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1 Introduction
Let $X$ be a metric space and $T:Xarrow X$ a nonexpansive mapping, that is, $T$ satisfies
that $d(Tx, Ty)\leq d(x, y)$ for $a1\Gamma x,$ $y\in X$ . A point $z\in X$ such that $Tz=z$ is called
a fixed point of $T$ . Approximation of fixed points of $T$ is one of the central topics in
fixed point theory because it includes various types of problems in nonlinear analysis.

In particular, approximation of fixed points of a mapping defined on a complete
CAT$(\kappa)$ space is a trend of this study and there are a large number of researches
related to this problem. For example, the following result is a convergence theorem
of an iterative scheme called the shrinking projection method on a CAT(I) space.

Theorem 1 (Kimura-Sat\^o [5]). Let $X$ be a complete CAT(I) space such that $d(u, v)<$
$\pi/2$ for every $u,.v\in X$ and suppose that the subset $\{z\in X : d(z, u)\leq d(z, v)\}$ of $X$

is convex for every $u,$ $v\in X.$ Let $T$ : $Xarrow X$ be a nonexpansive mapping such that
the set of fixed points $F=\{z\in X : Tz=z\}$ is nonempty. For a given initial point
$x_{0}\in X$ and $C_{0}=X$ , generate a $\mathcal{S}$equence { $x_{n}\}$ as follows:

$C_{n+1}=\{z\in X:d(Tx_{n}, z)\leq d(x_{n}, z)\}\cap C_{n},$

$x_{n+1}=P_{C_{n+1}}x_{0},$

for each $n\in \mathbb{N}$ . Then $\{x_{n}\}$ is well defined and converges to $P_{F}x_{0}\in X,$ $\cdot$where
$P_{C}$ : $Xarrow C$ is the metric projection of $X$ onto a nonempty closed convex subset $C$

of $X.$

The shrinking projection method was first proposed by Takahashi, Takeuchi, and
Kubota [10], and it has been generalized to various directions. See, for instance,
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Takahashi and Zembayashi [11], Plubtieng and Ungchittrakool [8], Inoue, Takahashi,
and Zembayashi [2], Qin, Cho, and Kang [9], Wattanawitoon and Kumam [13, 12],

Kimura, Nakajo, and Takahashi [4], Kimura and Takahashi [7], Kimura [3], Kimura

and Sat\^o [6], and others.
In this paper, we deal with an approximation of common fixed points for two

mappings. We attempt to prove tlie main result without using the notion of $\triangle_{-}$

convergence because it is not easy to understand for the beginners of this study. The
proof shown in this paper only uses basic notions.

2 Preliminaries
Let $X$ be a metric space. We say that $X$ is a geodesic space if, for any $u,$ $v\in X$ , there
exists a mapping $c$ : $[0, d(u, v)]arrow X$ , which is called a geodesic between endpoints
$u$ and $v$ , such that $c(O)=u,$ $c(d(u, v))=v$ , and $d(c(s), c(t))=|s-t|$ for every
$s,$ $t\in[0,$ $d(u,$ $v$

If a geodesic is unique for each pair of endpoints, $X$ is said to be uniquely geodesic.
In what follows, we always assume that $X$ is a complete uniquely geodesic space such
that $d(u, v)<\pi/2$ for every $u,$ $v\in X$ . On a uniquely geodesic space, the convex
combination of two points $u,$ $v\in X$ can be defined in a natural way and we denote it
by $\alpha u\oplus(1-\alpha)v$ , where $\alpha\in[0$ , 1 $]$ . For $C\subset X$ , if every geodesics having the endpoints

in $C$ is contained in $C$ , then $C$ is said to be convex.
Let $\mathbb{S}^{2}$ be a unit sphere of 3-dimensional Euclidean space $\mathbb{R}^{3}$ and $d_{\mathbb{S}^{2}}$ be the spherical

metric defined on $\mathbb{S}^{2}$ . A geodesic space $X$ is called a CAT(I) space if for each geodesic
triangle on $X$ is thinner than or equal to its comparison triangle on $\mathbb{S}^{2}$ . Namely, every
$p,$ $q\in\triangle\subset X$ and their comparison points $\overline{p},$

$\overline{q}\in\overline{\triangle}\subset S^{2}$ satisfy the following which
is called CAT(I) inequality:

$d(p, q)\leq d_{\mathbb{S}^{2}}(\overline{p}, \overline{q})$ .

If $X$ is a CAT(I) space, then for $x,$ $y,$ $z\in X$ and $t\in[0$ , 1 $]$ , the following inequality
holds; see [5].

