppose that the world lines. . . were a tremendous knot, and then, when

we cut through the knot, by the plane corresponding to a fixed time, we would see many,

many world lines and that would represent many electrons, except for one thing. . . . .”
Now, let us consider the time divisions $\Delta_{n}$ determined in Example 2.4 and cut

thorough the knot by the plane corresponding to a time $t$ such that $|t|\leq T_{0}$ . Then

we see more than $n$ electrons and more than $n$ positrons. Letting $narrow\infty$ , we can see
countably infinite electrons and positrons.

Remark. Let us consider the time divisions $\triangle_{n}$ determined in Example 2.4 again.

Let $f\in(L^{2})^{N}$ . We consider the limit of $K_{D\Delta_{n}}(t, t_{i})f$ as $t_{k}arrow\infty,$ $t_{l}’arrow-\infty(j,$ $l=$

$1$ , 2, . . . , $n)$ , which we write $K_{D\triangle_{n}}\wedge(t, t_{i})f$ . It follows from (6) in Theorem 1.1 that
$K_{D\triangle_{n}}(t, t_{i})f$ is equal to $K_{D\triangle_{n}’}(t, t_{i})f$ and so, $K_{D\triangle_{n}}\wedge(t, t_{i})f=K_{D\triangle_{n}’}(t, t_{i})f$ . Hence
$K_{D\hat{\Delta}_{n}}(t, t_{i})f$ converges to $K_{D}(t, t_{i})f$ in $(L^{2})^{N}$ as $narrow\infty$ . We note that the path

integral $K_{D\triangle_{n}}\wedge(t, t_{i})f$ is defined by the paths going across the infinite past and future $n$

times.

Example 2.5. Let $T_{0}>0$ be the constant in Theorem 1.1. We take an $L_{0}$ such

that $L_{0}\geq 4T_{0}$ . Let $l_{0}\geq 1$ be the greatest integer less than or equal to $L_{0}/(4T_{0})$

and take an arbitrarily large $t_{k}(k=1,2, \ldots, l_{0})$ such that $t_{k}>T_{0}$ and an arbitrarily

small $t_{k}’(k=1,2, \ldots, l_{0})$ such that $t_{k}’<-T_{0}$ . Let $n\geq 1$ be an arbitrary integer.

Then we can easily see determine a time division $\Delta_{n}=\{\tau_{j}\}_{j=1}^{\nu-1}(\nu=nl_{0})$ such that
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$t_{k},$ $t_{k}’\in\triangle_{n}(k=1,2, \ldots, l_{0})$ by taking

$|\tau_{1}-\tau_{0}|\leq 4T_{0}n^{-1}, |\tau_{j+1}-\tau_{j}|=4T_{0}n^{-1} (j=1,2, \ldots, v-1)$

if $\tau_{j}\in[-T_{0}, T_{0}]$ or $\tau_{j+1}\in[-T_{0}, T_{0}]$ . We can easily see

$\sum_{j=0}^{\nu-1}’|\tau_{j+1}-\tau_{j}|\leq nl_{0}\cdot\frac{4T_{0}}{n}\leq L_{0},$

which satisfies (2.5) and $|\triangle_{n}|arrow 0$ as $narrow\infty$ . Hence it follows from Theorem 2.1 that

$K_{D\Delta_{n}}(t, t_{i})farrow K_{D}(t, t_{i})f$ in $(B_{M}^{a})^{N}$ as $narrow\infty$ for $f\in(B_{M}^{a})^{N}.$

Let us consider the scattering problem as in \S 6-4 of [8]. Let $U_{0}(t, t_{i})f$ be the solution

with $u(t_{i})=f$ to the free Dirac equation (1.2), i.e. with $(V, A)=0$ . Let $T_{0}>0$ be the

constant in Theorem 1.1. We consider the scattering operator

(2.7) $Sf=(W_{+})^{*}W_{-}f := \lim_{tarrow\infty}U_{0}(t, 0)^{-1}U(t, 0)\lim_{t_{i}arrow-\infty}U(t_{i}, 0)^{-1}U_{0}(t_{i}, 0)f$

as in p.527 of [20]. Then we have

Theorem 2.6. Let $\triangle$ be time divisions such that $T_{0}\in\Delta$ $and-T_{0}\in\Delta$ . Then under

the assumptions of Theorem 1.1 we have

(2.8) $Sf=U_{0}(T_{0},0)^{*} \lim K_{D\Delta}(T_{0}, -T_{0})U_{0}(0, -T_{0})^{*}f$

