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1 Introduction

For modeling disease progression scenarios, dividing population into compartments has

been recognized as a common approach due to attempts to predict final size of epidemics

[10]. With compartments of uninfected cells, infected cells and free virus particles,

the dynamics of virus population in vivo has been well-understood from a theoretical
point of view by a pioneering work in Nowak and Bangham [13]. In the paper, the
modeling framework is based on the construction of ordinary differential equations to

invesitgate population dynamics of immune responses on virus load. Many authors have
subsequently paid attention to global stability of equilibria of the virus infection models
with antiviral immune responses, virus load and its diversity. One of the recent models
incorporate the effect humoral immune responses as follows [17],

$\{\begin{array}{l}x’(t)=\lambda-dx(t)-h(x(t), v(t))v(t) ,y’(t)=e^{-m_{1}\tau 1}h(x(t-\tau_{1}), v(t-\tau_{1}))v(t-\tau_{1})-\delta y(t) ,v’(t)=ke^{-m_{2^{\mathcal{T}}2}}y(t-\tau_{2})-cv(t)-qa(t)v(t) ,a’(t)=ga(t)v(t)-ba(t) .\end{array}$ (1.1)

The variables $x,$ $y$ and $v$ denote the concentration of uninfected cells, infected cells and
free virus particles, respectively. The variable $a$ denotes the concentration of $B$ cells.
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The nonnegative constant $\tau_{1}$ (resp. $\tau_{2}$ ) denotes the time taken to production of new
virus particles since it enters a cell (resp. the time taken to maturation of the newly
produced viruses) [14]. The model (1.1) with $h(x, v)$ $=kx$ (i.e., a bilinear incidence
$h(x, v)v=kxv)$ is equivalent to that in Wang et al. [19, Section 3]. The incidence

Table 1.1: Hypotheses on the function $h$ and the biological meaning for system (1.1)

rate prescribing a rate of newly infected cells per a unit time, is given by the function
$h\in C^{1}(\mathbb{R}_{+}^{2}, \mathbb{R})$ satisfying the hypotheses in Table 1.1 [17, HI-H4].

In addition, cell-mediated cytotoxic $T$ lymphocytes (CTLs) immune response is also
considered as an important factor which determines the dynamics of cell infection (see,
e.g., [1,2,4, 5] and the references therein). When delays are incorporated in the models,
we can observe rich dynamic behaviors; global stability of the equilibria is completely
determined by threshold parameters [9, 12, 15,22], while periodic solutions arise through
the Hopf bifurcations describing sustained oscillatory viral loads [3, 18, 20, 23].

Later, the following model is proposed in Yan and Wang [21]:

$\{\begin{array}{l}x’(t)=\lambda-dx(t)-kx(t)v(t) ,y’(t)=kx(t-\tau)v(t-\tau)e^{-s\tau}-\delta y(t)-py(t)z(t) ,v’(t)=\delta Ny(t)-cv(t)-qa(t)v(t) ,z’(t)=\beta y(t)z(t)-\gamma z(t) ,a’(t)=9^{a(t)v(t)}-ba(t)\end{array}$ (1.2)

in order to incorporate both cell-mediated and antibody immune responses. The vari-
ables $x,$ $y,$ $v,$ $z$ and $a$ denote the concentration of uninfected cells, infected cells, free
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virus particles, CTL responses and antibody responses, respectively. Due to the diffi-
culty of finding the actual incidence rate by a concrete form such as bilinear incidence
rates, many authors have proposed a general form of nonlinear incidence rates (see,
e.g., [7, 8, 20

In this paper, the above two considerations in [17, 21] are combined to formulate
the model with cell-mediated and antibody responses and nonlinear incidence rates. By
means of basic reproduction numbers, we study long-time behavior of virus prevalence
in the cells.

The organization of the paper is as follows. In Section 2, we propose the model
governed by a system of delay differential equations and define the basic reproduction
numbers to investigate the existence of infection equilibria. In Section 3, we establish
global stability of four equilibria by Lyapunov functional approach. In Section 4, we
provide numerical simulations which display the case that one of the four infection
equilibria is globaly stable. In Section 5, we offer concluding remarks with further
application of our results.

2 Model and preliminaries

We consider the following model:

$\{\begin{array}{l}x’(t)=\lambda-dx(t)-kx(t)f(v(t)) ,y’(t)=k\int_{0}^{\infty}G_{1}(\tau)x(t-\tau)f(v(t-\tau))d\tau-\delta y(t)-py(t)z(t) ,v’(t)=\delta N\int_{0}^{\infty}G_{2}(\tau)y(t-\tau)d\tau-cv(t)-qa(t)v(t) ,z’(t)=\beta y(t)z(t)-\gamma z(t) ,a’(t)=ga(t)v(t)-ba(t) .\end{array}$ (2.1)

The uninfected cells are produced at a constant rate $\lambda$ and die at a per capita rate $d.$

The infected cells are assumed to die at a rate $\delta$ due to the action of virus, each releasing
$N$ new virus particles as the lysis of infected cells occurs. Virus particles are cleared
from the system at rate $c$ . They are also killed (resp. neutralized) via mass action
kinetics by CTLs (resp. antibodies), which is described by $pyz$ (resp. $qaz$). CTLs are
produced at a rate proportional to the abundances of CTLs and infected cells, $\beta yz$ , and
die at a per capita rate $\gamma$ . The antibody responses are activated at a rate proportional
to the abundances of antibodies and free viruses, $gav$ , and die at a per capita rate $b.$

To account for the time lag between viral entry into a target cell and the production
of new virus particles, two distributed intracellular delays are introduced with kernel
funct\’ions given by $G_{i}(\tau)=f_{i}(\tau)e^{-m_{i}\tau},$ $i=1$ , 2. $k$ is a constant characterizing the
infection rate. $G_{1}(\tau)$ is probability that target cells contacted by the virus particles
at time $t-\tau$ survived $\tau$ time units and become infected at time $t$ and $G_{2}(\tau)$ is the
probability that a cell infected at time $t-\tau$ starts to yield new infectious virus at time
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$t$ . All the parameters are positive constants. The function $f(\xi)$ is assumed to be locally

Lipschitz on $[0, \infty$ ) satisfying

$(H)f(O)=0,$ $f’(\xi)$ exists and satisfies $f’(\xi)\geq 0$ and $( \frac{f(\xi)}{\xi})’\leq 0$ in $(0, \infty)$

corresponding to the hypotheses $(A_{1})$ , $(A_{3})$ and $(A_{4})$ in Table 1.1. The following as-

sumption on the function $G$ is also used widely in the literatures when describing delay

kernels.

$G_{i}(\tau)>0$ , for $\tau>0$ , and $0<a_{i}:= \int_{0}^{\infty}G_{i}(\xi)d\xi\leq 1,$ $i=1$ , 2.

Let us investigate a suitable phase and a feasible region. Denote non-negative initial

functions by

$(x(\theta), y(\theta), v(\theta), z(\theta), a(\theta))=(\phi_{1}(\theta), \phi_{2}(\theta), \phi_{3}(\theta), \phi_{4}(\theta), \phi_{5}(\theta))$

$=\phi(\theta)\in UC_{\psi}((-\infty, 0], \mathbb{R}_{+}^{5})$ , (2.2)

where $\mathbb{R}_{+}^{5}=\{(X_{1}, X2, \cdots , x_{5})\in \mathbb{R}^{5} : x_{i}\geq 0, i=1, 2, \cdots, 5\}$ and

$UC_{\psi}((- \infty, 0], \mathbb{R}_{+}^{5}):=\{\phi\in C((-\infty, 0],\mathbb{R}_{+}^{5}):\Vert\phi\Vert_{\psi}=\sup_{s\leq 0}\frac{|\phi(s)|}{\psi(s)}<\infty,$

$\frac{\phi(s)}{\psi(s)}$ is uniformly continuous on $(-\infty, 0$] $\}.$

Here we assume that $\psi$ : $(-\infty, 0] arrow[1, \infty)$ satisfies the following properties:

(1) $\psi$ is continuous and nonincreasing on $(-\infty, 0]$ with $\psi(0)=1,$

(2) $\frac{\psi(s+u)}{\psi(s)}arrow 1$ uniformly on $(-\infty, 0$] as $uarrow-0,$

(3) $\psi(s)arrow\infty sssarrow-\infty.$

We note that $UC_{\psi}$ is a Banach space with norm $\Vert\cdot\Vert_{\psi}$ . Moreover, if the function $\psi$

satisfies assumptions (1) $-(3)$ , then $UC_{\psi}$ is an admissible Banach space. Thus, for system

(2.1), existence results of Peano type hold (see, for details, Kuang [11, Corollary 5.2]).

