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1 Abstract

The Alexander polynomial is an effective knot-invariant still now. Levine and Rolfsen

introduced a surgical view of Alexander invariants. In this note, we will study the surgical

view and its applications: unknotting number and knot adjacency.

2 Surgical description

The Alexander polynomial was introduced by Alexander [1] in 1928. Since then, several

knot theorists have introduced alternative definitions of Alexander polynomial: Seifert

[18] in 1934, Fox [3] in 1953), Levine [8] in 1965, and so on.
Their definitions are based on the infinite cyclic covering space of the complement of

a given knot. Let $K$ be a knot in the 3-sphere $S^{3},$ $X=S^{3}\backslash K,$
$\tilde{X}_{\infty}$ the infinite cycle

covering space of $X$ . For the Laurent polynomial ring $\Lambda=Z[t, t^{-1}],$ $H_{1}(\tilde{X}_{\infty})$ is regarded

as a $\Lambda$-module, which is called the Alexander invariant of $K$ . Let $M$ be a presentation

matrix of $H_{1}(\overline{X_{\infty}})$ . Then $\triangle_{K}(t)=\det M$ is called the Alexander polynomial of $K.$

We need the following fact.

Proposition 1 ([21]). For a diagram of a knot, certain crossing changes yield a diagram

of a trivial knot.

$Rom$ Proposition 1, We have Proposition 2, that is called a surgical description ([15],

[16]) of a knot.

Proposition 2 ([15], [16]). Let $K$ be a knot, and $K_{0}$ a trivial knot. Then, there exsist

solid tori $T_{1}$ , . . . $T_{n}$ in $S^{3}\backslash K_{0}$ , and a homeomorphism $\varphi$ : $S^{3}\backslash K_{0}arrow S^{3}\backslash K_{0}$ such that

(1) $\varphi(K_{0})=K,$

(2) the core of $T_{1}\cup\cdots\cup T_{n}$ are trivial,

(3) $1k(T_{i}, K_{0})=1k(\varphi(T_{i}), K)=0(\forall i)$ , and

(4) $1k(\mu_{i)}’T_{i})=\pm 1$ , where $\mu_{i}$ a meridian $0\dot{f}\varphi(T_{i})$ and $\mu_{i}’=\varphi^{-1}(\mu_{i})$ .
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We can construct a Seifert surface of $K$ missing $T_{1}\cup\cdots\cup T_{n}$ by the condition $1k(T_{i}, K_{0})=$

O. Cut along the Seifert surface and make an infinite number of copies. Paste them along

opening sections one after another, and we have the infinite cyclic covering space $\overline{X_{\infty}}$ of
$X=S^{3}\backslash K$ . Reading the linking numbers of tori, we have an Alexander matrix and the

Alexander polynomial as follows:

Key Proposition 3 ([8], [15], [16]). Let $K$ be a knot. Then, $K$ has an Alexander

matrix $M=(m_{ij}(t))$ of the form: (1) $m_{ij}(t)=m_{ji}(t^{-1})$ , and (2) $|m_{ij}(1)|=\delta_{ij}$ , where
$\delta_{ij}=1$ $(if i=j)$ , $0$ $(if i\neq j)$ . The converse is also valid.

3 Unknotting number.

For a knot $K$ , the unknotting number ([21]) of $K$ , denoted by $u(K)$ , is defined to be the

minimum number of crossing changes which yield a diagram of a trivial knot among all

diagrams of $K$ . In surgical description of $K$ , the minimum number of solid tori $T_{1}\cup\cdots\cup T_{n}$

is called the surgical description number of $K$ , denoted by $sd(K)$ . The minimum size of

presentation matrices of $H_{1}(\overline{X_{\infty}})$ is denoted by $m(K)$ .

Proposition 4 ([9]). $0\leq m(K)\leq sd(K)\leq u(K)$ .

Proposition 5 ([14], [19], [10]). Let $K$ be the knot $5_{1}$ $(or, 7_{4},10_{106},10_{109},10_{121})$ . We

have $sd(K)=u(K)=2.$

Sketch of Proof. Let $K$ be the knot $5_{1}$ . A crossing change yields a diagram of $3_{1}.$

We would suppose that $sd(K)=1$ . Then, $3_{1}$ had an Alexander matrix of the form

$M=(\begin{array}{ll}\triangle_{K}(t) r(t^{-l})r(t) m(t)\end{array})$ with $m(t)=m(t^{-1})$ , $|m(1)|=1$ , and $r(1)=0$ . Put $t=-1$ on

$\det M=\pm(t-1+t^{-1})$ , and we had $|\begin{array}{ll}\triangle_{K}(-1) r(-1)r(-1) m(-1)\end{array}|=\pm 3$ . We had $r(-1)^{2}\equiv\pm 3$

(mod5), a contradiction.