$\sigma(\triangle)arrow 0$

for $f\in(L^{2})^{N}.$

\S 3. A roughly sketched proof of (1.21)

Hereafter, where no confusion can arise, we write $S(\mathbb{R}^{d})^{N},$ $L^{2}(\mathbb{R}^{d})^{N}$ and $B_{M}^{a}(\mathbb{R}^{d})^{N}$

as $S(\mathbb{R}^{d})$ , $L^{2}(\mathbb{R}^{d})$ and $B_{M}^{a}(\mathbb{R}^{d})$ , respectively for the sake of simplicity, omitting the

superscript $N.$

The following gives a formula of derivatives of a matrix-valued function. We will use

this formula repeatedly.

Lemma 3.1. Let $A(w)(w\in \mathbb{R}^{d})$ be an $N\cross N$ matrix whose all components are

continuously differentiable with respect to $w$ . Then we have

(3.1) $\frac{\partial}{\partial w_{j}}e^{A(w)}=\int_{0}^{1}e^{(1-\tau)A(w)}\frac{\partial A}{\partial w_{j}}(w)e^{\tau A(w)}d\tau.$
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Proof We set $u(t;w)=e^{tA(w)}$ . Then

$\frac{\partial u}{\partial t}(t;w)=A(w)u(t;w)$ .

So
$\frac{d}{dt}\frac{\partial u}{\partial w_{j}}(t;w)=A(w)\frac{\partial u}{\partial w_{j}}(t;w)+\frac{\partial A}{\partial w_{j}}(w)u(t;w)$

with $\partial u(O;w)/\partial w_{j}=0$ . Consequently we have

$\frac{\partial u}{\partial w_{j}}(t;w)=\int_{0}^{t}e^{(t-\tau)A(w)}\frac{\partial A}{\partial w_{j}}(w)e^{\tau A(w)}d\tau,$

which shows (3.1). $\square$

Let us write

(3.2) $q_{x,y}^{t,s}$ : $q_{x,y}^{t,s}(\theta)=(\theta, q_{x,y}^{t,s}(\theta))\in \mathbb{R}^{d+1}(s\leq\theta\leq t or t\leq\theta\leq s)$ .

Lemma 3.2. Let $t$ and $s$ be in $\mathbb{R}$ such that $t\neq s$ . Then we have

(3.3) $( \int_{q_{y,x}^{t,s}}-\int_{q_{y,z}^{t,s}})(A\cdot dx-Vdt)=(x-z)\cdot\Psi(t, s;x, y, z)$ ,

where $\Psi=(\Psi_{1}, \ldots, \Psi_{d})\in \mathbb{R}^{d}$ and

(3.4) $\Psi_{j}(t, s;x, y, z)=-\int_{0}^{1}A_{j}(s, z+\theta(x-z))d\theta$

$+(t- \mathcal{S})\int_{0}^{1}\int_{0}^{1}\sigma_{1}E_{j}(t-\sigma_{1}(t-s), y+\sigma_{1}(z-y)+\sigma_{1}\sigma_{2}(x-z))d\sigma_{1}d\sigma_{2}$

$+ \sum_{k=1}^{d}(y_{k}-z_{k})\int_{0}^{1}\int_{0}^{1}B_{jk}(t-\sigma_{1}(t-s), y+\sigma_{1}(z-y)+\sigma_{1}\sigma_{2}(x-z))d\sigma_{1}d\sigma_{2}.$

Proof. We can prove Lemma 3.2 from the Stokes theorem

(3.5) $( \int_{q_{y,x}^{t,s}}-\int_{q_{y,z}^{t,s}}+\int_{q_{x,z}^{s,s}})(A\cdot dx-Vdt)=\iint_{\Lambda}d(A\cdot dx-Vdt)$

and

(3.6) $d(A \cdot dx-Vdt)=-\sum_{j=1}^{d}E_{j}(t, x)dt\wedge dx_{j}+\sum_{1\leq j<k\leqd}B_{jk}dx_{j}\wedge dx_{k},$

where $\Lambda$ is the 2-dimensional plane in $\mathbb{R}^{d+1}$ with oriented boundary consisting of
$q_{y,x}^{t,s},$ $-q_{y,z}^{t,s}$ and $q_{x,z}^{s,s}.$

