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Abstract

We survey various change of scale formulas for Wiener integrals that have been established
since Cameron and Storvick first discovered in 1987. In particular, we introduce several classes
of functions, for which the change of scale formula hold, of interest in Feynman integration
theory and quantum mechanics.
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\S 1. Introduction and Preliminary

It has long been known that Wiener measure and Wiener measurability behave badly

under the change of scale transformation [3] and under translations [2], that is, unlike

the Riemann integral it is known that

$\int_{C_{0}[0,T]}F(\rho x)dm(x)\neq\frac{1}{\rho}\int_{C_{0}[0,T]}F(x)dm(x)$ .

Cameron and Storvick [8] expressed the analytic Feynman integral on classical Wiener
space as a limit of Wiener integrals. In doing so, they discovered nice change of scale

formulas for Wiener integrals on classical Wiener space $(C_{0}[0,1], m)[7]$ . In [34, 35], Yoo

and Skoug extended these results to an abstract Wiener space $(B, H, \nu)$ . Moreover Yoo,

Song, Kim and Chang [36, 37] established a change of scale formula for Wiener integrals

of some unbounded functionals on (a product) abstract Wiener space. Recently Yoo,

Kim and Kim [33] obtained a change of scale formula for a function space integral on a
generalized Wiener space $C_{a,b}[0, T].$

In this paper we survey various change of scale formulas for Wiener integrals that

have been established since Cameron and Storvick. In particular, we introduce several
classes of functions, for which the change of scale formula hold, of interest in Feynman

integration theory and quantum mechanics.
Let $C_{0}[0, T]$ denote the Wiener space, that is, the space of real valued continuous

functions $x$ on $[0, T]$ with $x(O)=$ O. Let $\mathcal{M}$ denote the class of all Wiener measur-
able subsets of $C_{0}[0, T]$ and let $m$ denote Wiener measure. Then $(C_{0}[0, T], \mathcal{M}, m)$ is a
complete measure space and we denote the Wiener integral of a function $F$ by

$\int_{C_{0}[0,T]}F(x)dm(x)$ .

A subset $E$ of $C_{0}[0, T]$ is said to be scale-invariant measurable [18] provided $\rho E$ is

measurable for each $\rho>0$ , and a scale-invariant measurable set $N$ is said to be scale
invariant null provided $m(\rho N)=0$ for each $\rho>0$ . A property that holds except on a
scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.).

Let $\mathbb{C}+and\mathbb{C}_{+}^{\sim}$ denote the sets of complex numbers with positive real part and the

complex numbers with nonnegative real part, respectively. Let $F$ be a complex valued
measurable functional on $C_{0}[0, T]$ such that the Wiener integral

$J_{F}( \lambda)=\int_{C_{O}[0,T]}F(\lambda^{-1/2}x)dm(x)$

exists as a finite number for all $\lambda>0$ . If there exists a function $J_{F}^{*}(\lambda)$ analytic in $\mathbb{C}+$

such that $J_{F}^{*}(\lambda)=J_{F}(\lambda)$ for all $\lambda>0$ , then $J_{F}^{*}(\lambda)$ is defined to be the analytic Wiener
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integral of $F$ over $C_{0}[0, T]$ with parameter $\lambda$ , and for $\lambda\in \mathbb{C}+we$ write

(1.1) $\int_{C_{0}[0,T]}^{anw_{\lambda}}F(x)dm(x)=J_{F}^{*}(\lambda)$ .

If the following limit exists for nonzero real $q$ , then we call it the analytic Feynman

integral of $F$ over $C_{0}[0, T]$ with parameter $q$ and we write

(1.2) $\int_{C_{0}[0,T]}^{anf_{q}}F(x)dm(x)=\lim_{\lambdaarrow-iq}\int_{C_{0}[0,T]}^{anw_{\lambda}}F(x)dm(x)$

where $\lambda$ approaches $-iq$ through $\mathbb{C}+\cdot$

\S 2. Change of scale formulas for Wiener integrals of functionals in $S$

In this section we introduce the Cameron and Storvick’s change of scale formulas for
Wiener integrals. Let us begin with this section by introducing the class of functionals
that we work on in this section.

Let $S=S(L_{2}[a, b])$ be the space of functionals expressible in the form

(2.1) $F(x)= \int_{L_{2}[a,b]}\exp\{i\int_{a}^{b}v(t)dx(t)\}d\mu(v)$

for $s$-almost all $x\in C_{0}[a, b]$ , where $\mu\in \mathcal{M}(L_{2}[a,$ $b$ the class of complex measures of
finite variation defined on $\mathcal{B}(L_{2}[a, b])[5].$

It has been shown by Johnson [16] that the space $S$ is isometrically isomorphic to the

Fresnel space $\mathcal{F}(H)$ of Albeverio and Hugh-Krohn [1]. Moreover the Banach algebra
$S$ is a very rich class of functionals. For example, functionals of the form

(2.2) $F(x)= \exp\{\int_{0}^{T}\int_{0}^{T}f(s, t, x(s), x(t))dsdt\}$

were discussed in the book by Feynman and Hibbs [13] on path integrals, and in Feyn-

man’s original paper [12]. Chang, Johnson and Skoug showed in [9] that for appropriate
$f$ : $[0, T]^{2}\cross \mathbb{R}^{2}arrow \mathbb{C}$ , functionals of the form (2.2) are known to belong to $\mathcal{S}.$

Cameron and Storvick [6] proved that functionals in $S$ is analytic Wiener and analytic

Feynman integrable as follows.

Theorem 2.1. Let $F\in S$ be given by (2.1). Then $F$ is analytic Wiener integrable

and

(2.3) $\int_{C_{0}[a,b]}^{anw}\lambda F(x)dm(x)=\int_{L_{2}[a,b]}\exp\{-\frac{1}{2\lambda}\int_{a}^{b}(v(t))^{2}dx(t)\}d\mu(v)$ .
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Moreover $F$ is analytic Feynman integrable and

(2.4) $\int_{C_{0}[a,b]}^{anf_{q}}F(x)dm(x)=\int_{L_{2}[a,b]}\exp\{-\frac{i}{2q}\int_{a}^{b}(v(t))^{2}dx(t)\}d\mu(v)$

for every nonzero real $q.$

In [8], Cameron and Storvick gave relationships between Wiener integral and analytic
Feynman integral for functionals in $S$ , that is, they expressed Feynman integral in terms
of Wiener integrals.

