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Abstract

We discuss some aspects of vanishing properties of sign changing solutions to certain

nonlinear elliptic partial differential equations.

\S 1. Introduction

We discuss some aspects of vanishing properties of sign changing solutions to certain

second order quasilinear elliptic differential equations of the form

(1.1) $-\nabla\cdot \mathcal{A}(x, u, \nabla u)+\mathcal{B}(x, u, \nabla u)=0.$

We shall specify the class of equations considered in this paper in $(2.1)-(2.2)$ in Section 2.

For solutions of linear equations with Lipschitz leading coefficients it is well-known

that analyzing an Almgren type frequency function leads to monotonicity formulas and

doubling inequalities. The monotonicity formulas and doubling inequalities in turn

imply that if a sign changing solution vanishes in some proper open subset of a given

domain, then it must vanish identically in the whole domain. We refer the reader to the

celebrated papers [15, 16] by Garofalo and Lin. In this note we are interested in such

vanishing properties of solutions.

In the nonlinear case on the other hand, it is known that there exists a second

order nonlinear elliptic operator of divergence form $(\mathcal{B}=0$ in (1.1) and $p=n$ , where
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$n\geq 3$ , in $(2.1)-(2.2))$ such that a solution to this equation that vanishes in the lower
half space $x_{n}<0$ of $\mathbb{R}^{n}$ does not vanish identically in the whole space [23].

In the present note, we investigate a nonlinear frequency function related to a
solution of (1.1). The main goal of this paper is to obtain some results on vanishing

properties of sign changing solutions to the equation (1.1) by way of such frequency

function. Our main result is stated in Theorem 3.14.
We mention a recent paper [7], where the study of certain other generalizations

of Almgren’s frequency function give new results and insight on the critical set of the

solutions to linear elliptic equations.

Finally, let us point out that one of the main estimates in the note, Proposition 3.3,

can be considered as a generalized Poincar\’e-type inequality. Proposition 3.3 covers every
$1<p<\infty$ , and although it is an easy generalization of a similar inequality proved for
$p=2$ in a forthcoming monograph by Han and Lin [19], it might be of independent

interest to the reader.

Notation Throughout the paper a domain is a proper open connected subset of $\mathbb{R}^{n},$

$n\geq 2$ , and $1<p<\infty$ . We use the notation $B_{r}=B(x, r)$ for concentric open balls
of radii $r$ centered at $x$ . Unless otherwise stated, the letter $C$ denotes various positive

and finite constants whose exact values are unimportant and may vary from line to

line. Moreover, $dx$ denotes the Lebesgue volume element in $\mathbb{R}^{n}$ , whereas $dS$ denotes the

surface element. The characteristic function of a set $E$ is written as $\chi_{E}.$
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\S 2. Nonlinear equations

Let $G$ be a bounded domain in $\mathbb{R}^{n}$ . We consider the equation (1.1) in weak form,

i.e. for any $\eta\in W_{0}^{1,p}(G)$

$\int_{G}\mathcal{A}(x, u, \nabla u)\cdot\nabla\eta dx+\int_{G}\mathcal{B}(x, u, \nabla u)\eta dx=0$

holds, where $\mathcal{A}:G\cross \mathbb{R}\cross \mathbb{R}^{n}arrow \mathbb{R}^{n}$ and $\mathcal{B}:G\cross \mathbb{R}\cross \mathbb{R}^{n}arrow \mathbb{R}$ are assumed to satisfy

the Carath\’eodory conditions. For the results in this paper it is essential that a weak

solution is in $C^{1}(G)$ , and therefore we shall assume this. It is well known, however, that
by assuming more on the structure of $\mathcal{A}$ and $\mathcal{B}$ every weak solution is in $C^{1}(G)$ , see
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[21] and also [9, 25]. In addition, we shall assume that there are constants $1<p<\infty,$

$0<a_{0}\leq a_{1}<\infty$ , and $0<b_{1}<\infty$ such that for all $(t, h)$ in $\mathbb{R}\cross \mathbb{R}^{n}$ and for almost

every $x\in G$ the following structural assumptions hold:

(2.1) $\mathcal{A}(x, t, h)\cdot h\geq a_{0}|h|^{p},$ $\mathcal{A}(x, t, h)|\leq a_{1}|h|^{p-1},$