$\square$

To avoid the complexity we suppose hereafter that $\chi$ in (1.8) and (1.18) is real-valued.
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Proposition 3.3. Let $t$ and $\mathcal{S}$ be in $\mathbb{R}$ such that $t\neq s$ . Let $\Psi=\Psi(t, s;x, y, z)$ be the

junction defined by (3.3). Then for $f\in S$ we have

(3.7) $(G_{\epsilon}(t, s)^{*}G_{\epsilon}(t, s)f)(x)= \int\int e^{i(x-z)\cdot\xi}dd\xi\int\int e^{-i\eta\cdot w}e^{i(t-s)(c\hat{\alpha}\cdot\xi+c\hat{\alpha}\cdot\Psi+\hat{\beta}mc^{2})}$

$\cross e^{-i(t-s)(c\hat{\alpha}\cdot\xi+c\hat{\alpha}\cdot\Psi+\hat{\beta}mc^{2}-c\hat{\alpha}\cdot\eta)}\chi(\epsilon(\xi+\Psi))\chi(\epsilon(\xi+\Psi-\eta))f(z)d_{l!}d\eta$

with $\Psi=\Psi(t, s;x, w+z, z)$ , where $\eta\in \mathbb{R}^{d},$ $w\in \mathbb{R}^{d}$ and $G_{\epsilon}(t, s)^{*}$ denotes the formally

adjoint operator of $G_{\epsilon}(t, s)$ .

Proof. Since $S(t, s;x, \xi, y)$ is a Hermitian matrix from (1.6), $G_{\epsilon}(t, s)^{*}$ is written as

$(G_{\epsilon}(t, s)^{*}f)(x)= \int\int e^{-iS(t,s;y,\xi,x)}f(y)\chi(\epsilon\xi)d\Phi\xi$

from (1.18). $\mathbb{R}om$ this formula we can prove Proposition 3.3 directly. $\square$

Proposition 3.4. Under the assumptions (1.10) - (1.12) and (2.2) we have

(3.8) $|\partial_{x}^{\alpha}\partial_{y}^{\beta}\partial_{z}^{\gamma}\Psi_{j}(t, s;x,y, z)|\leq C_{\alpha,\beta,\gamma}, |\alpha+\beta+\gamma|\geq 1$

in $s,$ $t\in[-2T_{0}, 2T_{0}]$ and $x,$ $y,$
$z\in \mathbb{R}^{d}$ for $j=1$ , 2, . . . , $d.$

Proof. Proposition 3.4 follows from (3.4) and the assumptions. $\square$

Lemma 3.5. Let $A$ and $B$ be $N\cross N$ matrices. Then we have

$e^{A+B}=e^{A}+ \int_{0}^{1}d\theta\int_{0}^{1}e^{(1-\tau)(A+\theta B)}Be^{\tau(A+\theta B)}d\tau.$

Proof. We can prove Lemma 3.5 from Lemma 3.1. $\square$

$\mathbb{R}om$ Proposition 3.3 and Lemma 3.5 we can prove

(3.9) $(G_{\epsilon}(t, s)^{*}G_{\epsilon}(t, s)f)(x)= \int\int e^{i(x-z)\cdot\xi}f(z)dd\xi\int\int e^{-i\eta\cdot w}\chi(\epsilon(\xi+\Psi))$

$\cross\chi(\epsilon(\xi+\Psi-\eta))d_{11}\prime d\eta+c(t-s)\int\int e^{i(x-z)\cdot\xi}dd\xi\int_{0}^{1}d\theta\int_{0}^{1}d\tau$

$\cross\int\int e^{i(t-s)(c\hat{\alpha}\cdot\xi+c\hat{\alpha}\cdot\Psi+\hat{\beta}mc^{2})}e^{-i(t-s)(1-\tau)(c\hat{\alpha}\cdot\xi+c\hat{\alpha}\cdot\Psi+\hat{\beta}mc^{2}-\theta c\hat{\alpha}\cdot\eta)}e^{-i\eta\cdot w}i\hat{\alpha}\cdot\eta$

