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ABSTRACT. In this note we describe the results obtained by the paper (titled the same) which
studies a singular limit problem of the Allen-Cahn equation with Neumann boundary conditions
and general initial data of uniformly bounded energy. In it we prove that the time-parametrized
family of limit energy measures is Brakke’s mean curvature flow with a generalized right angle
condition on the boundary.

1. INTRODUCTION

We consider the following Allen-Cahn equation:

(1.1) $\{\begin{array}{ll}\partial_{t}u^{\epsilon}=\triangle u^{\epsilon}-\frac{W’(u^{e})}{\epsilon^{2}}, t>0, x\in\Omega,\frac{\partial u^{\epsilon}}{\partial\nu}|_{\partial\Omega}=0, t>0,u^{\epsilon}(x, O)=u_{0}^{\epsilon}(x) , x\in\Omega,\end{array}$

where $\Omega\subset \mathbb{R}^{n}$ is a bounded domain with smooth boundary, $\epsilon>0$ is a small positive parameter,
$\nu$ is the outer unit normal vector field on $\partial\Omega$ and $W$ is a bi-stable potential with two equal wells
at $\pm 1.$ $W(u)= \frac{1}{4}(1-u^{2})^{2}$ is a typical example. The equation (1.1) is a gradient flow of

$E^{\epsilon}[u]:= \int_{\Omega}(\frac{\epsilon}{2}|\nabla u|^{2}+\frac{W(u)}{\epsilon})dx$

as one may check easily that $\frac{dE^{e}}{dt}\leq 0$ . Under the assumption that a given family $\{u_{0}^{\epsilon}\}_{0<\epsilon<t}$

satisfies

$\sup_{0<\epsilon<1}E^{\epsilon}[u_{0}^{\epsilon}]<\infty,$

it is interesting to study the limiting behavior of the solution $u^{\epsilon}$ of (1.1) as $\epsilonarrow 0$ . Heuristically,
one expects that the finiteness assumption for $E^{\epsilon}[u^{\epsilon}(\cdot, t)]$ for very small $\epsilon$ implies a ‘phase
separation’, i.e., $\Omega$ is mostly divided into two regions where $u^{\epsilon}$ t) is close to 1 on one of them
and to $-1$ on the other, with thin ‘transition layer’ of order $\epsilon$ thickness separating these two
regions. With this heuristic picture, one may also expect that the following measures $\mu_{t}^{\epsilon}$ defined
by

(1.2) $d \mu_{t}^{\epsilon} :=(\frac{\epsilon}{2}|\nabla u^{\epsilon}(x, t)|^{2}+\frac{W(u^{\epsilon}(x,t))}{\epsilon})dx$

behave more or less like surface measures of moving phase boundaries. It is thus interesting
and natural to study $\lim_{\epsilonarrow 0}\mu_{t}^{\epsilon}$ . By the well-known heuristic argument using the signed distance
functions to the moving phase boundaries composed with the one-dimensional standing wave

2000 Mathematics Subject Classification. $28A75,35K20,53C44.$

Key words andphrases. Boundary monotonicity formula, Allen-Cahn equation, mean curvature flow, varifold.
M. Mizuno worked done during a visit to the Institut Mittag-Leffler (Djursholm, Sweden). This work was

supported by JSPS KAKENHI Grant Numbers 21224001, 25800084, 25247008.

数理解析研究所講究録

第 1962巻 2015年 10-16 10



solution of $\epsilon^{2}u"=W’(u)$ , one may also expect that the motion of the phase boundaries is the
mean curvature flow (abbreviated hereafter as MCF). The rigorous proof of this in the most

general setting, on the other hand, requires extensive use of tools from geometric measure
theory.

The singular limit of (1.1) without boundary is studied by many researchers with different
settings and assumptions. The most relevant among them to the present paper is Ilmanen’s
work [14], which showed that the limit measures of $\mu_{t}^{\epsilon}$ are the MCF in the sense of Brakke
[4] (where $\Omega=\mathbb{R}^{n}$). There was a technical assumption in [14] on the initial condition, which
was removed by Soner [26]. The second author observed that Ilmanen’s work can be extended
to bounded domains, and showed that the limit measures have integer densities a.e. modulo
division by a constant [29]. If the densities are equal to 1 a.e., it has been proved recently that
the support of the measures is smooth a.e. as well [4, 16, 30]. By these works, interior behavior
of the limit measures has been rigorously characterized as Brakke’s MCF. There are numerous
earlier and relevant results on (1.1) and we additionally mention [5, 6, 7, 8, 21, 23, 25, 27, 28]

