A survey: From a surgical view of Alexander invariants

Yasutaka Nakanishi

Graduate School of Science, Kobe University

1 Abstract

The Alexander polynomial is an effective knot-invariant still now. Levine and Rolfsen introduced a surgical view of Alexander invariants. In this note, we will study the surgical view and its applications: unknotting number and knot adjacency.

2 Surgical description

The Alexander polynomial was introduced by Alexander [1] in 1928. Since then, several knot theorists have introduced alternative definitions of Alexander polynomial: Seifert [18] in 1934, Fox [3] in 1953), Levine [8] in 1965, and so on.

Their definitions are based on the infinite cyclic covering space of the complement of a given knot. Let K be a knot in the 3-sphere S^3 , $X = S^3 \setminus K$, \widetilde{X}_{∞} the infinite cycle covering space of X. For the Laurent polynomial ring $\Lambda = \mathbb{Z}[t, t^{-1}]$, $H_1(\widetilde{X}_{\infty})$ is regarded as a Λ -module, which is called the *Alexander invariant* of K. Let M be a presentation matrix of $H_1(\widetilde{X}_{\infty})$. Then $\Delta_K(t) = \det M$ is called the *Alexander polynomial* of K.

We need the following fact.

Proposition 1 ([21]). For a diagram of a knot, certain crossing changes yield a diagram of a trivial knot.

From Proposition 1, We have Proposition 2, that is called a *surgical description* ([15], [16]) of a knot.

Proposition 2 ([15], [16]). Let K be a knot, and K_0 a trivial knot. Then, there exsist solid tori $T_1, \ldots T_n$ in $S^3 \setminus K_0$, and a homeomorphism $\varphi : S^3 \setminus K_0 \to S^3 \setminus K_0$ such that (1) $\varphi(K_0) = K$,

(2) the core of $T_1 \cup \cdots \cup T_n$ are trivial,

(3) $lk(T_i, K_0) = lk(\varphi(T_i), K) = 0 \ (\forall i), and$

(4) $\operatorname{lk}(\mu'_i, T_i) = \pm 1$, where μ_i a meridian of $\varphi(T_i)$ and $\mu'_i = \varphi^{-1}(\mu_i)$.

We can construct a Seifert surface of K missing $T_1 \cup \cdots \cup T_n$ by the condition $\operatorname{lk}(T_i, K_0) = 0$. Cut along the Seifert surface and make an infinite number of copies. Paste them along opening sections one after another, and we have the infinite cyclic covering space $\widetilde{X_{\infty}}$ of $X = S^3 \setminus K$. Reading the linking numbers of tori, we have an Alexander matrix and the Alexander polynomial as follows:

Key Proposition 3 ([8], [15], [16]). Let K be a knot. Then, K has an Alexander matrix $M = (m_{ij}(t))$ of the form: (1) $m_{ij}(t) = m_{ji}(t^{-1})$, and (2) $|m_{ij}(1)| = \delta_{ij}$, where $\delta_{ij} = 1$ (if i = j), 0 (if $i \neq j$). The converse is also valid.

3 Unknotting number.

For a knot K, the unknotting number ([21]) of K, denoted by u(K), is defined to be the minimum number of crossing changes which yield a diagram of a trivial knot among all diagrams of K. In surgical description of K, the minimum number of solid tori $T_1 \cup \cdots \cup T_n$ is called the surgical description number of K, denoted by sd(K). The minimum size of presentation matrices of $H_1(\widetilde{X_{\infty}})$ is denoted by m(K).

Proposition 4 ([9]) . $0 \le m(K) \le sd(K) \le u(K)$.

Proposition 5 ([14], [19], [10]). Let K be the knot 5_1 (or, 7_4 , 10_{106} , 10_{109} , 10_{121}). We have sd(K) = u(K) = 2.