In Theorem 2.2 below the Wiener integrals are associated with a sequence of subdivi-
sions of the time interval $[a, b]$ , while in Theorem 2.3, the Wiener integrals are associated
with a complete orthonormal set of functions.

Theorem 2.2. Let $\langle\sigma_{n}\rangle$ be a sequence of subdivisions of $[a, b]$ , let $\sigma_{n}$ has $m_{n}$ in-
tervals and let $\Vert\sigma_{n}\Vertarrow 0$ as $narrow\infty$ . Let $\langle\lambda_{n}\rangle$ be a sequence of complex numbers with
${\rm Re}(\lambda_{n})>0$ for all $n$ such that $\lambda_{n}arrow-iq$ as $narrow\infty$ . Let $x\in C_{0}[a, b]$ and let $x_{\sigma_{n}}$ be the
polygonal function that equals $x$ at the division points of $\sigma_{n}$ and is linear and continuous
between them. Then if $F\in S,$

(2.5)

$\int_{C_{0}[a,b]}^{anf_{q}}F(x)dm(x)=\lim_{narrow\infty}\lambda_{n}^{rn_{n}/2}\int_{C_{0}[a,b]}\exp\{\frac{1-\lambda_{n}}{2}\int_{a}^{b}\Vert\frac{dx_{\sigma_{n}}(s)}{ds}\Vert^{2}ds\}F(x)dm(x)$

for each nonzero real number $q.$

Theorem 2.3. Let $\langle\phi_{n}\rangle$ be a complete orthonormal sequence of functions on $[a, b].$

Let $F\in S$ . Let $\langle\lambda_{n}\rangle$ be a sequence of complex numbers with ${\rm Re}(\lambda_{n})>0$ for all $n$ such
that $\lambda_{n}arrow-iq$ as $narrow\infty$ . Then the analytic Feynman integral of $F$ exists and
(2.6)

$\int_{C_{0}[a,b]}^{anf_{q}}F(x)dm(x)=\lim_{narrow\infty}\lambda_{n}^{n/2}\int_{C_{0}[a,b]}\exp\{\frac{1-\lambda_{n}}{2}\sum_{k=1}^{n}(\int_{a}^{b}\phi_{k}(t)dx(t))^{2}\}F(x)dm(x)$

for each nonzero real number $q.$

If $\rho$ is positive real number and we set $\lambda_{n}=\rho^{-2}$ for all $n$ in Theorems 2.2 and 2.3,
then we obtain the following change of scale formulas, respectively.

Theorem 2.4 (Cameron and Storvick [7]). Let $\langle\sigma_{n}\rangle$ be a sequence of subdivisions
of $[a, b]$ such that $\Vert\sigma_{n}\Vertarrow 0$ as $narrow\infty$ , and let $m_{n}$ be the number of subintervals in $\sigma_{n}.$

Then if $F\in S,$

(2.7)

$\int_{C_{0}[a,b]}F(\rho x)dm(x)=\lim_{narrow\infty}\rho^{-m_{n}}\int_{C_{0}[a,b]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\int_{a}^{b}\Vert\frac{dx_{\sigma_{n}}(s)}{ds}\Vert^{2}ds\}F(x)dm(x)$

for each $\rho>0.$
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Theorem 2.5 (Cameron and Storvick [7]). Let $\langle\phi_{n}\rangle$ be a complete orthonormal se-
quence of functions on $[a, b]$ . Then if $F\in S,$

(2.8)

$\int_{C_{0}[a,b]}F(\rho x)dm(x)=\lim_{narrow\infty}\rho^{-n}\int_{C_{0}[a,b]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}(\int_{a}^{b}\phi_{k}(t)dx(t))^{2}\}F(x)dm(x)$

for each $\rho>0.$

We are interested in the change of scale formula of the form (2.8) in the rest of this

paper.

The space $S$ is a Banach algebra and hence it is a complete hnear normed space.

However Johnson and Skoug have shown in [19] that it is not closed with respect to

pointwise or even uniform convergence. We shall denote the closure of $S$ under uniform

convergence $s$-almost everywhere by $C1_{u}\mathcal{S}$ . It can be seen that $C1_{u}S$ is a Banach algebra

with norm given by

$\Vert F\Vert=\inf_{B}\{B$ : $|F(x)|\leq B$ for $s$-almost all $x\in C_{0}[a,$ $b$

The change of scale formulas (2.7) and (2.8) for functions in $S$ can be extended to for

functions in $C1_{u}\mathcal{S}$ , indeed. For details, see [7].

The following example was given in [7], and we compute Wiener integrals of a func-
tional under a change of scale transformation explicitly.

Example 2.6. Let $[a, b]=[0, \pi]$ and define $\phi_{j}(t)=\sqrt{2}/\pi\sin jt$ for $j=1$ , 2, . . ..
Then $\langle\phi_{j}\rangle$ is a complete orthonormal sequence on $[0, \pi]$ . Define

$F(x)= \exp\{\alpha\int_{0}^{\pi}x(t)\cos tdt\}$

for $x\in C_{0}[0, \pi]$ and $\alpha$ is a real or complex number. We evaluate the Wiener integrals

on each side of the change of scale formula (2.8) above. The lefl hand side is

$L= \int_{C_{O}[0,\pi]}\exp\{\alpha\rho\int_{0}^{\pi}x(t)\cos tdt\}dm(x)$ .