It follows from the fundamental theory for integral-differential equations that there

exists a $T_{\phi}>0$ such that system (2.1) with (2.2) has a unique solution on the interval
$[0, T_{\phi})$ . The following theorem shows that for positive initial values, the solution remains

positive and is bounded, implying $T_{\phi}=\infty$ , that is, the solution exists globally in time.

The proof is omitted because it is quite similar to that in Wang et al. [15, Theorem 2.1].

Theorem 2.1. Let $(x(t), y(t), v(t), z(t), a(t))^{T}$ be the unique solution to system (2.1)

with (2.2). Then $x(t)$ , $y(t)$ , $v(t)$ , $z(t)$ and $a(t)$ are pQsitive for all $t>0$ . Moreover, all

solutions $(x(t), y(t), v(t), z(t), a(t))^{T}$ of system (2.1) with $x(t)>0,$ $y(t)>0,$ $v(t)>0,$

$z(t)>0$ and $a(t)>0$ are ultimately bounded.
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From Theorem 2.1, we can easily verify that $\omega$-limit sets of system (2.1) are contained
in the following bounded feasible region:

$\Gamma=\{(x, y, v, z, a)\in \mathbb{R}_{+}^{5}:|x|\leq\frac{\lambda}{d},$ $|y|,$ $|z| \leq\frac{\lambda a_{1}}{\min\{d,\delta,\gamma\}},$ $|v|,$
$|a| \leq\frac{\delta a_{2}N\frac{\lambda a_{1}}{\min\{d,\delta,\gamma\}}}{\min\{c,b\}}\}.$

We can verify that the region $\Gamma$ is positively invariant with respect to system (2.1).

3 Stability of equilibria

3.1 Basic reproduction numbers and existence of infection (positive)
equilibria

An equilibrium $(x, y, v, z, a)$ of system (2.1) satisfies the following equations:

$\{\begin{array}{l}\lambda-dx-kxf(v)=0,ka_{1}xf(v)-\delta y-pyz=0,\delta Na2y-cv-qav=0,\beta yz-\gamma z=0,gav-ba=0.\end{array}$ (3.1)

It is straightforward to see that system (2.1) always has an infection-free equilibrium
$E_{0}=(\lambda/d, 0,0,0,0)$ . By simple calculation, an immune-free equilibrium exists if and
only if the equation:

$K_{1}(v):= \frac{ka_{1}\lambda f(v)}{d+kf(v)}-\frac{cv}{Na_{2}}=v\tilde{K}_{1}(v) , \tilde{K}_{1}(v)=\frac{ka_{1}\lambda f(v)}{d+kf(v)}\cdot\frac{1}{v}-\frac{c}{Na_{2}}$

has a positive root. Let us define the basic reproduction number for viral infection as

$\Re_{0}=\frac{Nk\lambda a_{1}a_{2}f’(0)}{cd}$ . (3.2)

$Rom$ the hypothesis (H) , we have $\frac{d\tilde{K}_{1}(v)}{dv}<0$ and

$\lim_{varrow+0}\tilde{K}_{1}(v)=\frac{ka_{1}\lambda}{d}f’(0)-\frac{c}{Na_{2}}=\frac{c}{Na_{2}}(\Re_{0}-1)>0$

provided $\Re_{0}>1$ . For the both cases $\lim_{varrow\infty}f(v)=\infty$ and $\lim_{varrow\infty}f(v)<\infty$ , we have
$\lim_{varrow\infty}\tilde{K}_{1}(v)=-\frac{c}{Na2}<$ O. Therefore, $K_{1}(v)=0$ has a unique positive root $v=v_{1}.$

By the relation

$x_{1}= \frac{\lambda}{d+kf(v_{1})}$ and $y_{1}= \frac{cv1}{\delta Na_{2}},$

we get an immune-free equilibrium $E_{1}=(x_{1}, y_{1}, v_{1},0,0)$ .
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If $z\neq 0$ and $a=0$ , from the fourth equation of (3.1), we then get $y_{2}=2\beta<y_{1},$

which is denoted by

$\Re_{1}=\frac{\beta y_{1}}{\gamma}>1$ . (3.3)

Then the first equation of (3.1) becomes

$kxf( \frac{N\delta a_{2}\gamma}{\beta c})-\lambda+dx=0$ , (3.4)

and we have
$v= \frac{N\delta a_{2}\gamma}{\beta c}$ and $z= \frac{\beta a_{1}(\lambda-dx)}{p\gamma}-\frac{\delta}{p}$ . (3.5)

It follows that the equation (3.4) has a unique positive root $x=x_{2}\in(0, \lambda/d)$ . So if
and only if $\Re_{1}>1$ , we get the unique eqililibrium $E_{2}=(x_{2}, y_{2}, v2, z_{2},0)$ . Here, $\Re_{1}$

denotes the average number of the CTL immune cells activated by infected cells when
virus infection is successful and humoral immune responses have not been established.

Note that $y_{1}$ is the number of infected cells at $E_{1}$ and $1/r$ is the average life-span of

CTL cells.
If $a\neq 0$ and $z=0$ , from the fifth equation of (3.1), we then get $v_{3}= \frac{b}{9}<v_{1}$ , which

is denoted by
$\Re_{2}=\frac{gv_{1}}{b}>1$ . (3.6)

Then the first equation of (3.1) becomes

$kxf( \frac{b}{g})-\lambda+dx=0$ , (3.7)

and we have
$y= \frac{a_{1}(\lambda-dx)}{\delta}$ and $a= \frac{Na1a_{2}g(\lambda-dx)}{qb}-\frac{c}{q}$ . (3.8)

It follows that the equation (3.7) has a unique positive root $x=x_{3}\in(0, \lambda/d)$ . So if and
only if $\Re_{2}>1$ , we get the unique equilibrium $E_{3}=(x_{3}, y_{3}, v_{3},0, a_{3})$ . Here, $\Re_{2}$ denotes
the average number of the humoral immune cells activated by virus when virus infection
is successful and CTL responses have not been established. Note that $v_{1}$ is the number
of free viruses at $E_{1}$ and $1/b$ is the average life-span of antibody cells.

If $a\neq 0$ and $z\neq 0$ , from the forth and fifth equation of (3.1), we then get

$y_{4}= \frac{\gamma}{\beta}$ and $v_{4}= \frac{b}{g}$ . (3.9)

From the second equation of of (3.1), we can get

$z= \frac{\delta}{p}(\frac{\beta ka_{1}xf(\frac{b}{g})}{\gamma\delta}-1)$ .
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Note that $\frac{ka1xf(\frac{b}{9})}{\delta}=y_{3}=\frac{a_{1}(\lambda-dx)}{\delta}$ is the number of infected cells at $E_{3}$ . Denote the
CTL immune competitive reproductive number $\Re_{3}$ for system (2.1) is

$\Re_{3}=\frac{\beta y_{3}}{\gamma}$ , (3.10)

where $1/\gamma$ is the average life-span of CTL cells. Here, $\Re_{3}$ denotes the average number
of the CTL immune cells activated by infected cells under the condition that humoral
immune responses have been established.

Fkom the third equation of of (3.1), we can get

$a= \frac{c}{q}(\frac{g\delta Na_{2}\gamma}{\beta bc}-1)$ .

Note that $\frac{N\delta a_{2}\gamma}{\beta c}$ is the number of the viruses at $E_{2}$ . Denote the humoral immune
competitive reproductive number $\Re_{4}$ for system (2.1) is

$\Re_{4}=\frac{gv_{2}}{b}$ . (3.11)

$1/b$ is the average life-span of antibody cells and thus, $\Re_{4}$ denotes the average number
of the humoral immune cells activated by viruses under the condition that CTL immune
responses have been established.

