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A survey: From a surgical view of Alexander invariants
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1 Abstract

The Alexander polynomial is an effective knot-invariant still now. Levine and Rolfsen
introduced a surgical view of Alexander invariants. In this note, we will study the surgical
view and its applications: unknotting number and knot adjacency.

2 Surgical description

The Alexander polynomial was introduced by Alexander [1] in 1928. Since then, several
knot theorists have introduced alternative definitions of Alexander polynomial: Seifert
[18] in 1934, Fox [3] in 1953), Levine [8] in 1965, and so on.

Their definitions are based on the infinite cyclic covering space of the complement of
a given knot. Let K be a knot in the 3-sphere S3, X = $3\ K, )~(oo the infinite cycle
covering space of X. For the Laurent polynomial ring A = Z[t,t7!], H 1()?(,0) is regarded
as a A-module, which is called the Alezander invariant of K. Let M be a presentation
matrix of H; (5(;) Then Ak(t) = det M is called the Alexander polynomial of K.

We need the following fact.

Proposition 1 ([21]). For a diagram of a knot, certain crossing changes yield a diagram
of a trivial knot.

From Proposition 1, We have Proposition 2, that is called a surgical description ([15],
[16]) of a knot.

Proposition 2 ([15], [16]). Let K be a knot, and Ko a trivial knot. Then, there exsist
solid tori Ty, ... T,, in S3\ Ko, and a homeomorphism ¢ : S®\ Ko — S3\ Ky such that
(1) p(Ko) = K,

(2) the core of Ty U ---UT, are trivial,
(3) k(Ti, Ko) = 1k(<P(Ti),K) = 0 (Vi), and
(4) (i, T;) = £1, where p; a meridian of o(T;) and w; = o~ ().
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We can construct a Seifert surface of K missing 71U- - -UT,, by the condition lk(T;, Ko) =
0. Cut along the Seifert surface and make an infinite number of copies. Paste them along
opening sections one after another, and we have the infinite cyclic covering space 5(; of
X = S%\ K. Reading the linking numbers of tori, we have an Alexander matrix and the
Alexander polynomial as follows:

Key Proposition 3 ([8], [15], [16]). Let K be a knot. Then, K has an Alezander
matrizc M = (my;(t)) of the form: (1) my;(t) = my(t71), and (2) |mi;(1)| = &, where
0;; =1 (if i =3),0 (if ¢ # 5). The converse is also valid.

3 Unknotting number.

For a knot K, the unknotting number ([21]) of K, denoted by u(K), is defined to be the
minimum number of crossing changes which yield a diagram of a trivial knot among all
diagrams of K. In surgical description of K, the minimum number of solid tori T3 U- - -UT,
is called the surgical description number of K, denoted by sd(K). The minimum size of
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presentation matrices of H;(X) is denoted by m(K).
Proposition 4 ([9]) . 0 < m(K) < sd(K) < u(K).

Proposition 5 ([14], [19], [10]). Let K be the knot 5; (or, T4, 10106, 10109, 10121). We
have sd(K) = u(K) = 2.
Sketch of Proof. Let K be the knot 5;. A crossing change yields a diagram of 3;.
We would suppose that sd(K) = 1. Then, 3; had an Alexander matrix of the form
-1
M= A0 T ) ik ) = m@b), [m(1)] = 1, and r(1) = 0. Put t = —1 on
r(t)  m(t)

Ag(-1) r(-1)

H=1)  m(=1) = 43. We had r(-1)? = +3

detM = +(t — 1 +t7!), and we had

(mod 5), a contradiction.

Remark. In [10], there are mistakes for 10s3 and 10117. So we omit them from Proposi-
tion 5. The author would like to thank Professor Kanenobu for his pointing out.

4 Knot adjacency.

For knots J and K, if J is obtained from K by a single crossing change, J is said to be
adjacent to K. The unknotting number one knot is a knot which is adjacent to a trivial
knot.

The Alexander polynomials of unknotting number one knots are characterized as follows.



Theorem 6 ([7], [17]). The Alezander polynomials Ak(t) of the unknotting number
one knots are characterized by (1) Ag(t™!) = Ag(t), and (2) |Ak(1)] = 1.

The Alexander polynomials of knots which are obtained from the trefoil knot by a single
crossing change are characterized as follows.

Theorem 7 ([11]). The Alexander polynomials Ak(t) of the knots which are adjacent
to a trefoil knot are characterized by (1) Ag(t™') = Ag(t), (2) |Ak(1)] = 1, and (3)
[Ak(Q)|=0,1, or p§* -« - per for a complezx ¢ with (2 — { + 1 = 0 where p; is prime, e; is
even for p; = 2,3k + 2, and e; is arbitrary for p; = 3,3k + 1.

Remark. Such integers are N =0,1,3,4,7,9,12,13,16,19,21,....

Sketch of Proof. It is sufficient to show (3). Let J be a knot obtained from a trefoil knot
by a single crossing change. Then, it can be seen that A,(¢) is equal to the determinant

of(i(_m_t—l) 7)) up tosign. Put ¢ = ¢, [A/(O] = | - r(Or(C ). There
r(t) m(t)

exist integers a and b such that r(¢) = a{ + .
| =r(Or(¢H] = I(al + b)(a¢ ™! +b)| = |a® + b* — ab].

By a standard argument in Number Theory (cf. [5], [20]), |a® + b* — ab| is written as
0,1, or pi' - - - p&* where p; is prime, e; is even for p; = 2,3k + 2, and e; is arbitrary for
pj = 3,3k + 1.

The converse is a bit hard to show, so we omit it here.

The above type theorem can be shown for knots whose Alexander polynomials are monic

(cf. [13]).

5 n-adjacency.

Let J and K be knots. If J has a diagram containing n crossings such that crossing
changes any 0 < m < n of them yield a diagram of K, J is said to be n-adjacent ([2]) (or
strongly (n — 1)-similar ([4])) to K.

Proposition 8. ([Stanford (cf. [6])]) Let J and K be knots. If J is 2-adjacent to K,
then |ao(J) — az(K)| < 1, where ay is the coefficient of 2? in the Conway polynomial.

Sketch of Proof. For a certain diagram D of J, there exist two crossings ¢; and c; such
that crossing changes any non-empty subset of them yield a diagram of K. Let D; be the
diagram from D by crossing change at ¢;, D, the diagram from D by crossing change at
¢9, and D the diagram from D by crossing change at c1, co. Let S; be the diagram from
D by smoothing at ¢;, and Sy the diagram from D, by smoothing at c;. Let € be the sign
of ¢;. By the skein relation, we have

Vp(z) = Vp,(2) = —e2Vg,(2),
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Vp,(2) = Vp,(2) = =2V g,(2).

Since Sy and S, differ only by ¢y, we have |Ik(S;)— 1k(Ss)| = 1.
Since Dy, Dy, and Ds are diagrams of the same K, |ay(J) — a2(K)| < 1.

Proposition 9 ([12]). Let K be 2-adjacent to a trivial knot. Then, the Alezander
polynomial of K 1is equal to £1—r(t)r(t7!), wherer(t) = c1(t—1)+co(t—1)2+ - -+cn(t—1)"
with ¢c; = 0,%1. The converse is also valid.

The proof of Proposition 9 is too long to state here, so we omit it.
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