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Abstract

lkom the viewpoint of“geometry of symmetry breaking universal
roles played by holonomy terms have been found in relation with Elie
Cartan’s characterization of symmetric spaces: they can be regarded
as geometric templates in the physical emergence processes of Macro
classical objects from Micro quantum dynamics. In view of the essen-
tial roles played by natural transformations here, the logical essence
of the emergences can be found in the local gauge invariance, which
entails the validity of Maxwell type equations.

1 Introduction

To clarify the close relationship among symmetry breaking, local gauge in-
variance and Maxwell-type equations, we discuss the following basic pointts:

1) Quadrality scheme [1, 2] as a framework for going back & forth be-
tween Macro and Micro levels of nature:

Visible phenomenogical Macro data
$\Leftrightarrow$ theory of invisible Micro processes;

2) In algebraic & categorical QFT we show how local gauge invariance
arises from symmetry breaking;

3) From the viewpoint of broken symmeries & local gauge invariance,
basic ingredients of the formalism are reviewed, in which symmetric space
structure is found in the sector classifying space.

2 Basic Concepts: Quadrality Scheme & Micro-
Macro Duality based on Sectors

Quadrality Scheme, , for describing physical
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phenomena is composed of the following four basic ingredients:

Alg(ebra of physical variables)/States (as expectation functionals)/

Spec (as a classifying space of sectors)/Dyn(amics),

forming Micro-Macro Duality [3]:

1) Its Micro-Macro boundary is defined in terms of sectors and

2) the Macro side is epigenetically due to the emergence process of

3) $Spec=$ sector classifying space from Micro dynamics, to form a
categorical adjunction:

with unit $\eta$ : $I_{\mathcal{X}}arrow T:=EF$ intertwining $\mathcal{X}$ to monad $T\cap \mathcal{X}$ as Micro

dynamics and with counit $\epsilon$ : $S:=FEarrow I_{\mathcal{A}}$ to $\mathcal{A}$ from comonad $S\cap \mathcal{A}$ as
dual of monad $T.$

Micro-Macro duality as categorical adjunction:

3 Sectors & Spec $=$ sector-classifying space

Basic ingredients of the formalism [1, 2] are defined as follows:

1) Sectors$=pure$ phases parametrized by order parameter[$=$ central

observables $\mathfrak{Z}_{\pi}(\mathcal{X})=\pi(\mathcal{X})"\cap\pi(\mathcal{X})’$ commuting with all physical variables
$\pi(\mathcal{X})"$ in a generic representation $\pi$ of algebra $\mathcal{X}$ of physical variables]:

Mathematically, a sector$(=pure$ phase $)$

$def=$ a quasi-equivalence

class of factor states (& representations $\pi_{\gamma}$ ) of (C $*$-)algebra $\mathcal{X}$ of physi-

cal variables, as a minimal unit of representations characterized by trivial

centre $\pi_{\gamma}(\mathcal{X})"\cap\pi_{\gamma}(\mathcal{X})’=:\mathfrak{Z}_{\pi_{\gamma}}(\mathcal{X})=\mathbb{C}1.$
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2) The roles of sectors as Micro-Macro boundary can be seen in
Micro-Macro duality as a mathematical formulation of”Quantum-Classical
correpsondence”’ between microscopic $intra-\mathcal{S}$ectorial &macroscopic inter-
sectorial levels described by geometrical structures on central spectrum
$Sp(\mathfrak{Z}):=Spec(\mathfrak{Z}_{\pi}(\mathcal{X}))$ :

Micro-Macro Duality of Intra- vs. Inter-sectorial levels

Different sectors: mutually disjoint with respect to unbroken symmetry,
and connected by the actions of broken symmetries

As explained later, this contrast is shared even by D(H)R theory of unbroken
symmetry!

4 Emergence of Macro Spec & Symmetry Break-
ing

$3a)$ Emergence process $[$Macro $\Leftarrow Micro]$ of Spec $=$ sector-classifying
space via forcing along (generic) filters

Mathematically this is controlled by Tomita theorem of integral de-
composition of a Hilbert bimodule $\pi(\mathcal{X})^{J/\tilde{\mathcal{X}}}L^{\infty}(E_{\mathcal{X}})$ $:=\pi(\mathcal{X})"\otimes L^{\infty}(E_{\mathcal{X}})$ with
left $\pi(\mathcal{X})"$ & right $L^{\infty}(E_{\mathcal{X}}, \mu)$ actions, via central measure $\mu$ supported
by $Spec=supp(\mu)=Sp(\mathfrak{Z})\subset F_{\mathcal{X}}$ : factor states in state space $E_{\mathcal{X}}$ of $\mathcal{X}.$

Applications to statistical inference based on large deviation principle
[4] and to derivation of Born rule [5].