$\cross e^{-i(t-s)\tau(c\hat{\alpha}\cdot\xi+c\hat{\alpha}\cdot\Psi+\hat{\beta}mc^{2}-\theta c\hat{\alpha}\cdot\eta)}\chi(\epsilon(\xi+\Psi))\chi(\epsilon(\xi+\Psi-\eta))f(z)dnd\eta,$

where $\Psi=\Psi(t_{\mathcal{S}};x, w+z, z)$ . Then we can complete the proof of (1.21), applying the

Calder\’on-Vaillancourt theorem to (3.9).

\S 4. A roughly sketched proof of (1.22)

Let $G_{\epsilon}(t, s)$ be the operator defined by (1.18).
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Proposition 4.1. Let $H(t)$ be the Dirac operator defined by (1.2). Then for $f\in S$

we have

(4.1) $[i \frac{\partial}{\partial t}-H(t)]G_{\epsilon}(t, s)f=R_{\epsilon}(t_{\mathcal{S}})f$

$:= \int\int r(t, s;x, y)e^{iS(t,s_{\rangle}\cdot x,\xi,y)}f(y)\chi(\epsilon\xi)d\Phi\xi,$

where

(4.2) $r(t, s;x, y)=(x-y) \cdot\int_{0}^{1}(1-\theta)E(t-\theta(t-s), x-\theta(x-y))d\theta$

$-c \sum_{j=1}^{d}\hat{\alpha}^{(j)}[\int_{0}^{1}\{A_{j}(t-\theta(t-s), x-\theta(x-y))-A_{j}(t, x)\}d\theta$

$+(x-y) \cdot\int_{0}^{1}(1-\theta)\frac{\partial A}{\partial x_{j}}(t-\theta(t-s), x-\theta(x-y))d\theta$

$-(t- \mathcal{S})\int_{0}^{1}(1-\theta)\frac{\partial V}{\partial x_{j}}(t-\theta(t-s), x-\theta(x-y))d\theta].$

Proof. This proposition follows from the direct calculations. $\square$

We note that $r(t, s;x, y)$ defined by (4.2) is a Hermitian matrix. So as in the proof

of Proposition 3.3 we have

(4.3) $(R_{\epsilon}(t_{\mathcal{S}})^{*}f)(x)= \iint e^{-iS(t,s;y,\xi,x)}r(t, s;y, x)f(y)\chi(\epsilon\xi)d\Phi\xi.$

Consequently we can prove

(4.4) $(R_{\epsilon}(t, s)^{*}R_{\epsilon}(t, s)f)(x)= \iint e^{-iS(t,s,y,\xi,x)}r(t_{\mathcal{S}};y, x)\chi(\epsilon\xi)d\Phi\xi$

$\cross\iint r(t, s;y, z)e^{iS(t,s;y,\eta,z)}f(z)\chi(\epsilon\eta)dd\eta=\iinte^{i(x-z)\cdot\xi}dd\xi$

$\cross\int\int e^{-i\eta\cdot w}e^{i(t-s)(c\hat{\alpha}\cdot\xi+c\hat{\alpha}\cdot\Psi+\hat{\beta}mc^{2})}r(t, s;w+z, x)r(t, s;w+z, z)$

$\cross e^{-i(t-s)(c\hat{\alpha}\cdot\xi+c\hat{\alpha}\cdot\Psi+\hat{\beta}mc^{2}-c\hat{\alpha}\cdot\eta)}\chi(\epsilon(\xi+\Psi))\chi(\epsilon(\xi+\Psi-\eta))f(z)dvd\eta$

with $\Psi=\Psi(t, s;x, w+z, z)$ as in the proof of (3.7). Hence we can complete the proof

of (1.22) as in the proof of (1.21), applying the Calder\’on-Vaillancourt theorem to (4.4).

\S 5. A roughly sketched proof of theorems

We can easily prove the following.
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Lemma 5.1. Let $E(t, x)=0$ and $B_{jk}(t, x)=0$ for all $j<k$ in $\mathbb{R}^{d+1}$ . Define
$G(t, s)f$ by (1.20) for $f\in S$ . Then we have

(5.1) $G(t, \mathcal{S})f=U(t_{\mathcal{S}})f.$

Proof. Lemma 5.1 follows from (3.6). $\square$

The theorem below has been proved in Example 1.1, p.329 of [12].