Using integration by parts and Paley-Wiener-Zygmund theorem [31], we have

$L=(2 \pi)^{-1/2}\int_{\mathbb{R}}\exp\{-\alpha\rho(\frac{\pi}{2})^{1/2}-\frac{u^{2}}{2}\}du=\exp\{\frac{\alpha^{2}\rho^{2}\pi}{4}\}.$

On the other hand, consider

$R \equiv\int_{C_{0}[a,b]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}(\int_{0}^{\pi}\phi_{k}(t)dx(t))^{2}-\alpha(\frac{\pi}{2})^{1/2}\int_{0}^{\pi}\phi_{1}(t)dx(t)\}dm(x)$ .
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We evaluate the Wiener integral above using Paley-Wiener-Zygmund theorem to obtain

$R= \rho^{n}\exp\{\frac{\alpha^{2}\rho^{2}\pi}{4}\}.$

Thus we have established that the change of scale formula (2.8) is valid for all complex

number $\alpha.$

If $\alpha$ is pure imaginary in Example 2.6, $F\in S$ , so $F$ is an example of a functional

to which the change of scale formula applies. On the other hand, if ${\rm Re}(\alpha)\neq 0,$ $F$ is

unbounded so $F\not\in \mathcal{S}$ and also $F\not\in C1_{u}S$ . Thus this example shows that the class of

functionals for which the change of scale formula holds is more extensive than $C1_{u}S.$

Recently, Kim, Song and Yoo [25] established the following change of scale formula

for a generalized Wiener integrals for functionals in $\mathcal{S}$ , that is,

$\int_{C_{0}[0,T]}F(\rho Z_{h}(x, dm(x)$

(2.9)
$= \lim_{narrow\infty}\int_{C_{0}[0,T]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}(\phi_{k}, Z_{h}(x, \cdot))^{2}\}F(Z_{h}(x, dm(x)$

for s-a.e. $y\in C_{0}[0, T]$ , where $Z_{h}$ is a Gaussian process $Z_{h}(x, t)= \int_{0}^{t}h(s)dx(s)$ . They

also showed that (2.9) holds for functionals of the form

(2.10) $F(x)=G(x)\Psi((\alpha_{1}, x), \ldots, (\alpha_{r}, x$

where $G\in S,$ $\Psi=\psi+\phi$ where $\psi\in L_{p}(\mathbb{R}^{r})$ for $1\leq p<\infty,$ $\alpha_{k}=\gamma_{k}/h$ with $\{\gamma_{1}, . . . , \gamma_{r}\}$

a orthonormal set in $L_{2}[0, T]$ and $\phi$ is the Fourier transform of a complex Borel measure
of bounded variation on $\mathbb{R}^{r}$ . Note that $F(x)$ need not be bounded or continuous.

Moreover Kim, Song and Yoo [26] extended (2.9) as follows. For functionals of the

form (2.1) or (2.10),

$\int_{C_{0}[0,T]}F(\rho Z_{h}(x, \cdot)+y)dm(x)$

(2.11)
$= \lim_{narrow\infty}\int_{C_{0}[0,T]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}(\phi_{k}, Z_{h}(x, \cdot))^{2}\}F(Z_{h}(x, \cdot)+y)dm(x)$

for s-a.e. $y\in C_{0}[0, T].$

\S 3. Other classes of functionals

In this section we introduce some other classes of functionals for which the change of

scale formula similar to (2.8) hold. These classes are of interest in Feynman integration

theory and quantum mechanics.
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\S 3.1. Cylinder function

Let $(B, H, \nu)$ be the abstract Wiener space [28]. In [27] Kim established a change

of scale formula for Wiener integrals of cylinder functions on $B$ . That is, for $F(x)=$

$f((h_{1}, x)^{\sim}, \ldots, (h_{n}, x)^{\sim})$ , he proved that

(3.1) $\int_{B}F(\rho x)d\nu(x)=\rho^{-n}\int_{B}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}[(h_{k}, x)^{\sim}]^{2}\}F(x)dv(x)$

where $\{h_{1}, . .., h_{n}\}$ is an orthonormal set in $H$ and $\rho>0.$

Note that in the change of scale formula (2.8) by Cameron and Storvick, $\langle\phi_{n}\rangle$ may

be any complete orthonormal set of functions in $L_{2}[0, T]$ and it requires the limiting

procedure. While in the change of scale formula (3.1), although it does not require the

limiting procedure but $\{h_{1}, . . . , h_{n}\}$ in the exponential of the integrand must be the

same as the elements used to define the cylinder function $F.$

Recently Kim [23] expressed the analytic Feynman integral of cylinder function of
single variable on $C_{0}[0, T]$ as a limit of Wiener integrals. And he obtained the original

version of a change of scale formula for Wiener integral of cylinder function. Of course
the change of scale formula by in [27] can be obtained as a corollary of the result in [23].

Let a be a nonzero function with $\Vert\alpha\Vert=1$ in $L_{2}[0, T]$ . For $1\leq p<\infty$ let $\mathcal{A}^{(p)}$ be
the space of all functionals $F$ on $C_{0}[0, T]$ of the form

$F(x)=f(\langle\alpha, x\rangle)$

for s-a.e. $x$ in $C_{0}[0, T]$ , where $f$ : $\mathbb{R}arrow \mathbb{R}$ is in $L_{p}(\mathbb{R})$ and $\langle\alpha,$ $x\rangle$ denote the Paley-Wiener-

Zygmund stochastic integral $\int_{0}^{T}\alpha(t)dx(t)$ . Let $\mathcal{A}^{(\infty)}$ be the space of all functionals of
the form $F(x)=f(\langle\alpha,x\rangle)$ with $f\in C_{0}(\mathbb{R})$ , the space of bounded continuous functions
on $\mathbb{R}$ that vanish at infinity.

Then we have the following change of scale formula for Wiener integral.

Theorem 3.1. Let $1\leq p\leq\infty$ and let $F\in \mathcal{A}^{(p)}$ be given, where $\Vert\alpha\Vert=1$ . Let $\{\phi_{n}\}$

be a complete orthonormal set of functionals in $L_{2}[0, T]$ . Then we have

(3.2) $\int_{C_{O}[0,T]}F(\rho x)dm(x)=\lim_{narrow\infty}\rho^{-n}\int_{C_{O}[0,T]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}\langle\phi_{k},$ $x\rangle^{2}\}F(x)dm(x)$

for all $\rho>0.$

If $\{\phi_{1}, . .., \phi_{n}, \alpha\}$ is linearly dependent for some $n=1$ , 2, $\cdots$ , then we have the
following corollary. In fact, Kim [27] considered in the case when $\phi_{1}=\alpha.$

Corollary 3.2. Let $1\leq p\leq\infty$ and let $F\in \mathcal{A}^{(p)}$ be given, where $\Vert\alpha\Vert=1$ . Let $n$

be a positive integer and let $\{\phi_{1}, \cdots, \phi_{n}\}$ be an orthonormal $\mathcal{S}et$ of functions in $L_{2}[0, T]$
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such that $\{\phi_{1}, . . . , \phi_{n}, \alpha\}$ is linearly dependent. Then we have