$3b)$ Symmetry Breaking $\mathcal{B}$ Emergence of Classifying Space
Sector-classifying space emerges typically from spontaneous breakdown

of symmetry of a dynamical system $\mathcal{X}\fbox{Error::0x0000}$

) $G$ with action of a group $G$

(“spontaneous” $=no$ changes in dynamics of the system).

4.1 Symmetry breaking & classifying space

Criterion for Symmetry Breaking (SB criterion, for short) [1, 2]: judged
by non-triviality of central dynamical system $\mathfrak{Z}_{\pi}(\mathcal{X})\sqrt\negG$ associated with
the original one $\mathcal{X}\sqrt{}TG.$
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I.e., symmetry $G$ is broken in sectors $\in Sp(\mathfrak{Z})$ with non-trivial re-
$\mathcal{S}$ponses to central $G$-action.

$G$-transitivity assumption with unbroken subgroup $H$ in broken $G$ leads

to sector-classifying space in a specific form of homogeneous space $G/H.$

$\Rightarrow$ Classical geometric structure on $G/H$ arises physically from emer-
gence process via condensation of a family of degenerate vacua, each

of which is mutually distinguished by condensed values $\in Sp(\mathfrak{Z})=G/H.$

In this way, $\infty$-number oflow-energy quanta are condensed into geometry

of classical Macro objects$\cdot$ $\in G/H.$

4.2 Sector bundle & logical extension from constants to vari-
ables

In combination with sector structure $\hat{H}$ of unbroken symmetry $H$ ( la

DHR-DR theory), total sector structure due to this symmetry breaking is

described by a sector bundle $G\cross\hat{H}$ with fiber $\hat{H}$ over base space $G/H$
$H$

consisting of “degenerate vacua” [1, 2].

When this geometric structure is established, all the physical quantities

are parametrized by condensed values of order parameters $\in G/H$

$\Rightarrow$ “Logical extension” [6] of constants ( $=$ global objects) into

sector-dependent function objects (: origin of local gauge structures)

5 $G/H$ as Symmetric Space

This homogeneous space $G/H$ is shown to be a symmetric space with

Cartan involution as follows [IO, in preparation].

Lie-bracket relations $[\mathfrak{h}, \mathfrak{h}]\subset \mathfrak{h},$ $[\mathfrak{h}, \mathfrak{m}]\subset \mathfrak{m}$ hold for Lie structures $\mathfrak{g},$

$\mathfrak{h},$ $\mathfrak{m}$

of $G,$ $H,$ $M$ $:=G/H$ . If $[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h}$ is verified, $M$ becomes a symmetric

space (at least, locally) equipped with Cartan involution $\mathcal{I}$ with eigenvalues
$\mathcal{I}r_{\mathfrak{h}}=+1$ & $\mathcal{I}r_{\mathfrak{m}}=-1$ :

This property $[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h}$ follows from the relation: $[\mathfrak{m}, \mathfrak{m}]=$ holonomy

associated with an infinitesimal loop in inter-sectorial space $M=Sp(\mathfrak{Z})$

along broken direction. Since $[\mathfrak{m}, \mathfrak{m}]=$ effect of broken $G$ transformation

along an infinitesimal loop
$\otimes\gamma$ on $M$ starting from and returning to the same

point $\gamma\in M$ . Thus, $\mathfrak{m}$-component in $[\mathfrak{m}, \mathfrak{m}]$ is absent by the above SB
criterion, and hence, $M=G/H=Sp(\mathfrak{Z})$ is a symmetric space (at least,

locally).
Example 1): Lorentz boosts

Typical example of this sort can be found for Lorentz group $\mathcal{L}_{+}^{\uparrow}=:G,$

rotation group $SO(3)=:H,$ $G/H=M\cong \mathbb{R}^{3}$ : symmetric space of Lorentz

frames connected by Lorentz boosts.
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For $\mathfrak{h}$ $:=\{M_{ij};i,j=1, 2, 3, i<j\},$ $\mathfrak{m}$ $:=\{M_{0i};i=1, 2, 3\},$

$[\mathfrak{h}, \mathfrak{h}]=\mathfrak{h},$ $[\mathfrak{h}, \mathfrak{m}]=\mathfrak{m},$ $[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h}$ : verified by the basic Lie algebra
structure:

$[iM_{\mu\nu}, iM_{\rho_{\sigma}}]=-(\eta_{\nu\rho}iM_{\mu\sigma}-\eta_{\nu\sigma}iM_{\mu\rho}-\eta_{\mu\rho}iM_{\nu\sigma}+\eta_{\mu\sigma}iM_{\nu\rho})$ .