Theorem 5.2. Let $T>0$ be an arbitrary constant. We assume

$|\partial_{x}^{\alpha}A_{j}(t, x)|\leq C_{\alpha}<x>^{M}, |\alpha|\geq 1$

in $[-T, T]\cross \mathbb{R}^{d}$ for $j=1$ , 2, . . . , $d$ and (2.3) with an integer $M\geq 1$ . Let $t$ and $t_{i}$

be in $[-T, T]$ and consider the Dirac equation (1.2) with $u(t_{i})=f\in B_{M+1}^{a}(a=$

$0,$ $\pm 1,$ $\pm 2$ , . . . $)$ . Then there exists a unique solution $U(t, t_{i})f\in \mathcal{E}_{t}^{0}([-T, T];B_{M+1}^{a})\cap$

$\mathcal{E}_{t}^{1}([-T, T];B_{M+1}^{a-1})$ , which satisfies

(5.2) $\Vert U(t, t_{i})f\Vert=\Vert f\Vert, \Vert U(t, t_{i})f\Vert_{B_{M+1}^{a}}\leqC_{a}(T)\Vert f\Vert_{B_{M+1}^{a}}$

in $t,$ $t_{i}\in[-T, T].$

Proposition 5.3. Under the assumptions of Theorem 2.1 we have

(5.3) $\Vert G(t, s)f-U(t, s)f\Vert_{B_{M+1}^{a}}\leq C_{a}(t-s)^{2}\Vert f\Vert_{B_{M+1}^{a+2}}, -2T_{0}\leq t, s\leq 2T_{0}$

for $a=0$ , 1, 2, . . . and $f\in S.$

Proof. Let us write $\rho=t-s$ for a while. From (4.1) we can easily see

$i \frac{G_{\epsilon}(s+\rho,s)f-U(s+\rho,s)f}{\rho}=\int_{0}^{1}R_{\epsilon}(s+\theta\rho, s)fd\theta+\int_{0}^{1}H(s+\theta\rho)$

. $\{G_{\epsilon}(\mathcal{S}+\theta\rho, s)f-f\}d\theta-\int_{0}^{1}H(s+\theta\rho)\{U(s+\theta\rho, s)f-f\}d\theta.$

Then we can complete the proof of Proposition 5.3 from (5.2) and a generalization of

(1.21), which will be stated later as (5.7). $\square$

$\mathbb{R}om$ Lemma 5.1 we can easily see

(5.4) $K_{D\triangle}(t, t_{i})f-U(t, t_{i})f=G(t, \tau_{\nu-1})\cdots G(\tau_{1}, t_{i})f-U(t, \tau_{\nu-1})\cdots U(\tau_{1}, t_{i})f$

$= \sum_{j=1}^{\nu}G(t, \tau_{v-1})\cdots G(\tau_{j+1}, \tau_{j})\{G(\tau_{j}, \tau_{j-1})-U(\tau_{j}, \tau_{j-1})\}U(\tau_{j-1}, t_{i})f$

$= \sum_{j=1}^{\nu}\prime G(t, \tau_{v-1})\cdots G(\tau_{j+1}, \tau_{j})\{G(\tau_{j}, \tau_{j-1})-U(\tau_{j}, \tau_{j-1})\}U(\tau_{j-1}, t_{i})f.$
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Applying (1.13), (1.21), (5.2) and (5.3) with $M=1$ to (5.4), we get

(5.5) $\Vert K_{D\triangle}(t, t_{i})f-U(t, t_{i})f\Vert\leq C_{0}\sum_{j=1}^{v}\prime e^{K_{O}\sigma(\Delta)}(\tau_{j}-\tau_{j-1})^{2}\Vert U(\tau_{j-1}, t_{i})f\Vert_{B_{2}^{2}}$