(3.3) $\int_{C_{0}[0,T]}F(\rho x)dm(x)=\rho^{-n}\int_{C_{0}[0,T]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}\langle\phi_{k}, x\rangle^{2}\}F(x)dm(x)$

for all $\rho>0.$

\S 3.2. Fresnel class $\mathcal{F}(B)$ on abstract Wiener space

Let $\{e_{j}\}$ be a complete orthonormal system in $H$ such that the $e_{j}$ ’s are in $B^{*}$ . For

each $h\in H$ and $x\in B$ , define a stochastic inner product $(h, x)^{\sim}$ as follows:

$(h, x)^{\sim}=\{\begin{array}{ll}\lim_{narrow\infty}\sum_{k=1}^{n}\langle h, e_{k}\rangle(x, e_{k}) , if the limit exists0, otherwise.\end{array}$

It is well known that for every $h\in H,$ $(h, x)^{\sim}$ exists for v-a.e. $x\in B$ and is a Borel

measurable function having a Gaussian distribution with mean zero and variance $|h|^{2}.$

Furthermore, $(h, x)^{\sim}=(x, h)$ for v-a.e $x\in B$ if $h\in B^{*}.$

Let $M(H)$ denote the space of complex-valued countably additive Borel measures on
$H$ . Under the total variation norm $\Vert\cdot\Vert$ and with convolution as multiplication, $M(H)$

is a commutative Banach algebra with identity.

The Fresnel class $\mathcal{F}(B)$ of functionals on $B$ is defined as the space of all $s$-equivalence

classes of functions $F$ on $B$ of the form

(3.4) $F(x)= \int_{H}\exp\{i(h, x)^{\sim}\}d\mu(h)$

for some $\mu\in M(H)$ . It is known that $\mathcal{F}(B)$ is a Banach algebra with the norm
$\Vert F\Vert=\Vert\sigma\Vert$ and the mapping $\muarrow F$ is a Banach algebra isomorphism. Moreover,

Kallianpur and Bromley [20] showed that every functionals in $\mathcal{F}(B)$ is analytic Wiener

and analytic Feynman integrable.

Yoo and Skoug [34] showed that a change of scale formula for Wiener integrals holds

for functionals in $\overline{ノ_{}\Gamma}(B)$ .

Theorem 3.3. Let $\{e_{j}\}$ be a complete orthonormal set of functions in H. Then for
$F\in \mathcal{F}(B)$ we have

(3.5) $\int_{B}F(\rho x)d\nu(x)=\lim_{narrow\infty}\rho^{-n}\int_{B}exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}[(e_{k}, x)^{\sim}]^{2}\}F(x)d\nu(x)$

for all $\rho>0.$
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We close this subsection by introducing two extensions of Theorem 3.3. The Banach

algebra $\mathcal{F}(B)$ is not closed with respect to pointwise or even uniform convergence, and

thus its closure $C1_{u}\mathcal{F}(B)$ with respect to uniform convergence s-a.e. is a larger space

than $\mathcal{F}(B)$ . We can extend the change of scale formula (3.5) for functionals in $C1_{u}\mathcal{F}(B)$ .
For details, see [34].

All functions in $\mathcal{F}(B)$ are bounded. Yoo, Song, Kim and Chang [37] established

change of scale formula for Wiener integrals of functions of the form

(3.6) $F(x)=G(x)\Psi((e_{1}, x)^{\sim}, \ldots, (e_{n}, x)^{\sim})$ ,

where $G\in \mathcal{F}(B)$ and $\Psi=\psi+\phi$ where $\psi\in L_{p}(\mathbb{R}^{n})$ and $\phi$ is the Fourier transform

of a complex Borel measure of bounded variation on $\mathbb{R}^{n}$ . Note that $F(x)$ need not be

bounded or continuous.

\S 3.3. Banach algebra $S(L_{2}(Q))$ on Yeh-Wiener space

Let $C_{2}(Q)$ denotes the Yeh-Wiener space, that is, the space of continuous functions
$x$ on $Q=[a, b]\cross[c,$ $d\rfloor$ such that $x(a, t)=x(s, c)=0$ for all $(s, t)\in Q$ . Let $M(L_{2}(Q))$ be

the class of complex measures of finite variation defined on $\mathcal{B}(L_{2}(Q))$ , the Borel class

of $L_{2}(Q)$ .
The Banach algebra $S(L_{2}(Q))$ consists of all functionals $F$ on $C_{2}(Q)$ expressible in

the form

(3.7) $F(x)= \int_{L_{2}(Q)}\exp\{i\int_{Q}v(s, t)dx(s, t)\}d\mu(v)$

for s-a.e. $x\in C_{2}(Q)$ and for some $\mu\in M(L_{2}(Q))$ .
Yoo and Yoon [38] established the following change of scale formula for Yeh-Wiener

integral.

Theorem 3.4. Let $\{\phi_{n}\}$ be a complete orthonormal sequence of functions on $Q.$

Then for $F\in S(L_{2}(Q))$ we have

(3.8)

$\int_{C_{2}(Q)}F(\rho x)dx=\lim_{narrow\infty}\rho^{-n}\int_{C_{2}(Q)}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}[\int_{Q}\phi_{k}(s, t)dx(s, t)]^{2}\}F(x)dx$

for all $\rho>0.$

The Banach algebra $S(L_{2}(Q))$ of analytic Yeh-Feyman integrable functionals is

not closed under the uniform convergence [38]. Hence the change of scale formula for
$S(L_{2}(Q))$ can be extended to the closure $C1_{u}S(L_{2}(Q))$ of $S(L_{2}(Q))$ .
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\S 3.4. Generalized Fresnel class $\mathcal{F}_{A_{1},A_{2}}$

Let $A_{1}$ and $A_{2}$ be bounded and non negative self-adjoint operators on $H$ . Let $\mathcal{F}_{A_{1},A_{2}}$

be the space of all $s$-equivalence classes of functions on $B\cross B$ which have the form