When $\Re_{3}>1$ and $\Re_{4}>1$ , CTL and humoral immune responses can be established
simultaneously, and there exists an interior equilibrium $E_{4}=(x_{4}, y_{4}, v_{4}, z_{4}, a_{4})$ .

Hence we derive the following theorem [15, Theorem 3.1]:

Theorem 3.1. Let $\Re_{0},$ $\Re_{1},$ $\Re_{2},$ $\Re_{3}$ and $\Re_{4}$ be defined by (3.2), (3.3), (3.6), (3.10) and
(3.11), respectively. Then the following statement holds true.

(i) System (2.1) always has an infection-free equilibrium $E_{0}.$

(ii) System (2.1) has an immune-free infection equilibrium $E_{1}$ when $\Re 0>1.$

(iii) System (2.1) has an infection equilibrium $E_{2}$ with only $CTL$ immune responses
when $\Re_{1}>1.$

(iv) System (2.1) has an infection equilibrium $E_{3}$ with only humoral immune responses
when $\Re_{2}>1.$

(v) System (2.1) has an infection equilibrium $E_{4}$ with both $CTL$ responses and humoral
immune responses when $\Re_{3}>1$ and $\Re_{4}>1.$

For convenience, we rewrite system (2.1) as

$\{\begin{array}{l}x’(t)=\lambda-dx(t)-kx(t)f(v(t)) ,y’(t)=\alpha_{1}\int_{0}^{\infty}g_{1}(\xi)x(t-\xi)f(v(t-\xi))d\xi-\delta y(t)-py(t)z(t) ,v’(t)=\alpha_{2}\int_{0}^{\infty}g_{2}(\xi)y(t-\xi)d\xi-cv(t)-qa(t)v(t) ,z’(t)=\beta y(t)z(t)-\gamma z(t) ,a’(t)=9^{a(t)v(t)}-ba(t) ,\end{array}$ (3.12)
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where $\alpha_{1}=ka_{1},$ $\alpha_{2}=N\delta a2$ and $g_{i}( \xi)=\frac{G_{i}(\xi)}{a_{t}}$ for $i=1$ , 2. Let us also recall that

$a_{i}= \int_{0}^{\infty}G_{i}(\xi)d\xi$ , and thus $\int_{0}^{\infty}g_{i}(\xi)d\xi=1.$

The basic reproduction number for (2.1) defined in (3.2) can be rewritten as

$\Re_{0}=\frac{\lambda\alpha_{1}\alpha_{2}f’(0)}{c\delta d}.$

Throughout the paper, let $g(u)=u-1-\ln u$ . Note that $g$ : $\mathbb{R}_{+}arrow \mathbb{R}+has$ a strict

global minimum $9(1)=0$ . Let

$H_{i}(t)= \int_{t}^{\infty}g_{i}(\xi)d\xi, i=1, 2$ .

One can see that $H_{i}(0)=1,$ $H_{i}(\infty)=0$ and $\frac{dH_{i}(t)}{dt}=-g_{i}(t)$ hold.

3.2 Global stability of the infection-free equilibrium $E_{0}$ for the case
$\Re_{0}\leq 1$

Let us investigate global stability of the infection-free equilibrium $E_{0}$ which represents

a state that the virus is cleared up. We prove the following theorem [15, Theorem 3.2]:

Theorem 3.2. When $\Re_{0}\leq 1$ , the infection-free equilibrium $E_{0}$ is globally asymptotically

stable in the region $\Gamma.$

Proof. Define a Lyapunov functional on $C((-\infty, 0], \mathbb{R}_{+}^{5})$ as follows:

$L_{E_{0}}(x, y, v, z, a)=x_{0}g( \frac{x(t)}{x_{0}})+\frac{k}{\alpha_{1}}y(t)+\frac{k\delta}{\alpha_{12}\alpha}v(t)+\frac{kp}{\alpha_{1}\beta}z(t)+\frac{k\delta q}{\alpha_{1}\alpha_{2}g}a(t)$

$+k \int_{0}^{\infty}H_{1}(\xi)x(t-\xi)f(v(t-\xi))d\xi+\frac{k\delta}{\alpha_{1}}\int_{0}^{\infty}H_{2}(\xi)y(t-\xi)d\xi.$

(3.13)

It is easy to see that $L_{E_{0}}(x, y, v, z, a)$ reaches its global minimum when the solution

is in the infection-free equilibrium $E_{0}$ , and therefore $L_{E_{0}}(x, y, v, z, a)$ is a Lyapunov

functional. Similar to the arguments in Theorem 3.1 of [22], using integration by parts

to the last two terms in (3.13), we obtain the derivative of $L_{E_{0}}(x, y, v, z, a)$ along the
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solution of (3.12) as follows:

$L_{E_{0}}’(x, y, v, z, a)$

$=- \frac{d}{x(t)}(x(t)-x_{0})^{2}+kx_{0}f(v(t))-\frac{kp}{\alpha_{1}}y(t)z(t)-\frac{k\delta c}{\alpha_{1}\alpha_{2}}v(t)-\frac{k\delta q}{\alpha_{1}\alpha_{2}}a(t)v(t)$

$+ \frac{kp}{\alpha_{1}\beta}(\beta y(t)z(t)-\gamma z(t))+\frac{k\delta q}{\alpha_{1}\alpha_{29}}(ga(t)v(t)-ba(t))$

$=- \frac{d}{x(t)}(x(t)-x_{0})^{2}-\frac{kp\gamma}{\alpha_{1}\beta}z(t)-\frac{k\delta qb}{\alpha_{1}\alpha_{2}g}v(t)+\frac{k\delta c}{\alpha_{1}\alpha_{2}}(\frac{\lambda\alpha_{1}\alpha_{2}}{c\delta d}\frac{f(v(t))}{v(t)}-1)v(t)$

$\leq-\frac{d}{x(t)}(x(t)-x_{0})^{2}-\frac{kp\gamma}{\alpha_{1}\beta}z(t)-\frac{k\delta qb}{\alpha_{1}\alpha_{2}g}v(t)+\frac{k\delta c}{\alpha_{1}\alpha_{2}}(\frac{\lambda\alpha_{1}\alpha_{2}f’(0)}{c\delta d}-1)v(t)$ .

Therefore, $\Re_{0}=\frac{\lambda\alpha_{1}\alpha_{2}f’(0)}{c\delta d}\leq 1$ ensures that $L_{E_{0}}’(x, y, v, z, a)\leq 0$ for all $x,$ $y,$ $v,$ $z,$ $a\geq 0.$

One can see that $L_{E_{0}}’(x, y, v, z, a)=0$ if $x(t)=x_{0},$ $z(t)=0,$ $v(t)=0$ for $\Re_{0}\leq 1.$

Hence, every solution of (3.12) tends to $M_{0}$ , where $M_{0}$ is the largest invariant subset in
$\{(x, y, v, z, a)\in\Gamma : L_{E_{0}}’(x, y, v, z, a)=0\}$ with respect to (3.12). It can be easily verified
that $M_{0}$ is singleton $\{E_{0}\}$ . This shows that

$\lim_{tarrow\infty}(x(t), y(t), v(t), z(t), a(t))=E_{0}.$

Since

$L_{E_{0}}(x, y, v, z, a) \geq x_{09}(\frac{x(t)}{x_{0}})+\frac{k}{\alpha_{1}}y(t)+\frac{k\delta}{\alpha_{1}\alpha_{2}}v(t)+\frac{kp}{\alpha_{1}\beta}z(t)+\frac{k\delta q}{\alpha_{1}\alpha_{29}}a(t)$ ,

$E_{0}$ is uniformly stable. $\square$

3.3 Global stability of the immune-free equilibrium $E_{1}$ for the case
$\Re_{0}>1$

The following lemma plays an important role to prove the globally stability of the
infection equilibria.

Lemma 3.1. Under the hypothesis (H) , it holds that $g( \frac{f(v^{*}u)}{f(v^{*})})\leq g(u)$ for $u>0.$

We prove the following theorem [15, Theorem 3.3]:

Theorem 3.3. When $\Re_{0}>1,$ $\Re_{1}\leq 1$ and $\Re_{2}\leq 1$ , the immune-free infection equilib-
rium $E_{1}$ is globally asymptotically stable.