In contrast to the usual interpretation of Lorentz invariance, unbro-
ken Lorentz boosts $\mathfrak{m}$ is speciality of the vacuum $\mathcal{S}$ituation, due to
such results as Borcher-Arveson thm (: Poincar\’e generators can be physi-
cal observables only in vacuum representation) & spontaneous breakdown
of Lorentz boosts at $T\neq OK[7]$ . In this sense, Lorentz frames $M\cong \mathbb{R}^{3}$

with [boost, boost] $=$ rotation, give a typical example of symmetric space
structure emerging from symmetry breaking.

Example 2): Along this line, chiral symmetry with current algebra
structure $[V, V]=V,$ $[V, A]=A,$ $[A, A]=V$ and conformal symmetry
also provide typical examples.

Example 3): 2nd Law of Thermodynamics
Physically more interesting example can be found in thermodynamics:
1st law of thermodynamics $\Rightarrow\Delta’Q\mapsto\Delta E=\triangle’Q+\triangle’Warrow\Delta’W$ :

exact sequence corresponding to $\mathfrak{h}\mapsto \mathfrak{g}arrow \mathfrak{m}=\mathfrak{g}/\mathfrak{h}.$

With respect to Cartan involution with $+$ assigned to heat production
$\Delta’Q$ and–to macroscopic work $\triangle’W$ , the holonomy $[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h}$ correspond-
ing to a loop in the space $M$ of thermodynamic variables becomes just

Kelvin’s version of 2nd law of thermodynamics

namely, holonomy $[\mathfrak{m}, \mathfrak{m}]$ in the cyclic process with $\triangle E=\triangle’Q+\Delta’W=0,$

describes heat production $\triangle’Q\geq 0:-\Delta’W=-[\mathfrak{m}, \mathfrak{m}]=\Delta’Q>0$ (from
system to outside)

6 Origin of Symmetric Space: Disjointness vs. Quasi-
equivalence

As far as symmetry beaking is formulated in the sector-classifying space, con-
sistent description of its spectrum necessarily reduces to a symmetric space,
as seen above. One may have, however, a question why a non-symmetric ho-
mogeneous space $G/H$ is not possible as a choice of (reductive) pair $(G, H)$

of Lie groups $G$ and $H(\subset G)$ with $H$ describing unbroken symmetry and
$G$ broken one. While we cannot exclude such a case as an abstract pos-
sibility, we can see that the appearance of $\mathfrak{m}$-component in $[\mathfrak{m}, \mathfrak{m}]$ induces
an infinitesimal shift of the end point of a loop on $G/H$ , which causes an
instability in the sector structure umder the broken symmetry. Through sta-
bilization under this perturbation, therefore, a non-symmetric homogeneous

space $G/H$ should be extended to its symmetric-space completion $(G/H)^{o\circ}||,$
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which is to be discussed in the following.
To consider this problem in relation with quasi-equivalence and cen-

tre, we focus on the universal representation $\pi_{u}=(\pi_{u},\mathfrak{H}_{u})\in Rep_{\mathcal{X}}$ in
$C^{*}$-category $Rep_{\mathcal{X}}$ of representations of a $C^{*}$-algebra $\mathcal{X}$ , with such univer-
sality that it contains any representation $\forall\pi=(\pi,\mathfrak{H}_{\pi})\in Rep_{\mathcal{X}}$ of $\mathcal{X}$ as its

subrepresentation: $\pi\leq\pi_{u}$ . Such $a(\pi_{u},\mathfrak{H}_{u})$ is well known to be realized
concretely as the direct sum $(\pi_{u},\mathfrak{H}_{u})$ $:=$ $\oplus(\pi_{\omega},\mathfrak{H}_{\omega})$ of all GNS represen-

$\omega\in E_{\mathcal{X}}$

tations, resulting in universal enveloping von Neumann algebra $\mathcal{X}"\cong \mathcal{X}^{**}\cong$

$\pi_{u}(\mathcal{X})"\cap \mathfrak{H}_{u}.$

We now define “disjoint complement”’
$\pi^{\mathring{|}}$ of a representation $\pi\in Rep_{\mathcal{X}},$

by maximal representation disjoint from $\pi:\pi^{o}|$ $:= \sup\{\rho\in Rep_{\mathcal{X}};\rho^{\mathring{|}}\pi\},$

where disjointness means $\rho^{\mathring{|}}\pi\Leftrightarrow Rep_{\mathcal{X}}(\piarrow\rho)=\{0\}$ : i.e., no non-zero
intertwiners.