which is by no means an exhaustive listing.
Now turning to the attention to the problem with Neumann boundary conditions, one may

heuristically expect that the limit phase boundaries intersect $\partial\Omega$ with 90 degree angle. Kat-
sourakis et al. [15] basically proved this connecting the singular limit of (1.1) to the unique
viscosity solutions of level set equation of the MCF with right angle boundary conditions stud-
ied in [9, 23]. The differences of the present paper from [15] are explained as follows. While
one does not know in [15] if the particular individual level set obtained as a singular limit of
(1.1) satisfies MCF equation or boundary conditions in some measure-theoretic sense, we show
that the limit measure satisfies Brakke’s inequality with a generalized right angle condition. If
we assume that the limit measure has density 1 a.e., then, it is smooth a.e. in the interior due to
[4, 16, 30]. We also obtain a characterization for any finite energy initial data in $W^{1,2}(\Omega)$ and
not necessarily for a carefully prepared initial data. Perhaps the most insightful aspect of the
present paper is that our study motivates a measure-theoretic formulation of Brakke’s MCF up
to the boundary (see Section 2.4) for which one may further pursue the establishment of up to
the boundary regularity theorem.

More technically speaking, in this paper, we prove that (1) the limit measures $\mu_{t}$ have bounded
first variation on St for a.e. $t\geq 0$ , (2) $\mu_{t}$ is $n-1$-rectifiable on St and integral (modulo divi-
sion by a constant) on $\Omega$ for a.e. $t\geq 0$ , (3) $\mu_{t}$ satisfies Brakke’s inequality of MCF up to the
boundary with a suitable modification for the first variation on $\partial\Omega$ . If we assume in addition
that $\mu_{t}(\partial\Omega)=0$ , then the right angle condition on the boundary is satisfied in the sense that
the first variation of $\mu_{t}$ on $\partial\Omega$ is perpendicular to $\partial\Omega$ . We make an assumption that $\Omega$ is strictly
convex, even though some generalization is possible. The proof uses various ideas developed
through [14, 29, 28]. In those paper, the Huisken/Ilmanen monotonicity formula played a cen-
tral role and the situation is the same in this paper as well. We first prove up to the boundary
monotonicity formula by a boundary reflection method, and this leads us to similar estimates as
in the interior case. We need to be concerned with measures concentrated on $\partial\Omega$ as well as the
limit of ’boundary measures of phase boundary’. All those quantities are incorporated in the
final formulation appearing in Theorem 2.6.

2. PRELIMINARIES AND MAIN RESULTS

2.1. Basic notation. Let $\mathbb{N}$ be the set of natural numbers and $\mathbb{R}^{+}:=\{x\geq 0\}$ . For $0<r<\infty$

and $a\in \mathbb{R}^{k}$ , define $B_{r}^{k}(a)$ $:=\{x\in \mathbb{R}^{k} : |x-a|<r\}$ . When $k=n$, we omit writing $k$ and we
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write $B_{r}$ $:=B_{r}^{n}(0)$ . The Lebesgue measure is denoted by $\mathcal{L}^{n}$ and the $k$-dimensional Hausdorff
measure is denoted by $\mathcal{H}^{k}\cdot$. Let $\omega_{n}$ $:=\mathcal{L}^{n}(B_{1})$ .

For any Radon measure $\mu$ on $\mathbb{R}^{n}$ and $\phi\in C_{c}(\mathbb{R}^{n})$ we often write $\mu(\phi)$ for $\int\phi d\mu$ . We write
spt $\mu$ for the support of $\mu$ . Thus $x\in$ spt $\mu$ if $\forall r>0,$ $\mu(B_{r}(x))>$ O. We use the standard
notation for the Sobolev spaces such as $W^{1,p}(\Omega)$ from [10].