(2.2) $|\mathcal{B}(x, t, h)|\leq b_{1}|h|^{p-1}$

We also consider the second order nonlinear elliptic equation

(2.3) $-\nabla\cdot(|\nabla u|^{p-2}\nabla u)=\lambda|u|^{p-2}u,$

where $1<p<\infty,$ $\lambda>0$ is a parameter, and $u=0$ on the boundary of a bounded domain

$G\subset \mathbb{R}^{n}$ with smooth boundary $\partial G$ . In fact, (2.3) is the $p$-Laplace generalization of the

classical eigenvalue problem for the Laplace equation which can be recovered from (2.3)

by setting $p=2$ . A good introduction to this nonlinear eigenvalue problem is [22], the

references given there, and in particular [14]. For the results in this paper no regularity

assumptions are needed about the boundary of $G.$

We interpret equation (2.3) in the weak sense; A function $u\in W_{0}^{1,p}(G)$ , $u$ not

identically zero, is a weak solution to (2.3) if there exists $\lambda>0$ such that

(2.4) $\int_{G}|\nabla u|^{p-2}\nabla u\cdot\nabla\eta dx=\lambda\int_{G}|u|^{p-2}u\eta dx,$

where $\eta$ is a test-function in $W_{0}^{1,p}(G)$ . Standard elliptic regularity theory implies that

$u$ is locally in $C^{1,\alpha}(G)$ , where the H\"older exponent $\alpha$ depends only on $n$ and $p$ . For this

regularity result see [9] or [25]. For other properties we refer the reader to [22].

\S 3. Frequency function and vanishing of solutions

Let us consider the following frequency function for solutions to (1.1) or (2.3)

(3.1) $F_{p}(r)= \frac{r^{p-1}\int_{B_{r}}|\nabla u|^{p}dx}{\int_{\partial B_{r}}|u|^{p}dS},$

where $\overline{B}_{r}\subset G$ . When it is necessary to stress also the function for which the frequency

function is defined we write $F_{p}(r;u)$ . We set

$I(r):= \int_{\partial B_{r}}|u|^{p}dS.$

Observe that $F_{p}(r)$ is not defined for such radii $r$ for which $I(r)=$ O. We remark

that $F_{p}(r)$ is a generalization of the well known Almgren frequency function $F_{2}(r)$ for
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harmonic functions in $\mathbb{R}^{n}$ , see [1]. For harmonic functions the frequency function $F_{2}(r)$

is known to be non-decreasing as a function of $r$ . This is not at all clear for $F_{p}(r)$ .
It is straigthforward to check that for each positive real number $\tau$ the frequency

function $F_{p}(r)$ satisfies the following scaling property $F_{p}(r;v)=F_{p}(\tau r;u)$ , where we
write $v(x)=u(\tau x)$ .

Theorem 3.2. Suppose $u\in C^{1}(G)$ . Assume further that there exist two con-
centric balls $B_{r_{b}}\subset\overline{B}_{R_{b}}\subset G$ such that the frequency junction $F_{p}(r)$ is defined, i.e.

$I(r)>0$ for every $r\in(r_{b}, R_{b}$ ], and moreover, $\Vert F_{p}\Vert_{L\infty((r_{b},R_{b}])}<\infty$ . Then there exists
some $r^{\star}\in(r_{b}, R_{b}$ ] such that

$\int_{\partial B_{r_{1}}}|u|^{p}dS\leq 4\int_{\partial B_{r_{2}}}|u|^{p}dS,$

for every $r_{1},$ $r_{2}\in(r_{b}, r^{\star}$ ]. In particular, the following weak doubling property is valid

$\int_{\partial B_{r^{\star}}}|u|^{p}dS\leq 4\int_{\partial B_{r}}|u|^{p}dS,$

for every $r\in(r_{b}, r^{\star}$ ].

Proof. The proof can be found in [17, Section 4]; see also Section 5 in [18]. How-
ever, a minor modification in use of Young’s inequality is needed due to the factor $r^{p-1}$

instead of $r$ in the numerator in (3.1). $\square$

The next proposition can be considered as a generalization of a Poincar\’e inequality

and it is interesting as such. Inequality (3.4) below is usually covered in the case in which
$p=2$ ; we refer the reader to [19] and [13]. It might be known for general $1<p<\infty$ , as
the proof is rather straightforward, but due to a lack of a proper reference we provide

a proof.