Then, we see (I02004, unpublished):

i) $P(\pi)=c(\pi)^{\perp}\mathring{|},$

$P(\pi^{o})=c(\pi)^{\perp\perp}=c(\pi):=|\mathring{|}$ $\vee$ $uP_{\pi}u^{*}\in \mathcal{P}(\mathfrak{Z}(\pi_{u}(\mathcal{X})"))$ ,
$u\in \mathcal{U}(\pi(\mathcal{X})’)$

where $P(\pi)\in\pi_{u}(\mathcal{X})’$ : projection corresponding $to.(\pi,\mathfrak{H}_{\pi})$ in $\mathfrak{H}_{u}$ and $c(\pi)$ :

central support of $P(\pi)$ defined by the minimal central projection majorizing
$P(\pi)$ in centre $\mathfrak{Z}(\mathcal{X}")$

$:=\mathcal{X}"\cap \mathcal{X}’$ of $\mathcal{X}$

ii) $\pi_{1}^{o}=\pi_{2}^{oo}||\Leftrightarrow\pi_{1}\approx\pi 2$ (: quasi-equivalence$=$ unitary equivalence up to
multiplicity $\Leftrightarrow\pi_{1}(\mathcal{X})"\simeq\pi_{2}(\mathcal{X})"\Leftrightarrow c(\pi_{1})=c(\pi_{2})\Leftrightarrow(\pi_{1}(\mathcal{X}))_{*}"=\pi_{2}(\mathcal{X}))_{*}")$

6.1 Quasi-equivalence& modular structure

iii) Representation $(\pi^{o}|\mathring{|}, c(\pi)\mathfrak{H}_{u})$ of von Neumann algebra $\pi(\mathcal{X})"\simeq\pi^{oo}(\mathcal{X})"||$

in $c(\pi)\mathfrak{H}_{u}$ gives the standard form of $\pi(\mathcal{X})"$ equipped with normal faithful
semifinite weight $\varphi$ and the associated Tomita-Takesaki modular structure
$(J_{\varphi}, \triangle_{\varphi})$ , whose universality is characterized by adjunction,

$Std(\sigmaarrow\pi^{\mathring{|}1}\circ)\simeq Rep_{\mathcal{X}}(\sigmaarrow\pi)$ .

Namely, any intertwiner $T\in Rep_{\mathcal{X}}(\sigmaarrow\pi)$ to a standard form representa-

tion $(\sigma,\mathfrak{H}_{\sigma})$ of $\sigma(\mathcal{X})"$ is uniquely factored $T=T^{o}\circ\eta_{\pi}|\mathring{|}$ through the canonical

homotopy $\eta_{\pi}\in Rep_{\mathcal{X}}(\pi^{o}\mathring{|}|arrow\pi)$ with $\exists!T^{\mathring{|}1}\circ\in Rep_{\mathcal{X}}(\sigmaarrow\pi^{\mathring{|}1}\circ)$ .
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6.2 Quasi-equivalence & sector classifying groupoid

Modular structure of von Neumann algebra $\pi(\mathcal{X})"=:\mathcal{M}$ in the standard

form $(\pi^{\mathring{|}\mathring{|}}, c(\pi)\mathfrak{H}_{u})$ can be understood as unitary implementation of a
normal subgroup $G_{\mathcal{M}}$ $:=Isom(\mathcal{M}_{*})^{\mathcal{M}}\triangleleft Isom(\mathcal{M}_{*})$ fixing $\mathcal{M}$ pointwise by
unitary group $\mathcal{U}(\mathcal{M}’)$ in the commutant $\mathcal{M}’$ : namely, for $\gamma\in G_{\mathcal{M}},$ $\exists U_{\gamma}’\in$

$\mathcal{U}(\mathcal{M}’)$ s.t. $\langle\gamma\omega,$ $x\rangle=\langle\omega,$ $\gamma^{*}(x)\rangle=\langle\omega,$ $U_{\gamma}^{\prime*}xU_{\gamma}’\rangle$ for $\omega\in \mathcal{M}_{*}$ , and $U_{\gamma}^{\prime*}xU_{\gamma}’=$