For $A,$ $B\in Hom(\mathbb{R}^{n};\mathbb{R}^{n})$ which we identify with $n\cross n$ matrices, we define

$A \cdot B:=\sum_{i,j}A_{ij}B_{ij}.$

The identity of $Hom(\mathbb{R}^{n};\mathbb{R}^{n})$ is denoted by $I$ . For $k\in \mathbb{N}$ with $k<n$ , let $G(n, k)$ be the
space of $k$-dimensional subspaces of $\mathbb{R}^{n}$ . For $S\in G(n, k)$ , we identify $S$ with the cor-
responding orthogonal projection of $\mathbb{R}^{n}$ onto $S$ and its matrix representation. For $a\in \mathbb{R}^{n},$

$a\otimes a\in Hom(\mathbb{R}^{n};\mathbb{R}^{n})$ is the matrix with the entries $a_{i}a_{j}(1\leq i,j\leq n)$ . For any unit vector
$a\in \mathbb{R}^{n},$ $I-a\otimes a\in G(n, n-1)$ . For $x,$ $y\in \mathbb{R}^{n}$ and $t<s$ , define

(2.1) $\rho_{(y,s)}(x, t) :=\frac{1}{(4\pi(s-t))^{\frac{n-1}{2}}}e^{-\frac{|x-y|^{2}}{4(s-t)}}.$

2.2. Varifold. We recall some definitions related to varifold and refer to [2, 24] for more de-
tails. In this paper, for a bounded open set $\Omega\subset \mathbb{R}^{n}$ , we need to consider various objects on
St instead of $\Omega$ . For this reason, let $X\subset \mathbb{R}^{n}$ be either open or compact in the following. Let
$G_{k}(X)$ $:=X\cross G(n, k)$ . A general $k$-varifold in $X$ is a Radon measure on $G_{k}(X)$ . We de-
note the set of all general $k$-varifold in $X$ by $V_{k}(X)$ . For $V\in V_{k}(X)$ , let $1V\Vert$ be the weight
measure of $V$ , namely,

$\Vert V\Vert(\phi):=\int_{G_{k}(X)}\phi(x)dV(x, S) , \forall\phi\in C_{c}(X)$ .

We say $V\in V_{k}(X)$ is rectifiable if there exist a $\mathcal{H}^{k}$ measurable countably $k$-rectifiable set
$M\subset X$ and a locally $\mathcal{H}^{k}$ integrable function $\theta$ defined on $M$ such that

(2.2) $V( \phi)=\int_{M}\phi(x, Tan_{x}M)\theta(x)d\mathcal{H}^{k}$

for $\phi\in C_{c}(G_{k}(X))$ . Here $Tan_{x}M$ is the approximate tangent space of $M$ at $x$ which exists
$\mathcal{H}^{k}$ a.e. on $M$ . Rectifiable $k$-varifold is uniquely determined by its weight measure through the
formula (2.2). For this reason, we naturally say a Radon measure $\mu$ on $X$ is rectifiable if there
exists a rectifiable varifold such that the weight measure is equal to $\mu$ . If in addition that $\theta\in \mathbb{N}$

$\mathcal{H}^{k}$ a.e. on $M$, we say $V$ is integral. The set of all rectifiable (resp. integral) $k$-varifolds in $X$

is denoted by $RV_{k}(X)$ (resp. $IV_{k}(X)$ ). If $\theta=1\mathcal{H}^{k}$ a.e. on $M$, we say $V$ is a unit density
$k$-varifold.
For $V\in V_{k}(X)$ let $\delta V$ be the first variation of $V$ , namely,

(2.3) $\delta V(g) :=\int_{G_{k}(X)}\nabla g(x)\cdot SdV(x, S)$

for $g\in C_{c}^{1}(X;\mathbb{R}^{n})$ . If the total variation $\Vert\delta V\Vert$ of $\delta V$ is locally bounded (note in the case of
$X=\overline{\Omega}$, this means $\Vert\delta V\Vert(\overline{\Omega})<\infty$), we may apply the Radon-Nikodym theorem to $\delta V$ with
respect to $\Vert V\Vert$ . Writing the singular part of $\Vert\delta V\Vert$ with respect to $\Vert V\Vert$ as $\Vert\delta V\Vert_{sing}$ , we have
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$\Vert V\Vert$ measurable $h(V,$ $\Vert\delta V\Vert$ measurable $\nu_{sing}$ with $|\nu_{sing}|=1\Vert\delta V\Vert$ a.e., and a Borel set
$Z\subset X$ such that $\Vert V\Vert(Z)=0$ with,

$\delta V(g)=-\int_{X}h(V, \cdot)\cdot gd\Vert V\Vert+\int_{Z}\nu_{sing}\cdot gd\Vert\delta V\Vert_{sing}$

for all $g\in C_{c}^{1}(X;\mathbb{R}^{n})$ . We say $h(V, \cdot)$ is the generalized mean curvature vector of $V,$
$\nu_{sing}$ is

the (outer-pointing) generalized co-normal of $V$ and $Z$ is the generalized boundary of $V.$