Proof. Define a Lyapunov functional on $C((O, +\infty], \mathbb{R}_{+}^{5})$ as follows:

$L_{E_{1}}(x, y, v, z, a)=x_{19}( \frac{x(t)}{x_{1}})+\frac{k}{\alpha_{1}}y_{19}(\frac{y(t)}{y_{1}})+\frac{k\delta}{\alpha_{1}\alpha_{2}}v_{1}g(\frac{v(t)}{v_{1}})$

$+ \frac{kp}{\alpha_{1}\beta}z(t)+\frac{k\delta q}{\alpha_{1}\alpha_{2}g}a(t)+L_{1}(x, v)+L_{2}(y)$ , (3.14)
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where $L_{1}(x, v)$ and $L_{2}(y)$ are defined by

$L_{1}(x, v)=kx_{1}f(v_{1}) \int_{0}^{\infty}H_{1}(\xi)g(\frac{x(t-\xi)f(v(t-\xi))}{x_{1}f(v_{1})})d\xi,$

and

$L_{2}(y)= \frac{k\delta}{\alpha_{1}}y_{1}\int_{0}^{\infty}H_{2}(\xi)g(\frac{y(t-\xi)}{y_{1}})d\xi.$

Using integration by parts, we have

$L_{1}’(x, v)=kx_{1}f(v_{1}) \int_{0}^{\infty}H_{1}(\xi)\frac{dg(\frac{x(t-\xi)[(v(t-\xi))}{x_{1}f(v1)})}{dt}d\xi$

$=-kx_{1}f(v_{1}) \int_{0}^{\infty}H_{1}(\xi)^{\underline{dg()}}d\xi$

$=kx(t)f(v(t))-k \int_{0}^{\infty}g_{1}(\xi)x(t-\xi)f(v(t-\xi))d\xi$

$+kx_{1}f(v_{1}) \int_{0}^{\infty}g_{1}(\xi)\ln\frac{x(t-\xi)f(v(t-\xi))}{x(t)f(v(t))}d\xi.$

Similarly, differentiating $L_{2}(y)$ gives

$L_{2}’(y)= \frac{k\delta}{\alpha_{1}}y(t)-\frac{k\delta}{\alpha_{1}}\int_{0}^{\infty}g_{2}(\xi)y(t-\xi)d\xi+\frac{k\delta}{\alpha_{1}}y_{1}\int_{0}^{\infty}g_{2}(\xi)\ln\frac{y(t-\xi)}{y(t)}d\xi.$

For system (3.12), it is easy to verify that functional $L_{E_{1}}(x, y, v, z, a)$ satisfies

$L_{E_{1}}’(x, y, v, z, a)=(1- \frac{x_{1}}{x(t)})x’(t)+\frac{k}{\alpha_{1}}(1-\frac{y_{1}}{y(t)})y’(t)$

$+ \frac{k\delta}{\alpha_{1}\alpha_{2}}(1-\frac{v_{1}}{v(t)})v’(t)+\frac{kp}{\alpha_{1}\beta}z’(t)+\frac{k\delta q}{\alpha_{1}\alpha_{2}g}a’(t)+L_{1}’(x, v)+L_{2}’(y)$ .
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Using the equalities $\lambda=dx_{1}+kx_{1}f(v_{1})$ , $\alpha_{1}x_{1}f(v_{1})$ ) $=\delta y_{1}$ and $\alpha_{2}y_{1}=cv_{1}$ , we obtain

$L_{E_{1}}’(x, y, v, z, a)$ $=$ $- \frac{d}{x(t)}(x(t)-x_{1})^{2}$

$+kx_{1}f(v_{1})(3- \frac{x_{1}}{x(t)}-\frac{v(t)}{v_{1}}+\frac{f(v(t))}{f(v_{1})}-\int_{0}^{\infty}g_{1}(\xi)\frac{x(t-\xi)y_{1}f(v(t-\xi))}{x_{1}y(t)f(v_{1})}d\xi$

$- \int_{0}^{\infty}g_{2}(\xi)\frac{v_{1}y(t-\xi)}{v(t)y_{1}}d\xi+\int_{0}^{\infty}g_{1}(\xi)\ln\frac{x(t-\xi)f(v(t-\xi))}{x(t)f(v(t))}d\xi$

$+ \int_{0}^{\infty}g_{2}(\xi)\ln\frac{y(t-\xi)}{y(t)}d\xi)+\frac{kpy_{1}}{\alpha_{1}}z(t)-\frac{kp\gamma}{\alpha_{1}\beta}z(t)+\frac{k\delta qv_{1}}{\alpha_{1}\alpha_{2}}a(t)-\frac{k\delta qb}{\alpha_{1}\alpha_{2}}a(t)$

$=- \frac{d}{x(t)}(x(t)-x_{1})^{2}+kx_{1}f(v_{1})[\int_{0}^{\infty}g_{1}(\xi)(-g(\frac{x_{1}}{x(t)})$

$-g( \frac{x(t-\xi)y_{1}f(v(t-\xi))}{x_{1}y(t)f(v_{1})})-\ln\frac{y_{1}f(v(t))}{y(t)f(v_{1})})d\xi$

$+ \int_{0}^{\infty}g_{2}(\xi)(-9(\frac{v_{1}y(t-\xi)}{v(t)y_{1}})+\ln\frac{v(t)y_{1}}{v_{1}y(t)})d\xi+\frac{f(v(t))}{f(v_{1})}-\frac{v(t)}{v_{1}}]$

$+ \frac{kp\gamma}{\alpha_{1}\beta}(\frac{\beta}{\gamma}y_{1}-1)z(t)+\frac{k\delta qb}{\alpha_{1}\alpha_{2}g}(\frac{g}{b}v_{1}-1)a(t)$ .

If $\Re_{1}=\frac{\beta}{\gamma}y_{1}\leq 1$ and $\Re_{2}=g_{v_{1}}b\leq 1$ , we can conclude that

$L_{E_{1}}’(x, y, v, z, a)$

$\leq-\frac{d}{x(t)}(x(t)-x_{1})^{2}-kx_{1}f(v_{1})[\int_{0}^{\infty}g_{1}(\xi)\{g(\frac{x_{1}}{x(t)})+9(\frac{x(t-\xi)y_{1}f(v(t-\xi))}{x_{1}y(t)f(v_{1})})\}d\xi$

$+ \int_{0}^{\infty}g_{2}(\xi)_{9}(\frac{v_{1}y(t-\xi)}{v(t)y_{1}})d\xi]+kx_{1}f(v_{1})(\frac{f(v(t))}{f(v_{1})}-\ln\frac{f(v(t))}{f(v_{1})}-\frac{v(t)}{v_{1}}+\ln\frac{v(t)}{v_{1}})$

$=- \frac{d}{x(t)}(x(t)-x_{1})^{2}-kx_{1}f(v_{1})[\int_{0}^{\infty}g_{1}(\xi)\{g(\frac{x_{1}}{x(t)})+g(\frac{x(t-\xi)y_{1}f(v(t-\xi))}{x_{1}y(t)f(v_{1})})\}d\xi$

$+ \int_{0}^{\infty}g_{2}(\xi)g(\frac{v_{1}y(t-\xi)}{v(t)y_{1}})d\xi]+kx_{1}f(v_{1})(g(F(u_{1}))-g(u_{1}))$ ,

where $u_{1}= \frac{v(t)}{v_{1}}$ and $F(u_{1})= \frac{f(v(t))}{f(v1)}=\frac{f(v_{1}u1)}{f(v_{1})}$ . Using Lemma 3.1, one can obtain

$9(F(u_{1}))-g(u_{1})\leq 0$ . This implies that $L_{E_{1}}’(x, y, v, z, a)\leq 0$ and $L_{E_{1}}’(x, y, v, z, a)=0$

if $x(t)=x_{1},$ $x(t-\xi)y_{1}f(v(t-\xi))=x_{1}y(t)f(v_{1})$ and $v_{1}y(t-\xi)=v(t)y_{1}$ for almost

all $\xi\in[0, \infty)$ . Again by the Lyapunov-LaSalle invariance principle, all solutions of