$x\Leftrightarrow x\in \mathcal{M}$ . Through modular conjugation $J_{\varphi}(-)J_{\varphi}$ , this unitary group
can naturally be related to the modular group $\Delta_{\varphi}^{it}.$

iv) Quasi-equivalence $\pi_{1}\approx\pi_{2}$ defines sector-classifying groupoid $\Gamma_{\approx}$

consisting of invertible $intertwiner\mathcal{S}$ in $Rep_{\mathcal{X}}$ , which reduces on each
$\pi\in Rep_{\mathcal{X}}$ to the automorphism group, $\Gamma_{\approx}(\pi, \pi)=Aut(\pi(\mathcal{X})")$

$\simeq Isom(\pi(\mathcal{X})_{*}")$ , isomorphic to the isometry group of predual $\pi(\mathcal{X})_{*}".$

6.3 Quasi-equivalence & Galois structure

ftom the relation $\mathfrak{Z}(\mathcal{M})=(\mathcal{M}’)^{\mathcal{U}(\mathcal{M}’)}=(\mathcal{M}\vee \mathcal{M}’)^{\mathcal{U}(\mathcal{M})\cross \mathcal{U}(\mathcal{M}’)}$ , sector-
classifying space can be viewed as Grassmannian-like symmetric space (or,
Hecke algebra): $Sp(\mathfrak{Z}(\mathcal{M}))=\mathcal{U}(\mathcal{M})\backslash [\mathcal{U}(\mathcal{M}\vee \mathcal{M}’)]/\mathcal{U}(\mathcal{M}’)$ . This can be seen
as the basis of the connection between symmetry breaking and symmetric
space.

For $\mathcal{M}$ of type III, following Galois-type relations hold with crossed
product by a coaction of $\mathcal{U}(\mathcal{M}’)$ on $\mathcal{M}$ :

$\mathfrak{Z}(\mathcal{M})’=\mathcal{M}\vee \mathcal{M}’=\mathcal{M}\rangle\triangleleft\overline{\mathcal{U}(\mathcal{M}’})$ : Galois extension of $\mathcal{M},$

$\mathcal{M}=(\mathcal{M}\vee \mathcal{M}’)^{\mathcal{U}(\mathcal{M}’)}$ : fixed-point subalgebra under $\mathcal{U}(\mathcal{M}’)$ ,
$\mathcal{U}(\mathcal{M}’)=Gal(\mathfrak{Z}(\mathcal{M})’/\mathcal{M})$ : Galois group of $\mathcal{M}\mapsto \mathfrak{Z}(\mathcal{M})’,$

according to which trivial centre $\mathfrak{Z}(\mathcal{M})=\mathbb{C}1$ to characterize a sector can
be reinterpreted as ergodicity condition on $\mathcal{M}$ under $Aut(\mathcal{M})$ or $G_{\mathcal{M}}$ :

$\mathbb{C}1=\mathcal{M}\cap \mathcal{M}’=\mathcal{M}’\cap \mathcal{U}(\mathcal{M}’)’=(\mathcal{M}’)^{\mathcal{U}(\mathcal{M}’)}\supset(\mathcal{M}’)^{Aut(\mathcal{M})}.$

Through the above consideration, symmetric-space completion $(G/H)^{\mathring{|}\mathring{|}}$

can now be identified with the completion of $G/H$ in the factor spectrum

with respect to the disjoint completion $\piarrow\pi^{oo}||.$

7 Sector Bundle & Holonomy along Goldstone Con-
densates

In use of sector bundle $\hat{H}\mapsto G_{H}\cross\hat{H}arrow G/H$ , physical origin of space-time

concept can be seen in its physical emergence process [8].
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For simplicity, we assume here that a group $G$ of broken internal sym-

metry be extended by a group $\mathcal{R}$ of space-time symmetry (typically transla-

tions) into a larger group $\Gamma=\mathcal{R}\cross G$ defined by a semi-direct product of $\mathcal{R}$

& $G$ with $\Gamma/G=\mathcal{R}$ . In this case, the sector bundles have a double fibration

structure:

$\hat{H} \mapsto G_{H}\cross\hat{H} \mapsto \Gamma_{GHH}\cross(G\cross\hat{H})=\Gamma\cross\hat{H}$

$\downarrow$
$\downarrow$

$G/H \Gamma/G=\mathcal{R}$

Thus we have three different axes on different levels in $Spec$ :

a) sectors $\hat{H}$ of unbroken symmetry $H,$

b) $deg$ . vacua $G/H=M$ due to broken internal symmetry [1, 2],

c) $\Gamma/G=\mathcal{R}$ as emergent space-time [8] in broken external symmetry.