2.3. Setting of the problem. Suppose that $n\geq 2$ and

(2.4) $\Omega\subset \mathbb{R}^{n}$ is a bounded, strictly convex domain with smooth boundary $\partial\Omega.$

Here the strict convexity means that the principal curvatures of $\partial\Omega$ are all positive. Suppose
that $W$ : $\mathbb{R}arrow \mathbb{R}$ is a $C^{3}$ function with $W(\pm 1)=0,$ $W(u)\geq 0$ for all $u\in \mathbb{R},$

(2.5) for some $-1<\gamma<1,$ $W’<0$ on $(\gamma, 1)$ and $W’>0$ on $(-1, \gamma)$ ,

(2.6) for some $0<\alpha<1$ and $\kappa>0,$ $W”(u)\geq\kappa$ for all $\alpha\leq|u|\leq 1.$

A typical example of such $W$ is $(1-u^{2})^{2}/4$ , for which we may set $\gamma=0,$ $\alpha=\sqrt{2}/3$ and
$\kappa=1$ . For a given sequence of positive numbers $\{\epsilon_{i}\}_{i=1}^{\infty}$ with $\lim_{iarrow\infty}\epsilon_{i}=0$ , suppose that
$u_{0^{i}}^{\epsilon}\in W^{1,2}(\Omega)$ satisfies

(2.7) $\Vert u_{0}^{\epsilon_{i}}\Vert_{L^{\infty}(\Omega)}\leq 1$

and

(2.8)
$\sup_{i}E^{\epsilon_{i}}[u_{0}^{\epsilon}]\leq c_{1}.$

The condition (2.7) may be dropped if we assume a suitable growth rate upper bound on $W$

which is suitable for the existence of solution for (1.1). A typical example of sequence of $u_{0}^{\epsilon_{i}}$

may be given as in [20]. We include the detail for the convenience of the reader. Let $U\subset \mathbb{R}^{n}$

be any domain with $C^{1}$ boundary $M=\partial U$ , and let $\Phi$ be a solution of ODE $\Phi"=W’(\Phi)$ with
$\Phi(\pm\infty)=\pm 1$ and $\Phi(0)=$ O. Note that such a solution exists uniquely, and $\Phi$ also satisfies
$\Phi’=\sqrt{2W(\Phi)}$ . Let $d$ be the signed distance function to $M$ so that it is positive inside of $U.$

Define $u_{0^{i}}^{\epsilon}(x)$ $:=\Phi(d(x)/\epsilon_{i})$ for $x\in\Omega$ . Then one can check that, using $\Phi’=\sqrt{2W(\Phi)}$ and
$|\nabla d|=1$ a.e.,

(2.9) $E^{\epsilon_{i}}[u_{0^{i}}^{\epsilon}]= \int_{\Omega}\epsilon_{i}^{-1}(\Phi’)^{2}dx=\int_{\Omega}\epsilon_{i}^{-1}\Phi’\sqrt{2W(\Phi)}|\nabla d|dx.$

By the co-area formula, then,

(2.10) $E^{\epsilon_{i}}[u_{0}^{\epsilon_{i}}]= \int_{-\infty}^{\infty}\int_{\Omega\cap\{d=\epsilon_{i}s\}}\Phi’(s)\sqrt{2W(\Phi(s))}d\mathcal{H}^{n-1}ds.$

If $M$ is transverse to $\partial\Omega,$ $\mathcal{H}^{n-1}(\Omega\cap\{d=\epsilon_{i}\mathcal{S}\})\approx \mathcal{H}^{n-1}(M\cap\Omega)$ for small $\epsilon_{i}$ and (2.10) shows

(2.11) $\lim_{iarrow\infty}E^{\epsilon_{i}}[u_{0}^{\epsilon_{i}}]=\sigma \mathcal{H}^{n-1}(\Omega\cap M) , \sigma :=\int_{-1}^{1}\sqrt{2W(u)}du.$

Thus in this case, we may take $c_{1}=\sigma \mathcal{H}^{n-1}(M\cap\Omega)+1$ , for example.
We next solve the problem (1.1) with $\epsilon_{i}$ and $u_{0^{i}}^{\epsilon}$ satisfying (2.7) and (2.8). By the standard

parabolic existence and regularity theory, for each $i$ , there exists a unique solution $u^{\epsilon_{i}}$ with

(2.12) $u^{\epsilon_{i}}\in L_{loc}^{2}([0, \infty);W^{2,2}(\Omega))\cap C^{\infty}(\overline{\Omega}\cross(0, \infty \partial_{t}u^{\epsilon_{i}}\in L^{2}([0, \infty);L^{2}(\Omega))$ .
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By the maximum principle and (2.7),