Sketch of Proof. Let K be the knot 5_1 . A crossing change yields a diagram of 3_1 . We would suppose that sd(K) = 1. Then, 3_1 had an Alexander matrix of the form $M = \begin{pmatrix} \Delta_K(t) & r(t^{-1}) \\ r(t) & m(t) \end{pmatrix} \text{ with } m(t) = m(t^{-1}), |m(1)| = 1, \text{ and } r(1) = 0. \text{ Put } t = -1 \text{ on}$ $\det M = \pm (t - 1 + t^{-1}), \text{ and we had } \begin{vmatrix} \Delta_K(-1) & r(-1) \\ r(-1) & m(-1) \end{vmatrix} = \pm 3. \text{ We had } r(-1)^2 \equiv \pm 3$ (mod 5) a contradiction

(mod 5), a contradiction.

Remark. In [10], there are mistakes for 10_{83} and 10_{117} . So we omit them from Proposition 5. The author would like to thank Professor Kanenobu for his pointing out.

4 Knot adjacency.

For knots J and K, if J is obtained from K by a single crossing change, J is said to be *adjacent* to K. The unknotting number one knot is a knot which is adjacent to a trivial knot.

The Alexander polynomials of unknotting number one knots are characterized as follows.

Theorem 6 ([7], [17]). The Alexander polynomials $\Delta_K(t)$ of the unknotting number one knots are characterized by (1) $\Delta_K(t^{-1}) = \Delta_K(t)$, and (2) $|\Delta_K(1)| = 1$.

The Alexander polynomials of knots which are obtained from the trefoil knot by a single crossing change are characterized as follows.

Theorem 7 ([11]). The Alexander polynomials $\Delta_K(t)$ of the knots which are adjacent to a trefoil knot are characterized by (1) $\Delta_K(t^{-1}) = \Delta_K(t)$, (2) $|\Delta_K(1)| = 1$, and (3) $|\Delta_K(\zeta)| = 0, 1, \text{ or } p_1^{e_1} \cdots p_n^{e_n}$ for a complex ζ with $\zeta^2 - \zeta + 1 = 0$ where p_i is prime, e_i is even for $p_i = 2, 3k + 2$, and e_j is arbitrary for $p_j = 3, 3k + 1$.

Remark. Such integers are $N = 0, 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, \dots$

Sketch of Proof. It is sufficient to show (3). Let J be a knot obtained from a trefoil knot by a single crossing change. Then, it can be seen that $\Delta_J(t)$ is equal to the determinant of $\begin{pmatrix} \pm (-t+1-t^{-1}) & r(t^{-1}) \\ r(t) & m(t) \end{pmatrix}$ up to sign. Put $t = \zeta$, $|\Delta_J(\zeta)| = |-r(\zeta)r(\zeta^{-1})|$. There exist integers a and b such that $r(\zeta) = a\zeta + b$.

 $|-r(\zeta)r(\zeta^{-1})| = |(a\zeta + b)(a\zeta^{-1} + b)| = |a^2 + b^2 - ab|.$

By a standard argument in Number Theory (cf. [5], [20]), $|a^2 + b^2 - ab|$ is written as $0, 1, \text{ or } p_1^{e_1} \cdots p_n^{e_n}$ where p_i is prime, e_i is even for $p_i = 2, 3k + 2$, and e_j is arbitrary for $p_j = 3, 3k + 1$.

The converse is a bit hard to show, so we omit it here.

The above type theorem can be shown for knots whose Alexander polynomials are monic (cf. [13]).

5 *n*-adjacency.

Let J and K be knots. If J has a diagram containing n crossings such that crossing changes any $0 < m \le n$ of them yield a diagram of K, J is said to be n-adjacent ([2]) (or strongly (n-1)-similar ([4])) to K.

Proposition 8. ([Stanford (cf. [6])]) Let J and K be knots. If J is 2-adjacent to K, then $|a_2(J) - a_2(K)| \leq 1$, where a_2 is the coefficient of z^2 in the Conway polynomial.