These axes arise in a series of structure-group contractions $Harrow Garrow\Gamma$

of principal bundles $P_{H}\mapsto Pc\mapsto P_{\Gamma}$ over $\mathcal{R}$ , specified by $soldering_{\mathcal{S}}$ as

bundle sections, $\mathcal{R}\mapsto\rho P_{G}/H=P_{H_{H}^{\cross}}(G/H)$ , $\mathcal{R}\mapsto\tau P_{\Gamma}/G=P_{G_{G}^{\cross}}(\Gamma/G)=$

$P_{G_{G}^{X}}\mathcal{R}$
, corresponding physically to Goldstone modes:

$P_{H}$ $\mapsto$ $P_{G}$ $\mapsto$ $P_{\Gamma}$

$H\downarrow \mathcal{R}$ $\mapsto O\rho$ $P_{G}/H\downarrow H$
$\mapsto O\sigma$

$P_{\Gamma}/H\downarrow H$

$\backslash \backslash \mathcal{O} \downarrow G/H O \downarrow G/H$

$\mathcal{R}$ $\mapsto\tau P_{\Gamma}/G$

$\backslash \backslash \mathcal{O} \downarrow \mathcal{R}$

$\mathcal{R}$

8 Augmented Algebra as algebraic dual of Helga-

son Duality

$Rom$ the algebraic viewpoint (dual to Helgason duality $K\backslash Grightarrow G/H$ :
$\nearrow$ $K\backslash G/H$ $\nwarrow$

$K\backslash G$ $rightarrow$ $G/H$ , with Radon transforms & Hecke algebra $K\backslash G/H$),
$\nwarrow$ $G$ $\nearrow$

the essence of the relevant structures can be viewed as the “stereo-graphic”

extension of such planar diagrams as controlling “augmented algebras” [1]

of crossed products to describe symmetry breaking:

$\tilde{\mathcal{X}}^{H}G/H\swarrow \mathcal{X}^{H}=\tilde{\mathcal{X}}^{G}\Downarrow\searrow H\mathcal{X}$
$\mathcal{A}(\mathcal{R})\Downarrow \mathcal{R}\swarrow \mathcal{O}_{\rho}=\mathcal{O}_{d}^{H}\searrow H\mathcal{O}_{d}$ [same sort

of lines are
$\downarrow_{H}\searrow\searrow\tilde{\mathcal{X}}\swarrow G/H$ $\downarrow$

$\Leftrightarrow$ $\downarrow_{H}\searrow\searrow \mathcal{X}(\mathcal{R})\swarrow_{\mathcal{R}}\downarrow$ :
in the same

$\frac{\downarrow}{H\backslash G}\swarrow\Downarrow\mapsto\hat{G}\searrow\searrowarrow$
$\downarrow\hat{H}$

$\hat{\mathcal{R}}\downarrow$ $\mapsto\swarrow$ $\hat{\Gamma}\Downarrow$ $\searrow\searrowarrow\hat{H}\downarrow$ exact seq]
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Note that push-out diagram shows up here (right) in DR reconstruction [9]

of field algebra $\mathcal{X}(\mathcal{R})$ with its internal symmetry unbroken.

9 Symmetric Space Structure & Maxwell Equa-

tion

Symmetric space structures of $G/H=M$ & $\Gamma/G=\mathcal{R}$ due to symmetry
breaking is characterized by the equation of type $[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h}$ , which con-
nects holonomy $[\mathfrak{m}, \mathfrak{m}]$ (in terms of curvature) with generators $\mathfrak{h}$ of unbroken
subgroup.

Note that this feature is shared in common by Maxwell & Einstein equa-

tions of electromagnetism and of gravity, respectively:
LHS: (curvature $F_{\mu\nu}$ or$\cdot$

$R_{\mu v}$ ) $=$ (source current $J_{\mu}$ or $T_{\mu\nu}$ ) : RHS.

According to the second Noether theorem (developed in the theory of invari-
ants), Maxwell equation is an identity following from the invariance of action
integral under space-time dependent transformations. In contrast, however,

no $\mathcal{S}uchcla\mathcal{S}sical$ quantities as action integrals nor Lagrangian densities are
available in our algebraic & categorical formulation of quantum fields.