Remark. In [10], there are mistakes for $10_{83}$ and $10_{117}$ . So we omit them from Proposi-

tion 5. The author would like to thank Professor Kanenobu for his pointing out.

4 Knot adjacency.

For knots $J$ and $K$ , if $J$ is obtained from $K$ by a single crossing change, $J$ is said to be

adjacent to $K$ . The unknotting number one knot is a knot which is adjacent to a trivial

knot.

The Alexander polynomials of unknotting number one knots are characterized as follows.
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Theorem 6 ([7], [17]). The Alexander polynomials $\triangle_{K}(t)$ of the unknotting number

one knots are characterized by (1) $\triangle_{K}(t^{-1})=\triangle_{K}(t)$ , and (2) $|\triangle_{K}(1)|=1.$

The Alexander polynomials of knots which are obtained from the trefoil knot by a single

crossing change are characterized as follows.

Theorem 7 ([11]). The Alexander polynomials $\triangle_{K}(t)$ of the knots which are adjacent

to a trefoil knot are characterized by (1) $\triangle_{K}(t^{-1})=\triangle_{K}(t)$ , (2) $|\triangle_{K}(1)|=1$ , and (3)

$|\triangle_{K}(\zeta)|=0$ , 1, or $p_{1}^{e_{1}}\cdots p_{n}^{e_{n}}$ for a complex $\zeta$ with $\zeta^{2}-\zeta+1=0$ where $p_{i}$ is prime, $e_{i}$ is

even for $p_{i}=2,$ $3k+2$ , and $e_{j}$ is arbitrary for $p_{j}=3,$ $3k+1.$

Remark. Such integers are $N=0$ , 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, . . ..

Sketch of Proof. It is sufficient to show (3). Let $J$ be a knot obtained from a trefoil knot

by a single crossing change. Then, it can be seen that $\triangle_{J}(t)$ is equal to the determinant

of $(\begin{array}{ll}\pm(-t+1-t^{-1}) r(t^{-1})r(t) m(t)\end{array})$ up to sign. Put $t=\zeta,$ $|\triangle_{J}(\zeta)|=|-r(\zeta)r(\zeta^{-1})|$ . There

exist integers $a$ and $b$ such that $r(\zeta)=a\zeta+b.$

$|-r(\zeta)r(\zeta^{-1})|=|(a\zeta+b)(a\zeta^{-1}+b)|=|a^{2}+b^{2}-ab|.$

By a standard argument in Number Theory (cf. [5], [20]), $|a^{2}+b^{2}-ab|$ is written as
$0$ , 1, or $p_{1}^{e_{1}}\cdots p_{n}^{e_{n}}$ where $p_{i}$ is prime, $e_{i}$ is even for $p_{i}=2,$ $3k+2$ , and $e_{j}$ is arbitrary for

$p_{j}=3,$ $3k+1.$

The converse is a bit hard to show, so we omit it here.

The above type theorem can be shown for knots whose Alexander polynomials are monic

(cf. [13]).

5 $n$-adjacency.

Let $J$ and $K$ be knots. If $J$ has a diagram containing $n$ crossings such that crossing

changes any $0<m\leq n$ of them yield a diagram of $K,$ $J$ is said to be $n$-adjacent ([2]) (or

strongly $(n-1)$ -similar ([4])) to $K.$

Proposition 8. $($ [Stanford (cf. [6])] $)$ Let $J$ and $K$ be knots. If $J$ is 2-adjacent to $K,$

then $|a_{2}(J)-a_{2}(K)|\leq 1$ , where $a_{2}$ is the coeficient of $z^{2}$ in the Conway polynomial.

Sketch of Proof. For a certain diagram $D$ of $J$ , there exist two crossings $c_{1}$ and $c_{2}$ such

that crossing changes any non-empty subset of them yield a diagram of $K$ . Let $D_{1}$ be the

diagram from $D$ by crossing change at $c_{1},$ $D_{2}$ the diagram from $D$ by crossing change at

$c_{2}$ , and $D_{3}$ the diagram from $D$ by crossing change at $c_{1},$ $c_{2}$ . Let $S_{1}$ be the diagram from
$D$ by smoothing at $c_{1}$ , and $S_{2}$ the diagram from $D_{2}$ by smoothing at $c_{1}$ . Let $\epsilon$ be the sign

of $c_{1}$ . By the skein relation, we have

$\nabla_{D}(z)-\nabla_{D_{1}}(z)=-\epsilon z\nabla_{S_{1}}(z)$ ,
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$\nabla_{D_{2}}(z)-\nabla_{D_{3}}(z)=-\epsilon z\nabla_{S_{2}}(z)$ .