(2.13)
$x\in^{\frac{s}{\Omega}},t>0up|u^{\epsilon_{i}}(x, t)|\leq 1,$

and due to the gradient structure and (2.8), we also have

(2.14) $E^{\epsilon_{i}}[u^{\epsilon_{i}}( \cdot, T)]+\int_{0}^{T}\int_{\Omega}\epsilon_{i}(\triangle u^{\epsilon_{i}}-\frac{W’}{\epsilon_{i}^{2}})^{2}dxdt=E^{\epsilon_{i}}[u^{\epsilon_{i}}(\cdot, 0)]\leq c_{1}$

for any $T>$ O. Thus, for each $i$ through (1.2), we have a family $\{\mu_{t^{i}}^{\epsilon}\}_{t\in[0,\infty)}$ of uniformly
bounded Radon measures.

2.4. Main results. The following sequence of theorems and definitions constitutes the main
results of the present paper.

Theorem 2.1. Under the assumptions $(2.4)-(2.8)$, let $u^{\epsilon_{i}}$ be the solution of (1.1). Define $\mu_{t^{i}}^{\epsilon}$ as
in (1.2). Then there exists a subsequence (denoted by the same index) and a family ofRadon
measures $\{\mu_{t}\}_{t\geq 0}$ on St such thatfor all $t\geq 0,$ $\mu_{t^{i}}^{\epsilon}arrow\mu_{t}$ as $iarrow\infty$ on St. Moreover, for $a.e.$

$t\geq 0,$
$\mu_{t}$ is rectifiable on St.

Due to Theorem 2.1, we may define rectifiable varifolds as follows.

Definition 2.2. For a.e. $t\geq 0$ , let $V_{t}\in RV_{n-1}(\overline{\Omega})$ be the unique rectifiable varifold such that
$\Vert V_{t}\Vert=\mu_{t}$ on $\overline{\Omega}$ . For any $t$ such that $\mu_{t}$ is not rectifiable, define $V_{t}\in V_{n-1}(\overline{\Omega})$ to be an arbitrary
varifold with $\Vert V_{t}\Vert=\mu_{t}$ (for example $V_{t}(\phi)$ $:= \int_{\overline{\Omega}}\phi(\cdot, \mathbb{R}^{n-1}\cross\{0\})d\mu_{t}$ for $\phi\in C(G_{n-1}(\overline{\Omega}))$ ).

Theorem 2.3. Let $V_{t}$ be defined as above. Then the following property holds.
(1) For $a.e.$ $t\geq 0,$ $\sigma^{-1}V_{t}\lfloor_{\Omega}\in IV_{n-1}(\Omega)$ .
(2) For $a.e.$ $t\geq 0,$ $\Vert\delta V_{t}\Vert(\overline{\Omega})<\infty$ and $\int_{0}^{T}\Vert\delta V_{t}\Vert(\overline{\Omega})dt<\infty$ for all $T>0.$

We next define the tangential component of the first variation $\delta V_{t}$ on $\partial\Omega.$

Definition 2.4. For a.e. $t\geq 0$ such that $\Vert\delta V_{t}\Vert(\overline{\Omega})<\infty$ , define

(2.15) $\delta V_{t}\lfloor_{\partial\Omega}^{T}(g)$ $:=\delta V_{t}\lfloor_{\partial\Omega}(g-(g\cdot\nu)\nu)$ for $g\in C(\partial\Omega;\mathbb{R}^{n})$

where $\nu$ is the unit outward-pointing normal vector field on $\partial\Omega.$

We have the following absolute continuity result.

Theorem 2.5. For $a.e.$ $t\geq 0$, we have $\Vert\delta V_{t}L_{\partial\Omega}^{T}+\delta V_{t}\lfloor_{\Omega}\Vert\ll\Vert V_{t}\Vert$ , and there exists $h_{b}=h_{b}(t)\in$

$L^{2}(\Vert V_{t}\Vert)$ such that

(2.16) $\delta V_{t}L_{\partial\Omega}^{T}+\delta V_{t}\lfloor_{\Omega}=-h_{b}(t)\Vert V_{t}\Vert.$

Moreover,

(2.17) $\int_{0}^{\infty}\int_{\overline{\Omega}}|h_{b}|^{2}d\Vert V_{t}\Vert dt\leq c_{1}.$

Note that $h_{b}=h(V_{t}, \cdot)$ in $\Omega$ . Finally, using the above quantities, we have