Proposition 3.3. For any $u\in W^{1,p}(B_{r})\cap C^{1}(B_{r})$ with $r>0$ , there holds

(3.4) $\int_{B_{r}}|u|^{p}dx\leq\frac{2r}{n}\int_{\partial B_{r}}|u|^{p}dS+Cr^{p}\int_{B_{r}}|\nabla u|^{p}dx,$

where $C$ depends only on $n$ and $p.$

Proof. We introduce radial and angular coordinates $\rho$ and $\omega\in\partial B_{1}$ , and define
the sets $P=\{\omega\in\partial B_{1} : u(\rho\omega)>0\}$ and $N=\{\omega\in\partial B_{1} : u(\rho\omega)<0\}$ . Let us calculate
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as follows

$\int_{B_{r}}|u|^{p}dx=\int_{0}^{r}(\int_{\partial B_{\rho}}|u(\rho\omega)|^{p}d\omega)d\rho=\int_{0}^{r}(\int_{\partial B_{1}}|u(\rho\omega)|^{p}d\omega)\rho^{n-1}d\rho$

$= \frac{r^{n}}{n}\int_{\partial B_{1}}|u(r\omega)|^{p}d\omega$

$- \frac{p}{n}\int_{0}^{r}(\int_{\partial B_{1}}(u(\rho\omega)^{p-1}\chi_{P}u_{\rho}(\rho\omega)-(-u(\rho\omega))^{p-1}\chi_{N}u_{\rho}(\rho\omega))d\omega)\rho^{n}d\rho$

$\leq\frac{r}{n}\int_{\partial B_{r}}|u|^{p}dS+\frac{p}{n}\int_{B_{r}}|x||u|^{p-1}|u_{\rho}|dx,$

where $u_{\rho}=\nabla u\cdot(x/\rho)$ , $\rho=|x|$ . Applying Young’s inequality we have for any $\epsilon>0$

$\int_{B_{r}}|u|^{p}dx\leq\frac{r}{n}\int_{\partial B_{r}}|u|^{p}dS+\frac{p-1}{n(\epsilon p)^{q/p}}\int_{B_{r}}|u|^{p}dS+\frac{p\epsilon}{n}\int_{B_{r}}|x|^{p}|\nabla u|^{p}dx,$

where $p=q(p-1)$ . We obtain (3.4) by taking $\epsilon=(2(p-1)/n)^{p-1}p^{-1}.$ $\square$

Remark 3.5. It seems obvious that one could assume less regularity on $u$ in
Proposition 3.3. However, we do not consider it here.

The use of Proposition 3.3 results in the estimate (3.7) in Lemma 3.6 stated next.
A stronger version of the estimate was obtained in [17] for solutions to the $p$-Laplace

equation in the form of an identity. An analogous estimate for solutions to (1.1) holds
as well; we shall treat it separately in Lemma 3.11

Lemma 3.6. Suppose $u$ is a solution to (2.3) in G. Then there exists a radius
$r_{0}$ , depending on $n,$ $p$ , and $\lambda$ , such that

(3.7) $\int_{B_{r}}|\nabla u|^{p}dx\leq C_{1}\int_{\partial B_{r}}|u||\nabla u|^{p-1}dS+C_{2}r\int_{\partial B_{r}}|u|^{p}dS$

is valid for every $\overline{B}_{r}\subset G$ , where $r\leq r_{0}$ . Positive constants $C_{1}$ and $C_{2}$ depend on $n,$ $p,$

and $\lambda$ only.