(3.12) are attracted to $M_{1}$ , which is the largest invariant subset of $\{(x, y, v, z, \alpha)\in\Gamma$ :

$L_{E_{1}}’(x, y, v, z, a)=0\}$ . Since $M_{1}$ is invariant with respect to (3.12), on $M_{1}$ , we have

$0=\lambda-dx_{1}-kx_{1}f(v(t))$ , that is, $f(v(t))=f(v_{1})>0,$

which implies that $y(t)=y_{1}$ and $v(t)=v_{1}$ from $y_{1}f(v(t-\xi))=y(t)f(v_{1})$ and $v_{1}y(t-\xi)=$

$v(t)y_{1}$ for almost all $\xi\in[0, \infty$ ). This yields that $z(t)=0$ and $a(t)=0$ from the
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equalities:

$0=ka_{11}xf(v_{1})-\delta y_{1}-py_{1}z(t)=-py_{1}z(t)$

and

$0=\delta Na_{2}y_{1}-cv_{1}-qa(t)v_{1}=-qa(t)v_{1}.$

Hence, we verify that $M_{1}=\{(x_{1},$ $y_{1},$ $v_{1},0,0$ This shows that

$\lim_{tarrow\infty}(x(t), y(t), v(t), z(t), a(t))=E_{1}.$

Since

$L_{E_{1}}(x, y, v, z, a) \geq x_{1}g(\frac{x(t)}{x_{1}})+\frac{k}{\alpha_{1}}y_{19}(\frac{y(t)}{y_{1}})+\frac{k\delta}{\alpha_{1}\alpha_{2}}v_{1}g(\frac{v(t)}{v_{1}})$

$+ \frac{kp}{\alpha_{1}\beta}z(t)+\frac{k\delta q}{\alpha_{1}\alpha_{2}g}a(t)$ ,

$E_{1}$ is uniformly stable. $\square$

3.4 Global stability of the infection equilibrium $E_{2}$ for the case $\Re_{1}>1$

We prove the following theorem [15, Theorem 3.4]:

Theorem 3.4. When $\Re_{1}>1$ and $\Re_{4}\leq 1$ , the infection equilibrium $E_{2}$ with only $CTL$

immune response is globally asymptotically stable.

Proof. Define a Lyapunov functional on $C((-\infty, 0], \mathbb{R}_{+}^{5})$ as follows:

$L_{E_{2}}(x, y, v, z, a)=x_{2}g( \frac{x(t)}{X2})+\frac{k}{\alpha_{1}}y_{2}g(\frac{y(t)}{y_{2}})+(\frac{k\delta}{\alpha_{1}\alpha_{2}}+\frac{kp_{Z2}}{\alpha_{1}\alpha_{2}})v29(\frac{v(t)}{v2})$

$+ \frac{kp}{\alpha_{1}\beta}z_{2}g(\frac{z(t)}{z_{2}})+(\frac{k\delta q}{\alpha_{1}\alpha_{2}g}+\frac{kpqz_{2}}{\alpha_{1}\alpha_{2}g})a(t)+L_{3}(x, v)+L_{4}(y)$ ,

where $L_{3}(x, v)$ and $L_{4}(y)$ are defined by

$L_{3}(x, v)=kx_{2}f(v_{2}) \int_{0}^{\infty}H_{1}(\xi)g(\frac{x(t-\xi)f(v(t-\xi))}{x_{2}f(v_{2})})d\xi,$

and

$L_{4}(y)=kx_{2}f(v_{2}) \int_{0}^{\infty}H_{2}(\xi)g(\frac{y(t-\xi)}{y_{2}})d\xi.$
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Using integration by parts, we obtain

$L_{3}’(x, v)=kx(t)f(v(t))-k \int_{0}^{\infty}g_{1}(\xi)x(t-\xi)f(v(t-\xi))d\xi$

$+kx_{2}f(v_{2}) \int_{0}^{\infty}g_{1}(\xi)$ In $\frac{x(t-\xi)f(v(t-\xi))}{x(t)f(v(t))}d\xi$

and

$L_{4}’(y)= \frac{k(\delta+pz_{2})}{\alpha_{1}}y(t)-\frac{k(\delta+pz_{2})}{\alpha 1}\int_{0}^{\infty}g_{2}(\xi)y(t-\xi)d\xi$

$+kx_{2}f(v_{2}) \int_{0}^{\infty}g_{2}(\xi)\ln\frac{y(t-\xi)}{y(t)}d\xi.$

Calculating the time derivative of $L_{E_{2}}(x, y, v, z, a)$ along the solution of (3.12), we have

$L_{E_{2}}’(x, y, v, z, a)=(1- \frac{x_{2}}{x(t)})x’(t)+\frac{k}{\alpha_{1}}(1-\frac{y_{2}}{y(t)})y’(t)$

$+( \frac{k\delta}{\alpha_{1}\alpha_{2}}+\frac{kpz_{2}}{\alpha_{1}\alpha_{2}})(1-\frac{v2}{v(t)})v’(t)+\frac{kp}{\alpha_{1}\beta}(1-\frac{z_{2}}{z(t)})z’(t)$

$+( \frac{k\delta q}{\alpha_{1}\alpha_{29}}+\frac{kpqz_{2}}{\alpha_{1}\alpha_{29}})a’(t)+L_{3}’(x, v)+L_{4}’(y)$ .

Using the equalities $\lambda=dx_{2}+kx_{2}f(v_{2})$ , $\alpha_{1}x_{2}f(v_{2})=\delta y_{2}+py_{2}z_{2},$ $\alpha_{2}y_{2}=cv_{2}$ and
$\beta y_{2}z_{2}=\gamma z_{2}$ , we obtain

$L_{E_{2}}’(x, y, v, z, a)$ $=$ $- \frac{d}{x(t)}(x(t)-x_{2})^{2}+kx_{2}f(v_{2})(3-\frac{x_{2}}{x(t)}-\frac{v(t)}{v_{2}}+\frac{f(v(t))}{f(v_{2})}$

$- \int_{0}^{\infty}g_{1}(\xi)\frac{x(t-\xi)y_{2}f(.v(t-\xi))}{x_{2}y(t)f(v_{2})}d\xi-\int_{0}^{\infty}g_{2}(\xi)\frac{v_{2}y(t-\xi)}{v(t)y_{2}}d\xi$

$+ \int_{0}^{\infty}g_{1}(\xi)\ln\frac{x(t-\xi)f(v(t-\xi))}{x(t)f(v(t))}d\xi+\int_{0}^{\infty}g_{2}(\xi)$ In $\frac{y(t-\xi)}{y(t)}d\xi)$

$+( \frac{k\delta qv_{2}}{\alpha_{1}\alpha_{2}}+\frac{kpq_{Z_{2}v}2}{\alpha_{1}\alpha_{2}}-\frac{kb\delta q}{\alpha_{1}\alpha 29}-\frac{kbpqz_{2}}{\alpha_{1}\alpha_{2}g})a(t)$

$=- \frac{d}{x(t)}(x(t)-x_{2})^{2}$

$+kx_{2}f(v_{2})[ \int_{0}^{\infty}g_{1}(\xi)(-g(\frac{x_{2}}{x(t)})-g(\frac{x(t-\xi)y_{2}f(v(t-\xi))}{x_{2}y(t)f(v_{2})})$

$- \ln\frac{y_{2}f(v(t))}{y(t)f(v_{2})})d\xi+\int_{0}^{\infty}g_{2}(\xi)(-g(\frac{v_{2}y(t-\xi)}{v(t)y_{2}})+\ln\frac{v(t)y_{2}}{v_{2}y(t)})d\xi$

$+ \frac{f(v(t))}{f(v_{2})}-\frac{v(t)}{v_{2}}]+\frac{kbq}{\alpha_{1}\alpha_{29}}(\delta+pz_{2})(\frac{\alpha_{2}g\gamma}{\beta bc}-1)a(t)$ .
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If $\Re_{4}=\frac{\alpha 2}{\beta}bc\emptyset\leq 1$ , we can conclude that