(3.9) $F(x_{1}, x_{2})= \int_{H}\exp\{i[(A_{1}^{1/2}h, x_{1})^{\sim}+(A_{1}^{1/2}h, x_{1})^{\sim}]\}d\mu(h)$

for some finite complex Borel measure $\mu$ on $H$ . Let $M(H)$ denote the space of finite

complex Borel measures $\mu$ on $H$ . Then $M(H)$ is a Banach algebra over the complex

numbers under convolution, with the norm $\Vert\mu\Vert$ equal to the total variation of $\mu$ . The

map $\muarrow[F]$ sets up an algebra isomorphism between $M(H)$ and $\mathcal{F}_{A_{1},A_{2}}$ if the range of
$A_{1}+A_{2}$ is dense in $H$ . In this case, $\overline{ノ^{}\sim}_{A_{1},A_{2}}$ becomes a Banach algebra under the norm
$\Vert F\Vert=\Vert\mu\Vert.$

Let $A$ be a bounded self-adjoint operators on $H$ . Then $A=A^{+}-A^{-}$ , where $A^{+}$

and $A^{-}$ are each bounded and non negative self-adjoint. Take $A_{1}=A^{+}$ and $A_{2}=A^{-}$

If $A^{+}$ is the identity and $A^{-}$ is the zero operator, then $\overline{ノ_{}r}A_{1},A_{2}$ is essentially the Fresnel

class $\mathcal{F}(H)$ and $\overline{ノ-}(B)$ .
Yoo and Skoug [34] established the following change of scale formula for Wiener

integrals on a product abstract Wiener space.

Theorem 3.5. Let $\{e_{n}\}$ be a complete orthonormal sequence in H. Then for $F\in$

$\mathcal{F}_{A_{1},A_{2}}$ we have

(3.10)

$\int_{B\cross B}F(\rho_{1}x_{1}, \rho_{2}x_{2})d(m\cross m)(x_{1}, x_{2})$

$= \lim_{narrow\infty}(\rho_{1}\rho_{2})^{-n}\int_{B\cross B}\exp\{\sum_{j=1}^{2}(\frac{\rho_{j}^{2}-1}{2\rho_{j}^{2}}\sum_{k=1}^{n}[(e_{k}, x_{j})^{\sim}]^{2})\}F(x_{1}, x_{2})d(m\cross m)(x_{1}, x_{2})$

for all $\rho_{1}>0$ and $\rho_{2}>0.$

The Banach algebra $\overline{ノ^{}-}_{A_{1},A_{2}}$ is not closed with respect to pointwise or even uniform

convergence, and thus its uniform closure $C1_{u}\mathcal{F}_{A_{1},A_{2}}$ with respect to uniform conver-
gence $\mathcal{S}-a.e$ . is a larger space than $\overline{J^{-}}_{A_{1},A_{2}}$ . Change of scale formula (3.10) for $\mathcal{F}_{A_{1},A_{2}}$

can be extended to the closure $C1_{u}\mathcal{F}_{A_{1},A_{2}}[34].$

Yoo, Song and Kim [36] extended Theorem 3.5 for functionals of the form

(3.11) $F(x_{1}, x_{2})=G(x_{1}, x_{2})\Psi(X_{n_{1},n_{2}}(x_{1}, x_{2}$

where $G\in\overline{ノ^{}-}_{A_{1},A_{2}},$ $\Psi=\psi+\phi$ where $\psi\in L_{p}(\mathbb{R}^{n_{1}+n_{2}})$ for $1\leq p<\infty$ and $\phi$ is a Fourier

transform of a complex Borel measure of bounded variation on $\mathbb{R}^{n_{1}+n_{2}}$ , and

$X_{n_{1)}n_{2}} (x_{1}, x_{2})=(X_{1,n_{1}}(x_{1}), X_{2,n_{2}}(x_{2}))$
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with $X_{j,n_{j}}(x_{j})=((e_{j,1}, x_{j})^{\sim}, \ldots, (e_{j,n_{j}}, x_{j})^{\sim})$ and $\{e_{j,1}, . . . , e_{j,n_{j}}\}$ is an orthonormal

set in $H$ for $j=1$ , 2.

\S 3.5. $S_{n,B}"$ over paths in abstract Wiener space

Let $C_{0}(B)=C_{0}([0, T], B)$ denote the set of abstract Wiener space valued continu-

ous functions on $[0, T]$ which vanish at origin. The Brownian motion in $B$ induces a
probability measure $m_{B}$ on $(C_{0}(B), \mathcal{B}(C_{0}(B)))$ which is non-zero Gaussian.

Let $\Delta_{n}=\{(s_{1}, \ldots, s_{n})\in[0, T]^{n} : 0=s_{0}<s_{1}<\cdots<s_{n}\leq T\}$ . Let $\mathcal{M}_{n}"=$

$\mathcal{M}_{n}"(\Delta_{n}\cross H^{n})$ be the class of complex Borel measures on $\triangle_{n}\cross H^{n}$ and let $\Vert\mu\Vert=var\mu,$

the total variation of $\mu\in \mathcal{M}_{n}$ Let $S_{n,B}"=S_{n,B}"(\Delta_{n}\cross H^{n})$ be the space of functionals

of the form

(3.12) $F(x)= \int_{\Delta_{n}\cross H^{n}}\exp\{i\sum_{k=1}^{n}(h_{k}, x(s_{k}))^{\sim}\}d\mu(\vec{s},\vec{h})$

for s-a.e. $x$ in $C_{0}(B)$ where $\mu\in \mathcal{M}_{n}$

Kim and Kim [24] established a relationship between Wiener integral and analytic

Feynman integral for functionals in $S_{n,B}"$ . They also expressed analytic Wiener integral

as a limit of a sequence of Wiener integrals over $C_{0}(B)$ , and obtained a change of scale
formula for Wiener integral over $C_{0}(B)$ of these functionals.