Since $S_{1}$ and $S_{2}$ differ only by $c_{2}$ , we have $|1k(S_{1})-1k(S_{2})|=1.$

Since $D_{1},$ $D_{2}$ , and $D_{3}$ are diagrams of the same $K,$ $|a_{2}(J)-a_{2}(K)|\leq 1.$

Proposition 9 ([12]). Let $K$ be 2-adjacent to a trivial knot. $Then_{f}$ the Alexander

polynomial of $K$ is equal $to\pm 1-r(t)r(t^{-1})$ , where $r(t)=c_{1}(t-1)+c_{2}(t-1)^{2}+\cdots+c_{n}(t-1)^{n}$

with $c_{1}=0,$ $\pm 1$ . The converse is also valid.

The proof of Proposition 9 is too long to state here, so we omit it.

References

[1] J.W. Alexander, Topological invariants of knots and links, Trans Amer. Math. Soc.

30 (1928), 275-306.

[2] N. Askitas and E. Kalfagianni, On knot adjacency, Topology Appl. 126 (2002), 63-

81.

[3] R.H. Fox, Free differential calculus I, derivation in the free group ring, Ann. of Math.

57 (1953), 547-560.

[4] H. Howards and J. Luecke, Strongly $n$-trivial knots, Bull. London Math. Soc. 34

(2002), 431-437.

[5] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Grad-

uate Texts Math., 84, Second Edition, Springer-Verlag, New York, 1990,

[6] E. Kalfagianni and X.-S. Lin, Knot adjacence andsatellites, Topology Appl. 138

(2004), 207-217.

[7] H. Kondo, Knots of unknotting number 1 and their Alexander polynomials, Osaka

J. Math. 16 (1979), 551-559.

[8] J. Levine, A characterization of knot polynomials, Topology 4 (1965), 135-141.

[9] y. Nakanishi, A note on unknotting number, Math. Sem. Notes Kobe Univ. 9 (1981),

99-108.

[10] Y. Nakanishi, A note on unknotting number, II, J. Knot Theory Ramif. 14 (2005),

3-8.

[11] Y. Nakanishi, Alexander polynomials of knots which are $transf_{07}med$ into the trefoil
knots by a single crossing change, Kyungpook Math. J. 52 (2012), 201-208.

110



[12] Y. Nakanishi and M. Shimoda, Knot Adjacency from a surgical view of Alexander
invariants, preprint, 2016.

[13] Y. Nakanishi and Y. Okada, Differences of Alexander polynomials for knots caused

by a single crossing change, Topology Appl. 159 (2012), 1016-1025.

[14] P. Ozsvath and Z. Szabo, Knots with unknotting number one and Heegaard Floer
homology, Topology 44 (2005), 705-745.

[15] D. Rolfsen, A surgical view of Alexander’s polynomial, in Geometric Topology (Proc.

Park City, 1974), Lecture Notes in Math. 438, Springer-Verlag, Berlin and New York,

1974, pp. 415-423.

[16] D. Rolfsen, Knots and Links, Math. Lecture Series7, Publish or Perish Inc., Berkeley,

1976.

[17] T. Sakai, A remark on the Alexander polynomials of knots, Math. Sem. Notes Kobe

Univ. 5 (1977), 451-456.

[18] H. Seifert, \"Uber das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592.

[19] A. Stoimenow, Polynomial values, the linking forms and unknotting numbers, Math.

Res. Lett. 11 (2004), 755-769..

[20] T. Takagi, Shotou Seisuuron Kougi (in Japanese) [Lectiures on Elementary Number

Theory], Second Edition, Kyoritsu Shuppan, Tokyo, 1971.

[21] H. Wendt, Die Gordische Aufl\"osung von Knoten, Math. Z. 42 (1937), 680–696.

Department of Mathematics

Graduate School of Science
Kobe University

Kobe 657-8501

JAPAN
$E$-mail address: nakanisi@math.kobe-u. . ac. jp

$t*\overline{F1}XR\neq\chi\mp^{\mapsto*\ovalbox{\tt\small REJECT}\mapsto}\Re\neqffl_{iu\ovalbox{\tt\small REJECT} 4\backslash }^{n\backslash } [|]E5\ovalbox{\tt\small REJECT} \mathbb{H}^{1}\rfloor$

111