Theorem 2.6. For $\phi\in C^{1}(\overline{\Omega}\cross[0, \infty);\mathbb{R}^{+})$ with $\nabla\phi$ t) $\cdot\nu=0$ on $\partial\Omega$ andfor any $0\leq t_{1}<$

$t_{2}<\infty$, we have

(2.18) $\int_{\overline{\Omega}}\phi(\cdot, t)d\Vert V_{t}\Vert|_{t=t_{1}}^{t_{2}}\leq\int_{t_{1}}^{t_{2}}\int_{\overline{\Omega}}(-\phi|h_{b}|^{2}+\nabla\phi\cdot h_{b}+\partial_{t}\phi)d\Vert V_{t}\Vert dt.$
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If $\phi$ t) has a compact support in $\Omega$ , (2.18) is Brakke’s inequality [4] in an integral form.
If we have a situation that $\Vert V_{t}\Vert(\partial\Omega)=0$ , then Theorem 2.5 shows $\delta V_{t}L_{\partial\Omega}^{T}=0$ and $\delta V_{t}\lfloor_{\partial\Omega}$ is
singular with respect to $\Vert V_{t}\Vert$ . It is parallel to $v$ for $\Vert\delta V_{t}\Vert$ a.e. which would, if spt $\Vert V_{t}\Vert$ is smooth
up to the boundary, correspond to 90 degree angle of intersection.

2.5. Comment. It seems likely that, if $1V_{0}\Vert(\partial\Omega)=0$ , then $\Vert V_{t}\Vert(\partial\Omega)=0$ holds for all $t>0.$
Intuitively, due to the strict convexity of the domain and the Neumann boundary condition
(which should intuitively imply 90 degree angle of intersection), interior of moving hypersur-
faces should not touch $\partial\Omega$ . Due to the maximum principle, this cannot happen if the hypersur-
faces are smooth up to the boundary. But within the general framework of this paper, we do not
know how to prove such statement or if it is indeed true.

Though it may first appear counter intuitive in view of the connection to the MCF, if we
have $\Vert V_{0}\Vert(\partial\Omega)>0$ , then it is possible to have $\Vert V_{t}\Vert(\partial\Omega)>0$ for all $t>$ O. An example
can be provided by a limit of time-independent solutions of (1.1) where $\mu^{\epsilon}arrow c\mathcal{H}^{n-1}\lfloor_{\partial\Omega}$ on
St as $\epsilonarrow 0$ , where $c>0$ is some constant. One can obtain such family of solutions $u^{\epsilon}$ by
considering $\Omega=B_{1}$ and a mountain path solution connecting two constant functions 1 and
$-1$ within a class of radially symmetric functions. There are uniform positive lower and upper
bounds of $E^{\epsilon}(u^{\epsilon})$ and the limiting varifold $V$ is non-trivial. On the other hand, if $\Vert V\Vert(B_{1})>0,$

due to [13], spt $\Vert V\Vert$ has to be a minimal surface, which contradicts the radially symmetry.
Thus $\Vert V\Vert$ is concentrated only on $\partial B_{1}$ and is non-trivial. In this particular case, note that
$\delta V=-\frac{x}{|x|}\mathcal{H}^{n-1}\lfloor_{\partial B_{1}}$ and the tangential component $\delta V\lfloor_{\partial B_{1}}^{T}$ is O. Using more explicit and

sophisticated method, Malchiodi-Ni-Wei [19] constructed a family of solutions with multiple
layers whose energy concentrates on $\partial B_{1}$ with $\Vert V\Vert(\partial B_{1})=N\sigma \mathcal{H}^{n-1},$ $N\in \mathbb{N}.$ $N$ may be
arbitrarily chosen. Furthermore, for general strictly mean convex domain $\Omega$ , Malchiodi-Wei
[18] constructed a family of single layered solutions whose limit energy concentrates on $\partial\Omega.$

Even though such limit measures are not certainly the MCF in $\mathbb{R}^{n}$ in the usual sense (it should
shrink), such time independent measures satisfies (2.18) trivially since $h_{b}=0$ . This is the reason
that we need to decompose the first variation on $\partial\Omega$ to accommodate such cases in general.

The existence result of the present paper suggests a reasonable setting for proving the bound-
ary regularity of MCF. It is interesting to extend interior regularity theorem (see [4, 16, 30]) to
the corresponding boundary regularity theorem. For the time-independent case, interior regu-
larity [1] has been extended to boundary regularity [2, 3, 11].
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