$L_{E_{2}}’(x, y, v, z, a)$

$\leq-\frac{d}{x(t)}(x(t)-x_{2})^{2}-kx_{2}f(v_{2})[\int_{0}^{\infty}91(\xi)\{g(\frac{x_{2}}{x(t)})+g(\frac{x(t-\xi)y_{2}f(v(t-\xi))}{x_{2}y(t)f(v_{2})})\}d\xi$

$+ \int_{0}^{\infty}g_{2}(\xi)g(\frac{v_{2}y(t-\xi)}{v(t)y_{2}})d\xi]+kx_{2}f(v_{2})(\frac{f(v(t))}{f(v_{2})}-\ln\frac{f(v(t))}{f(v_{2})}-\frac{v(t)}{v_{2}}+\ln\frac{v(t)}{v_{2}})$

$=- \frac{d}{x(t)}(x(t)-x_{2})^{2}-kx_{2}f(v_{2})[\int_{0}^{\infty}g_{1}(\xi)\{g(\frac{x_{2}}{x(t)})+g(\frac{x(t-\xi)y_{2}f(v(t-\xi))}{X2y(t)f(v_{2})})\}d\xi$

$+ \int_{0}^{\infty}g_{2}(\xi)g(\frac{v2y(t-\xi)}{v(t)y_{2}})d\xi]+kx_{2}f(v_{2})(g(F(u_{2}))-g(u_{2}))$ ,

where $u_{2}= \frac{v(t)}{v2}$ and $F(u_{2})= \frac{f(v(t))}{f(v2)}=\frac{f(v2u_{2})}{f(v2)}$ . Using Lemma 3.1, one can obtain

$g(F(u_{2}))-g(u_{2})\leq 0$ . This implies that $L_{E_{2}}’\leq 0$ and $L_{E_{2}}’(x, y, v, z, a)=0$ if $x(t)=x_{2},$

$y_{2}f(v(t-\xi))=y(t)f(v2)$ and $v_{2}y(t-\xi)=v(t)y_{2}$ for almost all $\xi\in[0, \infty$ ). Again by

the Lyapunov-LaSalle invariance principle, all solutions of (3.12) are attracted to $M_{2},$

which is the largest invariant subset of $\{(x, y, v, z, a)\in\Gamma : L_{E_{2}}’(x, y, v, z, a)=0\}$ . Since
$M_{2}$ is invariant with respect to (3.12), on $M_{2}$ , we have

$0=\lambda-dx_{2}-kx_{2}f(v(t))$ , that is, $f(v(t))=f(v2)>0,$

which implies that $y(t)=y_{2},$ $v(t)=v_{2}$ from $y_{2}f(v(t-\xi))=y(t)f(v_{2})$ and $v_{2}y(t-\xi)=$

$v(t)y_{2}$ for almost all $\xi\in[0, \infty$). This yields that. $z(t)=z_{2}$ and $a(t)=0$ from the

equalities

$0=ka_{1}x_{2}f(v_{2})-\delta y_{2}-py_{2}z(t)=-py_{2}(z(t)-z_{2})$

and

$0=\delta Na_{2}y_{2}-cv_{2}-qa(t)v_{2}=-qa(t)v_{2}.$

Hence, we verify that $M_{2}=\{(x_{2},$ $y_{2},$ $v_{2},$ $z_{2},0$ This shows that

$\lim_{tarrow\infty}(x(t), y(t), v(t), z(t), a(t))=E_{2}.$

Since

$L_{E_{2}}(x, y, v, z, a) \geq x_{2}g(\frac{x(t)}{x_{2}})+\frac{k}{\alpha_{1}}y_{2}g(\frac{y(t)}{y_{2}})+\frac{k\delta}{\alpha_{1}\alpha_{2}}v2g(\frac{v(t)}{v_{2}})$

$+ \frac{kp}{\alpha_{1}\beta}z_{29}(\frac{z(t)}{z_{2}})+(\frac{k\delta q}{\alpha_{1}\alpha_{2}g}+\frac{kpqz_{2}}{\alpha_{1}\alpha 29})a(t)$ ,

$E_{2}$ is uniformly stable. $\square$
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3.5 Global stability of the infection equilibrium $E_{3}$ for the case $\Re_{2}>1$

We prove the following theorem [15, Theorem 3.5]:

Theorem 3.5. When $\Re_{2}>1$ and $\Re_{3}\leq 1_{f}$ the $it\iota$fection equilibrium $E_{3}$ with only
humoral immune response is globally asymptotically stable.

Proof. Define a Lyapunov functional on $C((-\infty, 0], \mathbb{R}_{+}^{5})$ as follows:

$L_{E_{3}}(x, y, v, z, a)=x_{3}g( \frac{x(t)}{x_{3}})+\frac{k}{\alpha_{1}}y_{3}g(\frac{y(t)}{y_{3}})+\frac{k\delta}{\alpha_{1}\alpha_{2}}v_{3}g(\frac{v(t)}{v_{3}})+\frac{kp}{\alpha_{1}\beta}z(t)$

$+ \frac{k\delta q}{\alpha_{1}\alpha_{2}g}a_{39}(\frac{a(t)}{a_{3}})+L_{5}(x, v)+L_{6}(y)$ ,

where $L_{5}(t)$ and $L_{6}(t)$ are defined by

$L_{5}(x, v)=kx_{3}f(v_{3}) \int_{0}^{\infty}H_{1}(\xi)g(\frac{x(t-\xi)f(v(t-\xi))}{x_{3}f(v_{3})})d\xi,$

and

$L_{6}(y)=kx_{3}f(v_{3}) \int_{0}^{\infty}H_{2}(\xi)g(\frac{y(t-\xi)}{y_{3}})d\xi.$

Using integration by parts, we obtain

$L_{5}’(x, v)=kx(t)f(v(t))-k \int_{0}^{\infty}g_{1}(\xi)x(t-\xi)f(v(t-\xi))d\xi$

$+kx_{3}f(v_{3}) \int_{0}^{\infty}g_{1}(\xi)\ln\frac{x(t-\xi)f(v(t-\xi))}{x(t)f(v(t))}d\xi,$

and

$L_{6}’(y)= \frac{k\delta}{\alpha_{1}}y(t)-\frac{k\delta}{\alpha_{1}}\int_{0}^{\infty}g_{2}(\xi)y(t-\xi)d\xi$

$+kx_{3}f(v_{3}) \int_{0}^{\infty}g_{2}(\xi)\ln\frac{y(t-\xi)}{y(t)}d\xi.$

Calculating the time derivative of $L_{E_{3}}(x, y, v, z, a)$ along the solution of (3.12), we have

$L_{E_{3}}’(x, y, v, z, a)=- \frac{d}{x(t)}(x(t)-x_{3})^{2}+kx_{3}f(v_{3})[\int_{0^{91}}^{\infty}(\xi)(-g(\frac{x_{3}}{x(t)})$

$- \ln\frac{y_{3}f(v(t))}{y(t)f(v_{3})}-g(\frac{x(t-\xi)y_{3}f(v(t-\xi))}{x_{3}y(t)f(v3)}))d\xi$

$+ \int_{0}^{\infty}g_{2}(\xi)(-g(\frac{v_{3}y(t-\xi)}{v(t)y_{3}})+\ln\frac{v(t)y_{3}}{v_{3}y(t)})d\xi$

$+ \frac{f(v(t))}{f(v_{3})}-\frac{v(t)}{v_{3}}]+\frac{kp\gamma}{\alpha_{1}\beta}(\frac{\beta y_{3}}{\gamma}-1)z(t)$ .
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Here we use the relation that $\lambda=dx_{3}+kx_{3}f(v_{3})$ , $\alpha_{1}x_{3}f(v_{3})=\delta y_{3},$ $\alpha_{2}y_{3}=cv_{3}+$

$qa_{3^{V}3}$ and $93=ba_{3}$ . Similar to the discussion in Subsection 3.4, for $\Re_{3}=\Phi\gamma\leq$

$1$ , it follows from Lemma 3.1 that $L_{E_{3}}’\leq 0$ and $L_{E_{3}}’(x, y, v, z, a)=0$ if $x(t)=x_{3},$

$y_{3}f(v(t-\xi))=y(t)f(v_{3})$ , $v3y(t-\xi)=v(t)y_{3}$ for almost all $\xi\in[0, \infty$ ). From LaSalle’s

invariance principle, all solutions of (3.12) are attracted to a point $E_{3}$ . Thus, the

infection equilibrium $E_{3}$ is globally asymptotically stable. $\square$

3.6 Global stability of the infection equilibrium $E_{4}$ for the case $\Re_{3}>1$

and $\Re_{4}>1$

We prove the following theorem [15, Theorem 3.6]:

Theorem 3.6. When $\Re_{3}>1$ and $\Re_{4}>1$ , the infection equilibrium $E_{4}$ with both $CTL$

response and humoral response is globally asymptotically stable.