Proof. Let $B_{r}\subset B_{\rho}$ be concentric balls so that $\overline{B}_{\rho}\subset G$ . We interpret equation
(2.3) in the weak sense and plug in a test-function $\eta=u\xi^{p}$ , where $\xi\in C_{0}^{\infty}(G)$ , $0\leq\xi\leq 1,$

with $\xi=1$ on $B_{r},$ $\xi=0$ on $G\backslash B_{\rho}$ , and $|\nabla\xi|\leq C/(\rho-r)$ ; we hence obtain

$\int_{B_{r}}|\nabla u|^{p}dx\leq p\int_{B_{\rho}}|u|\xi^{p-1}|\nabla u|^{p-1}|\nabla\xi|dx+\lambda\int_{B_{\rho}}|u|^{p}\xi^{p}dx$

(3.8) $\leq\frac{Cp}{\rho-r}\int_{B_{\rho}\backslash B_{r}}|u||\nabla u|^{p-1}dx+\lambda\int_{B_{\rho}}|u|^{p}dx.$
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Letting $\rho$ tend to $r$ in (3.8) we have

(3.9) $\int_{B_{r}}|\nabla u|^{p}dx\leq Cp\int_{\partial B_{r}}|u||\nabla u|^{p-1}dS+\lambda\int_{B_{r}}|u|^{p}dx.$

Using (3.4) for the second integral on the right-hand side in (3.9) we obtain

$\int_{B_{r}}|\nabla u|^{p}dx\leq C_{1}p\int_{\partial B_{f}}|u||\nabla u|^{p-1}dS+\frac{2\lambda r}{n}\int_{\partial B_{r}}|u|^{p}dS$

(3.10) $+C_{2} \lambda r^{p}\int_{B_{r}}|\nabla u|^{p}dx.$

For small enough radii $r\leq r_{0}$ , where $r_{0}$ is chosen so that $C_{2}\lambda r_{0}^{2}=1/2$ , we obtain (3.7)

from (3.10). $\square$

Lemma 3.11. Suppose $u$ is a solution to (1.1) in G. Then there exists a radius

$r_{0}$ , depending on $n,$ $p,$ $a_{0},$ $a_{1}$ , and $b_{1}$ , such that

(3.12) $\int_{B_{f}}|\nabla u|^{p}dx\leq C_{1}\int_{\partial B_{r}}|u||\nabla u|^{p-1}dS+C_{2}r\int_{\partial B_{r}}|u|^{p}dS$

is valid for every $B_{r}\subset G$ , where $r\leq r_{0}$ . Positive constants $C_{1}$ and $C_{2}$ depend on $n,$ $p,$

$a_{0},$ $a_{1}$ , and $b_{1}.$

Proof. Let $B_{r}\subset B_{\rho}$ be concentric balls so that $\overline{B}_{\rho}\subset G$ . Similarly as in the proof

of Lemma 3.6, after plugging the test-function $\eta=u\xi^{p}$ into the weak formulation of the

equation (1.1) and applying the structural conditions $(2.1)-(2.2)$ , we obtain by letting

$\rho$ tend to $r$

(3.13) $\int_{B_{r}}|\nabla u|^{p}dx\leq\frac{Cpa_{1}}{a_{0}}\int_{\partial B_{r}}|u||\nabla u|^{p-1}dS+\frac{b_{1}}{a_{0}}\int_{B_{r}}|u||\nabla u|^{p-1}dx.$

We treat the second integral on the right-hand side in (3.13) by applying first Young’s

inequality with $\epsilon>0$ . Then we apply estimate (3.4) in Proposition 3.3 and obtain the

desired estimate for sufficiently small radii. We leave the details for the reader. $\square$

The following is our main theorem.

Theorem 3.14. Suppose $u$ is a solution to (1.1) or (2.3) in G. Consider arbi-

$trar1/$ concentric balls $B_{r_{b}}\subset\overline{B}_{R_{b}}\subset G$ . Assume that

$\Vert F_{p}\Vert_{L^{\infty}((r_{b},R_{b}])}<\infty,$

whenever $I(r)>0$ for every $r\in(r_{b}, R_{b}$ ]. If $u$ vanishes on some open non-empty subset

of $G$ , then $u$ is identically zero in $G.$
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Proof. The proof is by contradiction: Suppose that the function $u$ , a non-trivial

solution to (1.1) (or to (2.3)), vanishes identically in an open non-empty proper subset
$D$ of $G$ , but $u$ is not identically zero in $G$ . It is possible to pick arbitrary small concentric

neighborhoods $B_{r_{1}}$ and $B_{r_{2}},$ $r_{1}<r_{2}$ , where $\overline{B}_{r_{2}}\subset G$ , such that $u$ vanishes identically

in $\overline{B}_{r_{1}}$ but $u$ is not identically zero in $B_{r_{2}}$ . Due to this we may assume that $r_{2}<r_{0}$

where $r_{0}$ is the radius in Lemma 3.11 (or Lemma 3.6).