$\leq C_{0}’e^{K_{0}\sigma(\triangle)}\sigma(\triangle)\Vert f\Vert_{B_{2}^{2}}$

with constants $C_{0}$ and $C_{0}’.$

Let $f\in L^{2}$ and $g\in B_{2}^{2}$ . Then we have

(5.6) $\Vert K_{D\Delta}(t, t_{i})f-U(t, t_{i})f\Vert\leq\Vert K_{D\Delta}(t, t_{i})g-U(t, t_{i})g\Vert+\Vert K_{D\Delta}(t, t_{i})(f-g$

$+\Vert U(t, t_{i})(f-g$

$\leq C_{0}’e^{K_{0}\sigma(\triangle)}\sigma(\triangle)\Vert g\Vert_{B_{2}^{2}}+(1+e^{K_{0}\sigma(\Delta)})\Vert f-g\Vert$

from (1.21), (1.23), (5.2) and (5.5). Hence we can complete the proof of Theorem 1.1.

Let us give a proof of Theorem 2.1. We can prove

(5.7) $\Vert G(t, s)f\Vert_{B_{M}^{a}}\leq e^{K_{a}|t-s|}\Vert f\Vert_{B_{M}^{a}}$

with a constant $K_{a}\geq 0$ for $a=1$ , 2, . . . , which corresponds to (1.21). Using (5.7), we

can prove Theorem 2.1 as in the proof of Theorem 1.1.

Let us give a proof of Theorems 2.2 and 2.3. We know

Theorem (Paley-Wiener, Theorem IX.II in [26]). An entire analytic function of $n$

complex variables $g(\zeta)$ is the Fourier transform of a $C_{0}^{\infty}(\mathbb{R}^{d})$ function with support in

the ball $\{x\in \mathbb{R}^{d};|x|\leq R\}$ if and only if for each $N$ there is a $C_{N}$ so that

$|g( \zeta)|\leq\frac{C_{N}e^{R|Im\zeta|}}{(1+|\zeta|)^{N}}$

for all $\zeta\in \mathbb{C}^{d}$ , where $Im\zeta$ denotes the $imaginar1/part$ of $\zeta.$

Consider the operator $G(t, s)$ defined by (1.20) with $(V, A)=0$ . We can easily see

from the Paley-Wiener theorem that $G(t, s)f$ with $(V, A)=0$ has the finite propagation

speed not exceeding the velocity $c\lambda_{\max}$ . Consequently, we can prove in terms of the

Fourier expansion that general operators $G(t, s)f$ also have the finite propagation speed

not exceeding the velocity $c\lambda_{\max}$ . It follows from Theorems 1.1 and 2.1 that we have

only to prove Theorems 2.2 and 2.3 for $K_{D\triangle}(t, t_{i})f$ with $\Delta$ such that $t_{i}<\tau_{1}<\ldots<$

$\tau_{v-1}<\tau_{\nu}=t$ or $t_{i}>\tau_{1}<\ldots>\tau_{\nu-1}>\tau_{\nu}=t$ . Applying the result above for
$G(t, \mathcal{S})f$ to (1.23), we can see that $K_{D\Delta}(t, t_{i})f$ also has the finite propagation speed not

exceeding the velocity $c\lambda_{m\infty}$ . Thus we can prove Theorems 2.2 and 2.3 from Theorems

1.1 and 1.2, respectively.
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Let us give a proof of Theorem 2.6. Let $t>T_{0}$ and $t_{i}<-T_{0}$ . Then we can see

(5.8) $U_{0}(t, 0)^{-1}U(t, 0)U(t_{i}, 0)^{-1}U_{0}(t_{i}, 0)=U_{0}(0, t)U(t, 0)U(0, t_{i})U_{0}(t_{i}, 0)$

$=U_{0}(0, t)\{U(t, T_{0})U(T_{0},0)\}\{U(0, -T_{0})U(-T_{0}, t_{i})\}U_{0}(t_{i}, 0)$

$=U_{0}(0, t)\{U_{0}(t, T_{0})U(T_{0},0)\}\{U(O, -T_{0})U_{0}(-T_{0}, t_{i})\}U_{0}(t_{i}, 0)$

$=U_{0}(0, T_{0})U(T_{0}, -T_{0})U_{0}(-T_{0},0)=U_{0}(T_{0},0)^{-1}U(T_{0}, -T_{0})U(0, -T_{0})^{-1}.$

Hence we can complete the proof of Theorem 2.6 from Theorem 1.1.
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