Proof. Define a Lyapunov functional on $C((-\infty, 0], \mathbb{R}_{+}^{5})$ by

$L_{E_{4}}(x, y, v, z, a)=$

$x_{4}g( \frac{x(t)}{x_{4}})+\frac{k}{\alpha 1}y_{4}g(\frac{y(t)}{y_{4}})+(\frac{k\delta}{\alpha_{1}\alpha_{2}}+\frac{kpz_{4}}{\alpha_{1}\alpha_{2}})v_{4}g(\frac{v(t)}{v_{4}})$

$+ \frac{kp}{\alpha_{1}\beta}z4g(\frac{z(t)}{z_{4}})+(\frac{k\delta q}{\alpha 1\alpha_{2}g}+\frac{kpqz_{4}}{\alpha_{1}\alpha_{2}g})a_{4}g(\frac{a(t)}{a4})+L_{7}(x, v)+L_{8}(y)$ ,

where $L_{7}(x, v)$ and $L_{8}(y)$ are defined by

$L_{7}(x, v)=k_{X4}f(v_{4}) \int_{0}^{\infty}H_{1}(\xi)g(\frac{x(t-\xi)f(v(t-\xi))}{x_{4}f(v_{4})})d\xi,$

and

$L_{8}(y)=kx_{4}f(v_{4}) \int_{0}^{\infty}H_{2}(\xi)g(\frac{y(t-\xi)}{y_{4}})d\xi.$

Using integration by parts, we obtain

$L_{7}’(x, v)=kx(t)f(v(t))-k \int_{0}^{\infty}g_{1}(\xi)x(t-\xi)f(v(t-\xi))d\xi$

$+kx_{4}f(v_{4}) \int_{0}^{\infty}g_{1}(\xi)\ln\frac{x(t-\xi)f(v(t-\xi))}{x(t)f(v(t))}d\xi$

and

$L_{8}’(y)= \frac{k(\delta+pz_{4})}{\alpha_{1}}y(t)-\frac{k(\delta+pz_{4})}{\alpha_{1}}\int_{0}^{\infty}g_{2}(\xi)y(t-\xi)d\xi$

$+k_{X4}f(v4) \int_{0}^{\infty}g_{2}(\xi)\ln\frac{y(t-\xi)}{y(t)}d\xi.$
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Calculating the derivative of $L_{E_{4}}(x, y, v, z, a)$ along the solution of (3.12), we have

$L_{E_{4}}’(x, y, v, z, a) = (1- \frac{x_{4}}{x(t)})x’(t)+\frac{k}{\alpha_{1}}(1-\frac{y_{4}}{y(t)})y’(t)$

$+( \frac{k\delta}{\alpha_{1}\alpha_{2}}+\frac{kpz_{4}}{\alpha_{1}\alpha_{2}})(1-\frac{v_{4}}{v(t)})v’(t)+\frac{kp}{\alpha_{1}\beta}(1-\frac{z_{4}}{z(t)})z’(t)$

$+( \frac{k\delta q}{\alpha_{1}\alpha_{29}}+\frac{kpqz_{4}}{\alpha_{1}\alpha_{29}})(1-\frac{a_{4}}{a(t)})a’(t)+L_{7}’(x, v)+L_{8}’(y)$ .

Using the equalities $\lambda=dx_{4}+kx_{4}f(v_{4})$ , $\alpha_{1}x_{4}f(v_{4})=\delta y_{4}+py_{4}z_{4},$ $\alpha_{2}y_{4}=cv_{4}+qa_{4}v_{4},$

$\beta y_{4}z_{4}=\gamma z_{4}$ and $9^{a_{4}v_{4}}=ba_{4}$ , we obtain

$L_{E_{4}}’(x, y, v, z, a)$ $=$ $- \frac{d}{x(t)}(x(t)-x_{4})^{2}+kx_{4}f(v_{4})(3-\frac{x_{4}}{x(t)}-\frac{v(t)}{v_{4}}+\frac{f(v(t))}{f(v_{4})}$

$- \int_{0}^{\infty}g_{1}(\xi)\frac{x(t-\xi)y_{4}f(v(t-\xi))}{x_{4}y(t)f(v_{4})}d\xi-\int_{0}^{\infty}g_{2}(\xi)\frac{v_{4}y(t-\xi)}{v(t)y_{4}}d\xi$

$+ \int_{0}^{\infty}g_{1}(\xi)\ln\frac{x(t-\xi)f(v\langle t-\xi))}{x(t)f(v(t))}d\xi+\int_{0}^{\infty}92(\xi)\ln\frac{y(t-\xi)}{y(t)}d\xi)$

$=- \frac{d}{x(t)}(x(t)-x_{4})^{2}+kx4f(v_{4})[\int_{0}^{\infty}g_{1}(\xi)(-g(\frac{x(t-\xi)y_{4}f(v(t-\xi))}{X4y(t)f(v_{4})})$

$-g( \frac{x_{4}}{x(t)})-\ln\frac{y_{4}f(v(t))}{y(t)f(v_{4})})d\xi+\int_{0}^{\infty}g_{2}(\xi)(-g(\frac{v_{4}y(t-\xi)}{v(t)y_{4}})$

$+ \ln\frac{v(t)y_{4}}{v_{4}y(t)})d\xi+\frac{f(v(t))}{f(v4)}-\frac{v(t)}{v4}].$

Similar to the discussion in Subsection 3.4, it follows from Lemma3.1 that $L_{E_{4}}’(x, y, v, z, a)\leq$

$0$ and $L_{E_{4}}’(x, y, v, z, a)=0$ if $x(t)=x_{4},$ $y_{4}f(v(t-\xi))=y(t)f(v_{4})$ , $v_{4}y(t-\xi)=v(t)y_{4}$

for almost all $\xi\in[0, \infty$). From LaSalle’s invariance principle, all solutions of (3.12) are
attracted to a point $E_{4}$ . Thus, the infection equilibrium $E_{4}$ is globally asymptotically
stable. $\square$

Remark 3.1. When the inequality:

$\frac{Nka_{1}a_{2}}{c}\frac{\lambda}{d+kf(\frac{b}{g})}\frac{f(\frac{b}{g})}{\frac{b}{g}}>1$ (3.15)

holds, we can rule out the possibility that both of the assumptions $\Re_{1}>1\geq\Re_{4}$ of
Theorem 3.4 and $\Re_{2}>1\geq\Re_{3}$ of Theorem 3.5 hold simultaneously (see, for details,
Wang et al. [15, Proposition 3.1]).
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4 Discrete-delay model and numerical simulations

In this section, we illustrate our analytical results for the model (2.1) with delay terms

discrete as follows:

$\{\begin{array}{l}x’(t)=\lambda-dx(t)-kx(t)\frac{v(t)}{1+\alpha v(t)},y’(t)=ka_{1}x(t-\tau_{1})\frac{v(t-\tau_{1})}{1+\alpha v(t-\tau_{1})}-\delta y(t)-py(t)z(t) ,v’(t)=\delta Ny(t-\tau_{2})-cv(t)-qa(t)v(t) ,z’(t)=\beta y(t)z(t)-\gamma z(t) ,a’(t)=ga(t)v(t)-ba(t)\end{array}$ (4.1)

with $\alpha>0.$

Similar to Theorem 3.2, if $\Re_{0}\leq 1$ , then the infection-free equilibrium $E_{0}$ is globally

asymptotically stable. Ftom Theorems 3.3-3.6, the following corollary is derived [15,

Corollary 4.1].