Let $t>0$ and consider an open ball $B_{t}$ which is concentric with $B_{r_{1}}$ and $B_{r_{2}}.$

Define $\mathcal{S}=\sup\{t>0:u|_{\partial B_{t}}\equiv 0\}$ . The preceding assumptions imply that $s$ must be

in the interval $[r_{1}, r_{2}$ ). We note, in addition, that due to Lemma 3.11 (or Lemma 3.6)

we may conclude that $u|_{\partial B_{\rho}}$ does not vanish identically for any radii $\rho\in(s, r_{2}$ ], hence
$I(\rho)\neq 0$ . We note that it is not known whether $I(r)$ is monotone on $(s, r_{S}$ ].

The frequency function $F_{p}(r)$ is defined on $(\mathcal{S}, r_{2}$ ] and by the hypothesis of the

theorem $F_{p}(r)$ is bounded on $(s, r_{2}$ ]. Theorem 3.2 implies the existence of a radius
$r^{\star}\in(s, r_{2}]$ such that $I(r^{\star})\leq 4I(r)$ holds for every $r\in(s, r^{\star}].$ Since $I(r)\searrow 0$ as $r\searrow s$

we have reached a contradiction. $\square$

\S 4. Infinity harmonic equation

Let us close this note by discussing briefly the infinity Laplacian operator

(4.1) $\triangle_{\infty}u=\sum_{i,j=1}^{n}\frac{\partial u}{\partial x_{i}}\frac{\partial u}{\partial x_{j}}\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}},$

which leads to the infinity harmonic equation

$\Delta_{\infty}u=0.$

The infinity harmonic equation arises as the Euler-Lagrange equation for the problem

of finding absolute minimizers for the $L^{\infty}$ -energy $\Vert\nabla u\Vert_{L\infty}$ . We refer the reader to

[2, 3, 6, 8, 20], and the references therein, for detailed discussion on this equation,

applications, and for the properties of its solutions.

We mention in passing that the equation is highly nonlinear and degenerate as it

degenerates on the hyperplane $\{\xi\in \mathbb{R}^{n}:\xi\perp\nabla u(x)\}$ . The equation is not in divergence

form, in particular, it does not have a weak formulation. The appropriate notion is that

of viscosity solution.

It is an interesting open problem whether an infinity harmonic function in a domain
$G$ can vanish in an open subset of $G$ without being identically zero in $G$ . By a result

due to Yu [26], for a $C^{2}$ solution of the infinity harmonic equation in a domain $G$ it is

known that if $\nabla u(x_{0})=0$ for some $x_{0}\in G$ , then $u\equiv\nabla u(x_{0})$ , i.e. a nonconstant $C^{2}$
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solution cannot have interior critical points. This phenomenon was first observed by

Aronsson [2] in the plane. For a $C^{4}$ solution in every dimensions Evans [10] established

a Harnack estimate for $|\nabla u|$ , and hence the fact that nonconstant $C^{4}$ solutions have no

interior critical points. Yu’s method in [26] follows Evan’s work.

Solutions to the infinity harmonic functions need not be $C^{2}$ smooth as Aronsson’s

example

$u(x, y)=x^{\frac{4}{3}}-y^{\frac{4}{3}}, (x, y)\in \mathbb{R}^{2},$

indicates. Indeed, it is a $C^{1,\frac{4}{3}}$ smooth infinity harmonic function. Smooth $C^{2}$ solutions

to the infinity harmonic equation possess some special properties, such as Yu’s result

discussed above, which general viscosity solutions do not have; Yu’s theorem does not

hold for the aforementioned $C^{1,\frac{4}{3}}$ solution since $(0,0)$ is clearly its critical point.

Optimal regularity of viscosity solutions is the primary open problem and very

challenging one in higher dimensions. In the plane $C^{1,\alpha}$ regularity was recently proved

in [11], see also the seminal paper [24]. In higher dimensions everywhere differentiability

of viscosity solutions to the infinity harmonic equation is known thanks to [12].

Another open problem, or a conjecture, is to show that a global Lipschitz solution

must be linear. We refer the reader to [10], [4, 5].
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