Theorem 3.6. Let $F\in S_{n,B}"$ . Let $\{e_{n}\}$ be a complete orthonormal sequence in $H.$

Then we have

(3.13) $\int_{C_{0}(B)}F(\rho x)dm_{B}(x)=\lim_{marrow\infty}\rho^{-mn}\int_{C_{0}(B)}F_{\rho^{-2}}(x)dm_{B}(x)$ ,

where

$F_{\rho^{-2}}(x)= \int_{\Delta_{n}xH^{n}}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{[(e_{j},x(s_{k})-x(s_{k-1})^{\sim}]^{2})}{\mathcal{S}_{k}-s_{k-1}}$

(3.14)

$+i \sum_{k=1}^{n}(h_{k}, x(s_{k}))^{\sim}\}d\mu(\vec{s},\vec{h})$ .

for all $\rho>0.$

Kim and Kim [24] also extended the result in Theorem 3.6 for functionals

(3.15) $F(x)=G(x)\psi(x(T))$ ,

where $G$ belongs to $S_{n,B}"$ and $\psi$ belong to the Fresnel class $\mathcal{F}(B)$ .
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\S 3.6. Banach algebra $S(L_{a,b}^{2}[0, T])$ on a function space

Let $a(t)$ be an absolutely continuous real valued function on $[0, T]$ with $a(O)=0$

and $a’(t)\in L^{2}[0, T]$ . Let $b(t)$ be a strictly increasing continuous differentiable real

valued function with $b(O)=0$ . It is known that the probability measure $\mu$ induced by a

generalized Brownian motion process $Y$ determined by $a$ and $b$ taking a separable

version, is supported by $C_{a,b}[0, T][31].$

Let $(C_{a,b}[0, T], \mathcal{B}(C_{a,b}[0, T \mu)$ be the function space(generalized Wiener space) in-

duced by $Y$ . The Wiener process $W$ on $C_{0}[0, T]\cross[O, T]$ is free of drift and is stationary

in time, while the stochastic process $Y$ on $C_{a,b}[0, T]\cross[0, T]$ is subject to a drift $a(t)$

and nonstationary in time.

Let $L_{a,b}^{2}[0, T]$ be the Hilbert space of continuous functions on $[0, T]$ which are Lebesgue
measurable and square integrable with respect to the Lebesgue Stieltjes measures on
$[0, T]$ induced by $a$ and $b$ The Banach algebra $S(L_{a,b}^{2}[0, T])$ is the space of all
$s$-equivalence classes of functionals $F$ on $C_{a,b}[0, T]$ which have the form

(3.16) $F(x)= \int_{L_{a,b}^{2}[0,T]}\exp\{i\langle v, x\rangle\}df(v)$

where the associated measure $f$ is a complex valued countably additive Borel measures
on $L_{a,b}^{2}[0, T]$ and $\langle v,$ $x\rangle$ denotes the Paley-Wiener-Zygmund integral.

Chang and Skoug [10] introduced a function space integral and a generalized Feyn-

man integral on $C_{a,b}[0, T]$ . They showed that every functionals in $S(L_{a,b}^{2}[0, T])$ is gen-

eralized analytic Feynman integrable under some conditions on the associated measure
$f.$

If $a(t)=0$ and $b(t)=t$ on $[0, T]$ , then the function space integral and the generalized

analytic Feynman integral reduce to the Wiener integral and the analytic Feynman

integral, respectively.

Yoo, Kim and Kim [33] established a relationship between the function space in-

tegral and the generalized analytic Feynman integral on $C_{a,b}[0, T]$ ) for functionals in

$S(L_{a,b}^{2}[0,$ $T$ Moreover, they obtained a change of scale formula for a function space

integral on $C_{a,b}[0, T]$ of these functionals.

Theorem 3.7. Let $|a(t)|=cb(t)$ on $[0, T]$ for some constant $c\geq 0$ . Let $\{\phi_{n}\}$ be a
complete orthonormal set offunctionals in $L_{a,b}^{2}[0, T]$ . Let $F\in S(L_{a,b}^{2}[0,$ $T$ Then

$\int_{C_{a,b}[0,T]}F(\rho x)d\mu(x)=\lim_{narrow\infty}\rho^{-n}\int_{C_{a,b}[0,T]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}\frac{\langle\phi_{k},x\rangle^{2}}{B_{k}}$

(3.17)

$+( \rho^{-1}-1)\sum_{k=1}^{n}\frac{A_{k}\langle\phi_{k},x\rangle}{B_{k}}\}F(x)d\mu(x)$

for all $\rho>0.$
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In Theorem 3.7 we require the condition that $|a(t)|=cb(t)$ . Example 3.4 in [33]

shows that the relationship (3.17) is not necessarily valid if $|a(t)|\neq cb(t)$ . Moreover

taking $a(t)=0$ and $b(t)=t$ in Theorem 3.7, we have the change of scale formula for

Wiener integrals on classical Wiener space.

\S 4. Change of scale formula for conditional Wiener integrals

Let $F$ : $C_{0}[0, T]arrow \mathbb{C}$ be integrable and let $X$ be a random vector on $C_{0}[0, T].$

Then we have a conditional expectation $E[F|X]$ given $X$ from a well-known probability

theory. Further, there exists a $P_{X}$-integrable function $\psi$ on the value space of $X$ such

that $E[F|X](x)=(\psi\circ X)(x)$ for m-a.e. $x\in C_{0}[0, T]$ , where $P_{X}$ is the probability

distribution of $X$ . The function $\psi$ is called the conditional Wiener integral of $F$ given
$X$ and it is denoted by $E[F|X].$

In [29] Park and Skoug introduced a simple formula for conditional Wiener integrals
which evaluate the conditional Wiener integral of a function given $X_{\tau}$ as a Wiener

integral of the function and in [11], using this formula, they expressed the analytic

Feynman integral of the functions in $S$ as an integral of the conditional analytic Feynman

integral of the functions.

Let $\{v_{1}, . . . , v_{r}\}$ be an orthonormal subset of $L_{2}[0, T]$ . For $1\leq p\leq\infty$ , let $\mathcal{A}_{r}^{(p)}$ be

the space of all cylinder functions $F_{r}$ on $C_{0}[0, T]$ of the form

(4.1) $F_{r}(x)=f(\langle v_{1}, x\rangle, \ldots, \langle v_{r}, x\rangle)$

for s-a.e. $x$ in $C_{0}[0, T]$ , where $F:\mathbb{R}^{r}arrow \mathbb{R}$ is in $L_{p}(\mathbb{R}^{r})$ . Let $\mathcal{A}_{r}^{(\infty)}$ be the space of all
functions of the form (4.1) with $f\in L_{\infty}(\mathbb{R}^{r})$ , the space of essentially bounded functions

on $\mathbb{R}^{r}.$

In [32] Yoo, Chang, Cho, Kim and Song established a relationship between Wiener

integral and conditional analytic Feynman integral on Wiener space.