9.1 Spectral functor in Doplicher-Roberts reconstruction of
symmetry

The expected roles of action integral are to determine representation con-
tents of a theory. In Doplicher & Roberts (DR) reconstruction [9], this can
be substituted by categorical data concerning Galois group in terms of DR
category $\mathcal{T}$ of modules of local excitations:

Obj ( $\mathcal{T}$) : local endomorphisms $\rho\in End(\mathcal{A})$ of observable algebra $\mathcal{A},$

selected by DHR localization criterion $\pi_{0}0\rho r_{\mathcal{A}(\mathcal{O}’)}\cong\pi_{0}r_{\mathcal{A}(\mathcal{O}’)},$

$Mor(\mathcal{T}):T\in \mathcal{T}(\rhoarrow\sigma)\cdot\subset \mathcal{A}$ intertwining $\rho,$
$\sigma\in \mathcal{T}:\rho(A)T=T\sigma(A)$ .

In this context, the group $H$ of unbroken internal symmetry is identified
with the group $H=End_{\otimes}(V)$ of unitary tensorial $(=$monoidal) natural

transformations $u$ : $Varrow V$ with the spectral functor $V$ : $\mathcal{T}\mapsto Hilb$ to
embed $\mathcal{T}$ into category Hilb of Hilbert spaces with morphisms as bounded

hnear maps.

9.2 Spectral functor in category & its local gauge invariance

$V(\rho) arrow^{\rho}v W(\rho)$

Noting the commutativity diagram, $v_{\rho}W(T)=V(T)v_{\sigma}$ : $V(T)\uparrow$ $G$ $\uparrow W(T)$ ,
$V(\sigma) arrow v_{\sigma} W(\sigma)$

to define a natural transformation $v$ : $Varrow W$ from a functor $W$ to another
$V$ with $T\in \mathcal{T}(\rhoarrow\sigma)[10]$ , we re-interpret it as a categorical definition of
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a local gauge transformation $W^{\underline{\tau}}3\tau_{v}(W)=V$ of a functor $W$ to $V$ on the
basis of definition:

$\tau_{v}(W)(T)$ $:=v_{\rho}W(T)v_{\sigma}^{-1}$ for $T\in \mathcal{T}(\rhoarrow\sigma)$ .

Note that similar formulae appear for gauge links in lattice gauge theory.

Then, the commutativity, $u_{\rho}V(T)=V(T)u_{\sigma}$ for $u\in End_{\otimes}(V)$ , can be
interpreted as local gauge invariance $\tau_{u}(V)=V$ of the functor $V$ under
local gauge transformation $Varrow\tau_{u}(V)$ induced by a \’{n}atural transformation
$u\in H=End_{\otimes}(V)$ .

9.3 Local gauge invariance & Maxwell equation

In the original DR theory, local endomorphisms $\rho\in \mathcal{T}\subset End(\mathcal{A})$ have, un-
fortunately, been regarded as global constant objects, owing to the emphasis

on space-time transportabilityl, and hence, the left-right difference of $u_{\rho}$

and $u_{\sigma}$ in $\tau_{u}(V)(T)$ $:=u_{\rho}V(T)u_{\sigma}^{-1}$ has not been recognized as important
signal of local gauge structures.

From the viewpoint of forcing method, however, the essential features of
logical extension from constants to variables [6] naturally lead to the
interpretation of $\tau_{u}(V)(T)=u_{\rho}V(T)u_{\sigma}^{-1}=V(T)$ as the characterization
of local gauge invariance of the functor $V$ under local gauge transformaion
$u:\mathcal{T}\ni\rho\mapsto u_{\rho}$ . This is in harmony also with the alternative formulation
of principal bundles in terms of group-valued \v{C}ech cohomologies.

9.4 Spectral functors in $*$-Categories

In the usual definition, Galois group $G=Gal(\mathcal{X}/\mathcal{A})=G(\mathcal{X}, \mathcal{A})$ is a group
simply determined by two such arguments as algebra $\mathcal{X}$ and its subalgebra
$\mathcal{A}$ , with

$\langle$

quotient $\mathcal{X}/\mathcal{A}$ having no actual meaning.

With symbol/A interpreted as $\mathcal{A}$ reduced to scalar, we can regard $\mathcal{X}/\mathcal{A}$

as a $G$-module with $Gal(\mathcal{X}/\mathcal{A})$ as its inverse Fourier transform.