Sketch of Proof. For a certain diagram D of J, there exist two crossings c_1 and c_2 such that crossing changes any non-empty subset of them yield a diagram of K. Let D_1 be the diagram from D by crossing change at c_1 , D_2 the diagram from D by crossing change at c_2 , and D_3 the diagram from D by crossing change at c_1 , c_2 . Let S_1 be the diagram from D by smoothing at c_1 , and S_2 the diagram from D_2 by smoothing at c_1 . Let ε be the sign of c_1 . By the skein relation, we have

$$\nabla_D(z) - \nabla_{D_1}(z) = -\varepsilon z \nabla_{S_1}(z),$$

$$\nabla_{D_2}(z) - \nabla_{D_3}(z) = -\varepsilon z \nabla_{S_2}(z).$$

Since S_1 and S_2 differ only by c_2 , we have $|\operatorname{lk}(S_1) - \operatorname{lk}(S_2)| = 1$. Since D_1, D_2 , and D_3 are diagrams of the same K, $|a_2(J) - a_2(K)| \leq 1$.

Proposition 9 ([12]). Let K be 2-adjacent to a trivial knot. Then, the Alexander polynomial of K is equal to $\pm 1 - r(t)r(t^{-1})$, where $r(t) = c_1(t-1) + c_2(t-1)^2 + \cdots + c_n(t-1)^n$ with $c_1 = 0, \pm 1$. The converse is also valid.

The proof of Proposition 9 is too long to state here, so we omit it.

References

- J.W. Alexander, Topological invariants of knots and links, Trans Amer. Math. Soc. 30 (1928), 275–306.
- [2] N. Askitas and E. Kalfagianni, On knot adjacency, Topology Appl. 126 (2002), 63– 81.
- [3] R.H. Fox, Free differential calculus I, derivation in the free group ring, Ann. of Math. 57 (1953), 547–560.
- [4] H. Howards and J. Luecke, Strongly n-trivial knots, Bull. London Math. Soc. 34 (2002), 431–437.
- [5] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts Math., 84, Second Edition, Springer-Verlag, New York, 1990.
- [6] E. Kalfagianni and X.-S. Lin, Knot adjacence and satellites, Topology Appl. 138 (2004), 207–217.
- H. Kondo, Knots of unknotting number 1 and their Alexander polynomials, Osaka J. Math. 16 (1979), 551-559.
- [8] J. Levine, A characterization of knot polynomials, Topology 4 (1965), 135–141.
- [9] Y. Nakanishi, A note on unknotting number, Math. Sem. Notes Kobe Univ. 9 (1981), 99–108.
- [10] Y. Nakanishi, A note on unknotting number, II, J. Knot Theory Ramif. 14 (2005), 3-8.
- [11] Y. Nakanishi, Alexander polynomials of knots which are transformed into the trefoil knots by a single crossing change, Kyungpook Math. J. 52 (2012), 201–208.

- [12] Y. Nakanishi and M. Shimoda, Knot Adjacency from a surgical view of Alexander invariants, preprint, 2016.
- [13] Y. Nakanishi and Y. Okada, Differences of Alexander polynomials for knots caused by a single crossing change, Topology Appl. 159 (2012), 1016–1025.
- [14] P. Ozsvath and Z. Szabo, Knots with unknotting number one and Heegaard Floer homology, Topology 44 (2005), 705–745.
- [15] D. Rolfsen, A surgical view of Alexander's polynomial, in Geometric Topology (Proc. Park City, 1974), Lecture Notes in Math. 438, Springer-Verlag, Berlin and New York, 1974, pp. 415–423.
- [16] D. Rolfsen, Knots and Links, Math. Lecture Series7, Publish or Perish Inc., Berkeley, 1976.
- [17] T. Sakai, A remark on the Alexander polynomials of knots, Math. Sem. Notes Kobe Univ. 5 (1977), 451–456.
- [18] H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592.
- [19] A. Stoimenow, Polynomial values, the linking forms and unknotting numbers, Math. Res. Lett. 11 (2004), 755-769.
- [20] T. Takagi, Shotou Seisuuron Kougi (in Japanese) [Lectiures on Elementary Number Theory], Second Edition, Kyoritsu Shuppan, Tokyo, 1971.
- [21] H. Wendt, Die Gordische Auflösung von Knoten, Math. Z. 42 (1937), 680 696.

Department of Mathematics Graduate School of Science Kobe University Kobe 657-8501 JAPAN E-mail address: nakanisi@math.kobe-u..ac.jp

神戸大学大学院理学研究科 中西康剛