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On Kato’s inequality for the relativistic Schrodinger operators
with magnetic fields *

Takashi Ichinose (Kanazawa University,

This lecture deals with whether Kato’s inequality holds for the magnetic relativistic
Schrodinger operator H4 with vector potential A(x) and mass m > 0 associated with the
classical relativistic Hamiltonian symbol /(¢ — A(z))? + m? such as

Re[(sgnu)Hqu] > V—A + m? |ul, (1)

in the distribution sense, for u is in L2(R%) with H4u in LL_(R?).

In the literature there are three magnetic relativistic Schrodmger 0 erators associated
with the classical symbol (1) (e.g. [I12], [[13]). The first two H{ and H? 4 are to be defined
as pseudo-differential operators: for f € CZ(RY),

(21)d //Rdefi(x_y){\/(f - A= ; y))2 +m? f(y)dydg, 2)

HN@ = o [ e ”)‘\/(6— /01A<(1—9)x+ey)d9)2+m2f(y)dyd£. 3)

The third H/(f) is defined as the square root of the nonnegative selfadjoint (nonrelativistic
Schrodinger) operator (—iV — A(z))? + m? in L?(R%):

(HY (@) =

HY = \/(=iV = A(2))? + m2. (4)

H, W ; 1s the so-called Weyl pseudo-differential operator ([ITa 86], [[89]). H (2) is a modification

of HY 4 given in [IfMP 07], and H (3) used in [LSei10] to discuss relativistic stabzlzty of matter.

All these three operators are nonlocal operators, and, under suitable condtion on A(z),
become selfadjoint. For A = 0 we put Hy = vV—-A+ m2 where —A is the minus-signed
Laplacian in R%. Hj; @ and H ® are gauge-covariant, but not H A).

Inequality (1) for H, U has been shown in (189], [ITs76], and similarly will be for H @

For HJE‘S), we assume that d > 2, as in case d = 1 any magnetic vector potential can be
removed by a gauge tranformation. We want to show

Theorem 1 (Kato’s inequality). Let m > 0 and assume that A € [L% (R?)]?. Then if u is
in L(R) with HPw in LL_(RY), then the distributional inequality holds:

Re[(sgnu) HPu) > vV=A + m? |ul, (5)
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or

Re(sgnu)Hy'u] > [V=A+m? — m]ul. (6)

Here (sgnu)(z) := u(z)/|u(z)|,if u(z) #0; =0,if u(z) =0.
From Theorem 1 follows the following corollary.

Corollary (Diamagnetic inequality) (cf. [FLSei08], [HILo12, 13] ) Let m > 0 and assume
that A € [LE (RY))%. Then f, g € L*(R%)

loc

|(f, e R =mlg)| < (], e=tHo=m|g]). (7)

Once Theorem 1 is established, we can apply it to show the following theorem on essential
selfadjointness of the relativistic Schrodinger operator with both vector and scalar potentials
A(z) and V(z):

H:=HY +V (8)

Theorem 2. Let m > 0 and assume that A € (L3 (RY)]?. If V(z) is in L (R?) with

V(z) > 0 a.e., then H = H/(f) + V is essentially selfadjoint on CP(RY) and its unique
selfadjoint extension is bounded below by m.

The characteristic feature is that, unlike H/(f) and Hﬁf), Hf) is, since being defined as

an operator square root (4), neither an integral operator nor a pseudo-differential operator
associated with a certain tractable symbol. Hf) is, under the condition of the theorem,

essentially selfadjoint on C$°(R%) so that Hff’) has domain
DIHY] = {u € L*(RY); (iV + A(z))u € L*(R%)},

which contains C§°(R?) as an operator core. Although we can know the domain of Hf')
is determined, the point which becomes crucial is in how to derive regularity of the weak
solution u € L?(R¢?) of equation

Hf)u =./(-iV - A(z))2 +m2u=f, for given f € L (R?).

We shall show inequality (5)/(6), modifying the method used in the case ([I189], [ITs92])
for the Weyl pseudo-differential operator H/(P, basically along the idea of Kato’s original
proof for the magnetic nonrelativistic Schrodinger operator 3(—iV — A(z))? in [K 72]. How-
ever, the present case seems to be not so simple as to need much further modification within
“operator theory plus alpha”.
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