In terms of natural transformations, this re-interpretation can be ex-
tended categorically, according to which we obtain functors to extract groups
or algebras from *-categories of modules as follows:

1) $End_{\otimes}(\mathcal{T}\mapsto Hilb)=G$ : internal symmetry group derived from DR
category $\mathcal{T}(\subset End(\mathcal{A}))$ of modules of local excitations

2) $Nat(Mod_{B}\mapsto Hilb)=B$ Rieffel’s extraction of universal enveloping
von Neumann algebra $B”fr$ a category of $B$-modules

3) Takesaki-Bichteler’s admissible operator fields on Rep$(Barrow \mathfrak{H})$ in a

1This has led to the mathematical definition of “sectors of $\mathcal{A}$ by End$(\mathcal{A})/Inn(\mathcal{A})$ .
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sufficiently big Hilbert space $\mathfrak{H}$ to reproduce von Neumann algebra $B$

(Third example, focused up in Dr. Okamura’s $PhD$ thesis as a non-
commutative extension of Gel’fand-Naimark theorem, can be viewed as a
full subcategory of the second one according to Rieffel. )

10 Second Noether Theorem & Maxwell Equation

To adapt the roles of DR category $\mathcal{T}\subset End(\mathcal{A})=End(\mathcal{X}^{H})$ in determining
the factor spectrum $Sp(\mathfrak{Z}(\mathcal{X}^{H}))=\hat{H}$ to our present purpose, we need to

replace $\mathcal{T}$ by $\mathcal{T}\approx=End(\mathcal{X})\approx H$

with
$\mathcal{X}\approx=\mathcal{X}^{H_{\lambda}}\hat{\mathcal{R}}$

and with $\Gamma/G=\mathcal{R}($ : space-
time) in the two-step construction of augmented algebras associated with
the series of group extensions: unbroken $H\mapsto$ broken internal $G\mapsto$broken
external $\Gamma.$

By repeating the categorical formulation of $End_{\otimes}(V : \mathcal{T}\mapsto Hilb)$ with
$\mathcal{T}$ and $V$ replaced by

$\mathcal{T}\approx$

and
$V\approx$

, respectively, we can reproduce the essence
of the second Noether theorem to connect the local gauge invariance and
Maxwell equation. In this context, the second Noether theorem can be
generalized into a form with three type arguments, $x\in \mathcal{R},$ $\xi\in G/H,$ $a\in\hat{H}.$

For simplicity, we reproduce its standard form with infinitesimal local
gauge transformation $\delta_{\Lambda\varphi^{a}(x)}=G^{a}(x)\cdot\Lambda(x)+T^{a\mu}(x)\cdot\partial_{\mu}\Lambda(x)$ of fields
$\varphi^{a}(x)$ specified by an “inifinitesimal parameter”’ $\Lambda=\Lambda(x)$ of a natural
transformation depending on sector parameter $x\in \mathcal{R}$ . Then Maxwell-type
equation holds identically,

$\partial_{\nu}K^{\nu\mu}+J^{\mu}=0,$

with $K^{\nu\mu}$ and $J^{\mu}$ defined in relation with the “infinitesimal transforms”’ of
spectral functor $V$ :

$K^{\nu\mu}:=T^{a\mu} \frac{\partial}{\partial(\partial_{\nu}\varphi^{a})}V,$

$J^{\mu}:=T^{a\mu}( \frac{\partial}{\partial\varphi^{a}}-\frac{\partial}{\partial(\partial_{\nu}\varphi^{a})})V+G^{a}\frac{\partial}{\partial(\partial_{\mu}\varphi^{a})}V.$

Choosing $\xi\in G/H$ as the parameter-dependence of local gauge transforma-
tions, we can incorporate the low-energy theorem (with “soft pions due to
symmetry breaking in the present context.

In the case with $a\in\hat{H}$ , we note that the recovered group $H$ of unbroken
symmetry is compact in DR theory [9] which implies that the group dual
$\hat{H}$ of sector parameters is discrete. While it seems difficult to adapt this
case to the standard formulation of the second Noether theorem in terms
of differential operations, we expect some interesting lessons to be learned
from the attempt to unify it in the present context.
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With the aid of this machinery, such a perspective (which has long been

advocated by Dr. Saigo and also emphasized recently by Dr. Okamura) can
now be envisaged that all the contents of QFT in quadrality scheme are

unified into a $C^{*}$-tensor category of physical quantities (work in progress).
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