Theorem 4.1. Let $q$ be a nonzero real number and let $\{\lambda_{n}\}$ be a sequence in $\mathbb{C}+$

with $\lambda_{n}arrow-iq$ as $narrow\infty$ . Let $G_{r}(x)=F(x)[F_{r}(x)+K_{r}(x)]$ , where $F$ belongs to $S,$

$F_{r}$ belongs to $\mathcal{A}_{r}^{(1)}$ , and $K_{r}(x)=\phi(\langle v_{1}, x\rangle, \cdots, \langle v_{r}, x\rangle)$ for s-a. $e.$ $x\in C_{0}[0, T]$ . Define
$X_{k}:C_{0}[0, T]arrow \mathbb{R}^{k}$ by $X_{k}(x)=((\alpha_{1}, x), \ldots, (\alpha_{k}, x))forx\in C_{0}[0, T]$ where $\{\alpha_{1}, \cdots, \alpha_{k}\}$

is an orthonormal subset of $L_{2}[0, T]$ . Then we have

$E^{anf_{q}}[G_{r}|X_{k}](\xi^{\neg})$

(42)
$= \lim_{narrow\infty}\lambda_{n}^{n/2}\int_{C_{0}[0,T]}\exp\{\frac{1-\lambda_{n}}{2}\sum_{j=1}^{n}(e_{j}, x)^{2}\}G_{r}(x-x_{k}+\xi_{k}^{arrow})dm(x)$

for $a.e.$
$\xi^{arrow}\in \mathbb{R}^{k}.$
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The following change of scale formula for conditional Wiener integrals of possibly

unbounded functions on Wiener space now follows immediately from Theorem 4.1.

Theorem 4.2. Let $F_{r}$ belong to $\mathcal{A}_{r}^{(p)}$ for $1\leq p\leq\infty$ and let $F$ belong to S. Let
$K_{r}(x)=\phi(\langle v_{1}, x\rangle, \ldots, \langle v_{r}, x\rangle)$ for s-a. $e.$ $x\in C_{0}[0, T]$ and let $G_{r}(x)=F(x)[F_{r}(x)+$

$K_{r}(x)]$ . Define $X_{k}$ : $C_{0}[0, T]arrow \mathbb{R}^{k}$ by $X_{k}(x)=((\alpha_{1}, x), \ldots, (\alpha_{k}, x))$ for $x\in C_{0}[0, T]$

where $\{\alpha_{1}, . . . , \alpha_{k}\}$ is an orthonormal subset of $L_{2}[0, T]$ . Then for $a.e.$
$\xi^{arrow}\in \mathbb{R}^{k}$ , we have

$E[G_{r}(\gamma\cdot)|X_{k}(\gamma\cdot)](\overline{\xi})$

(43)
$= \lim_{narrow\infty}\gamma^{-n}\int_{C_{0}[0,T]}\exp\{\frac{\gamma^{2}-1}{2\gamma^{2}}\sum_{j=1}^{n}(e_{j}, x)^{2}\}G_{r}(x-x_{k}+\xi_{k}^{arrow})dm(x)$

for all $\gamma>0.$

\S 5. Change of scale formula for Wiener integrals related with

Fourier-Feynman transform and convolution

In 1976, Cameron and Storvick [4] introduced as $L_{2}$ analytic Fourier-Feynman trans-

form. In 1979, Johnson and Skoug [17] developed an $L_{p}$ analytic Fourier-Feynman

transform for $1\leq p\leq 2$ that extended the results by Cameron and Storvick. In 1995,

Huffman, Park and Skoug [14] defined a convolution product for functionals on Wiener

space and showed that the Fourier-Feynman transform of the convolution product was
a product of Fourier-Feynman transforms. For a detailed survey of the previous work

on the Fourier-Feynman transform and related topics, see [30].

In this section, we express the Fourier-Feynman transform and convolution product

of functionals in $\mathcal{S}$ as limits ofWiener integrals on Wiener space. Moreover we introduce

change of scale formulas for Wiener integrals related to Fourier-Feynman transform and

convolution product of these functionals.

Let $F$ be a functional on $C_{0}[0, T]$ . For $\lambda\in \mathbb{C}+andy\in C_{0}[0, T]$ , let

(5.1) $T_{\lambda}(F)(y)= \int_{C_{0}[0,T]}^{anw_{\lambda}}F(x+y)dm(x)$ .

We define the $L_{1}$ analytic Fourier-Feynman transform $T_{q}^{(1)}(F)$ of $F$ by $(\lambda\in \mathbb{C}_{+})$

(5.2) $T_{q}^{(1)}(F)(y)= \lim_{\lambdaarrow-iq}T_{\lambda}(F)(y)$ ,

for s-a.e. $y\in C_{0}[0, T]$ , whenever this limit exist. For $1<p<\infty$ , we define the $L_{p}$

analytic Fourier-Feynman transform $T_{q}^{(p)}(F)$ of $F$ on $C_{0}[0, T]$ by the formula $(\lambda\in \mathbb{C}_{+})$

(5.3) $T_{q}^{(p)}(F)(y)=\lambdaarrow-iq1.i.m.T_{\lambda}(F)(y)$ ,
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whenever this limit exists; that is, for each $\rho>0,$

$\lim_{\lambdaarrow-iq}\int_{C_{0}[0,T]}|T_{\lambda}(F)(\rho x)-T_{q}^{(p)}(F)(\rho x)|^{p’}dm(x)=0$

where $1/p+1/p’=1.$

Huffman, Park and Skoug [15] established the existence of the Fourier-Feynman

transform on $C_{0}[0, T]$ for functionals in $S.$

Kim, Kim and Yoo [21] gave a relationship between analytic Fourier-Feynman trans-

form and the Wiener integral on $C_{0}[0, T]$ for functionals in $S$ . They expressed Fourier-

Feynman transform of functionals in $S$ as a limit of Wiener integrals as follows.

Theorem 5.1. Let $F\in S$ . Let $\{\phi_{n}\}$ be a complete orthonormal set offunctionals in
$L_{2}[0, T]$ . Let $q$ be a nonzero real number and let $\{\lambda_{n}\}$ be a sequence of complex numbers

in $\mathbb{C}+such$ that $\lambda_{n}arrow-iq$ . Then we have

(5.4) $T_{q}^{(p)}(F)(y)= \lim_{narrow\infty}\lambda_{n}^{n/2}\int_{C_{0}[0,T]}\exp\{\frac{1-\lambda_{n}}{2}\sum_{k=1}^{n}\langle\phi_{k}, x\rangle^{2}\}F(x+y)dm(x)$

for s-a.e. $y\in C_{0}[0, T].$

The following change of scale formula for Wiener integral related to Fourier-Feynman

transform of functionals in $S$ follows from Theorem 5.1 above.