Corollary 4.1. Let $\Re_{0},$ $\Re_{1},$ $\Re_{2},$ $\Re_{3}$ and $\Re_{4}$ be defined by (3.2), (3.3), (3.6), (3.10) and

(3.11), respectively. Then the following statement holds true.

(i) When $\Re_{0}\leq 1$ , the infection-free equilibrium $E_{0}$ is globally asymptotically stable.

Moreover, under the condition $\Re_{0}>1$ , the following statement holds true.

(ii) When $\Re_{1}\leq 1$ and $\Re_{2}\leq 1$ , the immune-free infection equilibrium $E_{1}$ is globally

asymptotically stable.
(iii) When $\Re_{1}>1$ and $\Re_{4}\leq 1$ , the infection equilibrium $E_{2}$ with only $CTL$ immune

response is globally asymptotically stable.
(iv) When $\Re_{2}>1$ and $\Re_{3}\leq^{\backslash }1$ , the infection equilibrium $E_{3}$ with only humoral immune

response is globally asymptotically stable.
(v) When $\Re_{3}>1$ and $\Re_{4}>1$ , the infection equilibrium $E_{4}$ with both $CTL$ response

and humoral response is globally asymptotically stable.

For the case $\Re_{0}>1$ , let us carry out some computational experiments to investigate

the feasibility of the above global stability conditions. We choose the decay rates of

virus-specific CTLs $\gamma$ and antibody responses $b$ as free parameters and fix the other

parameter values as:

$\{\begin{array}{l}\lambda=0.13mm^{3}\cdot day^{-1}, d=0.O1day^{-1}, k=0.O1(mm^{3})^{-1}\cdot day^{-1},\delta=0.01day^{-1}, p=0.1(mm^{3})^{-1}\cdot day^{-1}, N=2, c=0.07day^{-1},q=0.03(mm^{3})^{-1}\cdot day^{-1}, \beta=0.02(mm^{3})^{-1}\cdot day^{-1},g=0.06(mm^{3})^{-1}\cdot day^{-1}, \alpha=0.01(mm^{3})^{-1}, a_{1}=a_{2}=0.9, \tau_{1}=\tau_{2}=1 day.\end{array}$

(4.2)
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Figure 4.1: The graph trajectory of $x(t)$ , $y(t)$ , $v(t)$ , $z(t)$ and $a(t)$ of system (4.1) (the
variables $z(t)$ and $a(t)$ decay to $0$ at fast speed). For the parameter values in (4.2)
with $\gamma=0.3$ and $b=0.2$ , we have $\Re_{1}=0.51\cdots\leq 1,$ $\Re_{2}=0.59\cdots\leq 1$ and $E_{1}=$

$(4.40\cdots, 7.73\cdots, 1.98\cdots, 0,0)$ . Here, GAS denotes globally asymptotically stable.

For the parameter values, we obtain $\Re_{0}=3.008\cdots>1$ . First, we consider the case
$\alpha=1.4$ . Then, we obtain $\Re_{1}=0.51$ . . . $\leq 1$ and $\Re_{2}=0.59\cdots\leq 1$ . Hence, from
the second part of Corollary 4.1, the immune-free infection equilibrium $E_{1}$ is globally
asymptotically stable (see also Theorem 3.3 and Figure 4.1). Second, we consider the
case $\gamma=0.04$ and $b=0.2$ . Then, we obtain $\Re_{1}=3.86\cdots>1,$ $\Re_{2}=0.59\cdots\leq 1,$

$\Re_{3}=4.46\cdots>1$ and $\Re_{4}=0.15\cdots\leq 1$ . Hence, from the third part of Corollary 4.1,
the infection equilibrium $E_{2}$ with only CTL immune response is globally asymptotically
stable (see also Theorem 3.4 and Figure 4.2). Third, we consider the case $\gamma=0.3$ and
$b=0.03$ . Then, we obtain $\Re_{1}=0.51$ . . . $\leq 1,$ $\Re_{2}=3.97\cdots>1,$ $\Re_{3}=0.25\cdots\leq 1$ and
$\Re_{4}=7.71\cdots>1$ . Hence, from the fourth part of Corollary 4.1, the infection equilibrium
$E_{3}$ with only CTL immune response is globally asymptotically stable (see also Theorem
3.5 and Figure 4.3). Finally, we consider the case $\gamma=0.04$ and $b=0.03$ . Then, we
obtain $\Re_{1}=3.86\cdots>1,$ $\Re_{2}=3.97\cdots>1,$ $\Re_{3}=1.94\cdots>1$ and $\Re_{4}=1.02\cdots>1.$

Hence, from the fifth part of Corollary 4.1, the infection equilibrium $E_{4}$ with both CTL
response and humoral response is globally asymptotically stable (see also Theorem 3.6
and Figure 4.4).
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5 Discussion

Incorporating cell-mediated and humoral immune responses, we investigate the asymp-

totic behavior of virus dynamics by a system of delay differential equations. Starting

from identifying the basic reproduction numbers for viral infection $\Re_{0}$ , we prove that an

infection-free equilibrium $E_{0}$ is globally asymptotically stable if and only if $\Re_{0}\leq 1$ and

establish sufficient conditions under which each of four infection equilibrium is globally

asymptotically stable for $\Re_{0}>1$ . Recently, in Enatsu et al. [6], the functional meth-

ods in Section 3 are applicable to the case where the incidence rate is non-separable

with respect to uninfected cells and free virus particles under the hypotheses $(A_{1})-(A_{4})$ .
Applying construction methods in [8, 9, 12, 15, 22], monotonicity and saturativity of the

function $h(x, v)v$ in the four hypotheses, including not only a bilinear incidence rate

$h(x, v)v=kxv$ , a class of separable incidence rates $h(x, v)v=F(x)G(v)$ but also a

standard incidence rate $h(x, v)v= \frac{xv}{x+v}$ and Beddington-DeAngelis functional response

$h(x, v)v= \frac{xv}{1+\alpha_{1}x+\alpha_{2}v}(\alpha_{1}>0, \alpha_{2}>0)$ , play a crucial role to find suitable Lyapunov

functionals. We remark that the global stability for each of the four infection equilibria
$E_{i}(i=1, \ldots\rangle 4)$ is yet to be completely determined. In contrast to the bifurcation re-

sults in the literatures [3, 18,20,23], as a future work, we leave an open problem whether

or not we can rule out the possibility of Hopf bifurcation when the endemic equilibrium

is destabilized.
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Figure 4.2: The graph trajectory of $x(t)$ , $y(t)$ , $v(t)$ , $z(t)$ and $a(t)$ of system (4.1)
(the variable $a(t)$ decays to 0 at fast speed). For the parameter values in (4.2)
with $\gamma=$ 0.04 and b $=$ 0.2, we have $\Re_{1}=$ i3.86 $\cdots$ $>$ 1, $\Re_{4}=$ 0.15 $\cdots$ $\leq$ 1 and
$E_{2}=(8.59\cdots$ , 2,0.51 $\cdots$ , 0.09 $\cdots$ , 0) . Here, GAS denotes globally asymptotically sta-
ble.
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Figure 4.3: The graph trajectory of $x(t)$ , $y(t)$ , $v(t)$ , $z(t)$ and $a(t)$ of system (4.1)

(the variable $z(t)$ decays to $0$ at fast speed). For the parameter values in (4.2)

with $\gamma=0.3$ and $b=0.03$ , we have $\Re_{3}=0.25\cdots\leq 1,$ $\Re_{2}=3.97\cdots>1$ and

$E_{3}=(8.68\cdots, 3.88\cdots, 0.5,0,2.33\cdots)$ . Here, GAS denotes globally asymptotically

stable.
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Figure 4.4: The graph trajectory of $x(t)$ , $y(t)$ , $v(t)$ , $z(t)$ and $a(t)$ of system (4.1). For
the parameter values in (4.2) with $\gamma=0.04$ and $b=0.03$ , we have $\Re_{3}=1.94\cdots>1,$

$\Re_{4}=1.02\cdots>1$ and $E_{4}=$ $(8.68\cdots, 2,0.5,0.06\cdots , 0.09\cdots)$ . Here, GAS denotes
globally asymptotically stable.
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