Theorem 5.2. Let $F\in S$ . Let $\{\phi_{n}\}$ be a complete orthonormal set of functionals
in $L_{2}[0, T]$ . Then for each $\rho>0$

(5.5)

$\int_{C_{0}[0,T]}F(\rho x+y)dm(x)=\lim_{narrow\infty}\rho^{-n}\int_{C_{0}[0,T]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}\langle\phi_{k},$ $x\rangle^{2}\}F(x+y)dm(x)$

for s-a.e. $y\in C_{0}[0, T].$

Letting $y=0$ is (5.5), we have the change of scale formula (2.8) for Wiener integrals

on classical Wiener space.

In the following example, and we compute a Wiener integral of a functional under a
change of scale transformation explicitly.

Example 5.3. Let $\{\phi_{n}\}$ be a complete orthonormal set of functionals in $L_{2}[0, T].$

Define $F(x)=\exp\{\alpha\langle\phi_{1}, x\rangle\}$ for $x\in C_{0}[0, T]$ and $\alpha$ is a real or complex number. $We$

evaluate the Wiener integrals on each side of (5.5). The left hand side of (5.5) can be

evaluated as follows.

$L \equiv\int_{C_{0}[0,T]}F(\rho x+y)dm(x)=\int_{C_{0}[0,T]}\exp\{\alpha\rho\langle\phi_{1}, x\rangle+\alpha\langle\phi_{1}, y\rangle\}dm(x)$ .
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By the Paley-Wiener-Zygmund theorem, we have

$L= \exp\{\frac{\alpha^{2}\rho^{2}}{2}+\alpha\langle\phi_{1}, y$

Next we evaluate the Wiener integral on the right hand side of (5.5).

$R \equiv\int_{C_{0}[0,T]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}\langle\phi_{k}, x\rangle^{2}\}F(x+y)dm(x)$ .

By the Paley- Wiener-Zygmuni theorem again, we have

$R= \rho^{n}\exp\{\frac{\alpha^{2}\rho^{2}}{2}+\alpha\langle\phi_{1}, y$

Thus we have established that equation (5.5) is valid for $F(x)=\exp\{\alpha\langle\phi_{1},$ $x$

Note that in Example 5.3, $\alpha$ is a real or complex number. If $\alpha$ is pure imaginary,

$F\in S$ and $F$ is an example of a functional to which Theorem 5.2 applies. On the

other hand, if the real part of $\alpha$ is not equal to $0$ , then $F$ can be unbounded. Thus this

example shows that the class of functionals for which (5.5) holds is more extensive than
$S.$

Let $F$ and $G$ be functionals on $C_{0}[0, T]$ . For $\lambda\in \mathbb{C}+andy\in C_{0}[0, T]$ , we define

their convolution product $(F*G)_{\lambda}$ by

(5.6) $(F*G)_{\lambda}(y)= \int_{C_{0}[0,T]}^{anw_{\lambda}}F(\frac{y+x}{\sqrt{2}})G(\frac{y-x}{\sqrt{2}})dm(x)$

if it exists. Moreover for nonzero real number $q$ , the convolution product $(F*G)_{q}$ is

defined by

(5.7) $(F*G)_{q}(y)= \int_{C_{0}[0,T]}^{anf_{q}}F(\frac{y+x}{\sqrt{2}})G(\frac{y-x}{\sqrt{2}})dm(x)$

if it exists.

Huffman, Park and Skoug [15] established the existence of convolution product of

functionals in $S.$

Kim, Kim and Yoo [21] gave a relationship between convolution product and the

Wiener integral on $C_{0}[0, T]$ for functionals in $S$ . They expressed convolution product

of functionals in $S$ as a limit of Wiener integrals as follows.

Theorem 5.4. Let $F$ and $G$ be elements of $S$ with associated complex Borel mea-

sures $f$ and $g$ , respectively. Let $\{\phi_{n}\}$ be a complete orthonormal set of functionals in

$L_{2}[0, T]$ . Let $q$ be a nonzero real number and let $\{\lambda_{n}\}$ be a $\mathcal{S}$equence of complex numbers
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in $\mathbb{C}+such$ that $\lambda_{n}arrow-iq$ . Then we have

(5.8)

$(F*G)_{q}(y)= \lim_{narrow\infty}\lambda_{n}^{n/2}\int_{C_{O}[0,T]}\exp\{\frac{1-\lambda_{n}}{2}\sum_{k=1}^{n}\langle\phi_{k},$ $x \rangle^{2}\}F(\frac{y+x}{\sqrt{2}})G(\frac{y-x}{\sqrt{2}})dm(x)$

for s-a. $e.$ $y\in C_{0}[0, T].$

The following change of scale formula for Wiener integral related to convolution

product of functionals in $S$ follows from Theorem 5.4 above.

Theorem 5.5. Let $F$ and $G$ be elements of $S$ with associated complex Borel mea-

sures $f$ and $g$ , respectively. Let $\{\phi_{n}\}$ be a complete orthonormal set of functionals in

$L_{2}[0, T]$ . Then for each $\rho>0$

$\int_{C_{0}[0,T]}F(\frac{y+\rho x}{\sqrt{2}})G(\frac{y-\rho x}{\sqrt{2}})dm(x)$

(5.9)
$= \lim_{narrow\infty}\rho^{-n}\int_{C_{0}[0,T]}\exp\{\frac{\rho^{2}-1}{2\rho^{2}}\sum_{k=1}^{n}\langle\phi_{k}, x\rangle^{2}\}F(\frac{y+x}{\sqrt{2}})G(\frac{y-x}{\sqrt{2}})dm(x)$

for $s-a_{:}e.$ $y\in C_{0}[0, T].$

Similar example as in Example 5.3 shows that the class of functionals for which the

change of scale formula related to convolution product holds is more extensive than $S.$

Recently Kim, Kim and Yoo [22] published that similar results in this section

holds for functionals in a Banach algebra $\mathcal{S}(L_{a,b}^{2}[0, T])$ on a generalized function space

$C_{a,b}[0, T]$ . That is, they obtained change of scale formulas for function space integrals

related with generalized Fourier-Feynman transform and convolution product of these

functionals.
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