$\cos d(tx\oplus(1-t)y, z)\sin d(x, y)$

$\geq\cos d(x, z)\sin(td(x, y))+\cos d(y, z)\sin((1-t)d(x, y$

Let $C$ be a nonempty closed convex subset $C$ of $X$ . Since $X$ satisfies in our setting
that $d(u, v)<\pi/2$ for every $u,$ $v\in X$ , we know that for every $x\in X$ , there exists
a unique $y_{x}\in C$ such that $d(x, y_{x})=d(x, C)$ , where $d(x, C)= \inf_{y\in C}d(x, y)$ . We
define a mapping $P_{C}$ : $Xarrow C$ by $P_{C}x=y_{x}$ for $x\in X$ and we call it the metric
projection of $X$ onto $C.$

For more details of CAT(I) spaces and related notions, see [1].
We say a mapping $T$ : $Xarrow X$ is quasinonexpansive if the set $F(T)=\{z\in X$ :

$Tz=z\}$ of fixed points is nonempty and $d(Tx, z)\leq d(x, z)$ for every $x\in X$ and
$z\in F(T)$ . We also know that if $X$ is CAT(I) space with $d(u, v)<\pi/2$ for every
$u,$ $v\in X$ , then $F(T)$ is closed and convex.
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3 Approximation of a common $fi\cross ed$ point
In this section, we prove a convergence theorem of an iterative sequence generated
by the shrinking projection method for two quasinonexpansive mappings defined on
a complete CAT(I) space.

Theorem 2. Let $X$ be a complete CAT(I) space such that $d(u, v)<\pi/2$ for every
$u,$ $v\in X$ and $s\prime\psi ppose$

)
that the subset $\{z\in X : d(z, u)\leq d(z, v)\}$ of $X$ is convex for

every $u,$ $v\in X$ . Let $S$ and $T$ be continuous quasinonexpansive mappings of $X$ to $it_{\mathcal{S}}elf$

such that the set of common fixed points $F=\{z\in X : Sz=z=Tz\}$ is nonempty.
Let $\{\alpha_{n}\}$ be a real sequence in $[0$ , 1$]$ such that there exists a subsequence $\{\alpha_{n_{i}}\}$ of $\{\alpha_{n}\}$

converging to $\alpha_{\infty}\in$ ] $0$ , 1 [. For a given initial point $x_{0}\in C$ and $C_{0}=X$ , generate a
sequence $\{x_{n}\}$ as follows:

$y_{n}=\alpha_{n}Sx_{n}\oplus(1-\alpha_{n})Tx_{n},$

$C_{n+1}=\{z\in X:d(y_{n}, z)\leq d(x_{n}, z)\}\cap C_{n},$

$x_{n+1}=P_{C_{n+1}}x_{0},$

for each $n\in \mathbb{N}$ . Then $\{x_{n}\}$ is well defined and converges to $P_{F}x_{0}\in X$ , where
$P_{C}$ : $Xarrow C$ is the metric projection of $X$ onto a nonempty closed convex subset $C$

of $X.$

To prove this type of convergence theorems, one tends to make use of the following
theorem.

Theorem 3 (Kimura-Sat\^o [5]). Let $X$ be a complete CAT(I) space and $\{C_{n}\}a$

sequence of nonempty closed $\pi$ -convex subsets of X. Let $C_{\infty}$ be a nonempty closed
$\pi$-convex subset of X. Then the following are equivalent:

(i) $C_{\infty}= \triangle_{1}M-\lim_{narrow\infty}C_{n}$ ;
(ii) for $x\in X$ and a subsequence $\{C_{n_{i}}\}$ of $\{C_{n}\}$ , if one of $\lim\sup_{iarrow\infty}d(x, C_{n_{i}})$

and $d(x, C_{\infty})$ is less than $\pi/2$ , then the other is also less than $\pi/2$ and $\{P_{C_{n_{i}}}x\}$

converges to $P_{C_{\infty}}x.$

Although this result is useful, one may think that it is rather difficult to understand
because it requires the notion of $\triangle$-Mosco convergence of a sequence of subsets in $X.$

We actually do not need to use this concept since we only use the result for the case
where a sequence $\{C_{n}\}$ of subsets of $X$ is decreasing with respect to inclusion. Here,
we show the proof of Theorem 2 without using the notion of $\triangle$-Mosco convergence.

Proof of Theorem 2. We first prove the well-definedness of $\{x_{n}\}$ by showing that every
$C_{n}$ is closed, convex, and it includes $F\neq\emptyset$ by induction. It is trivial that $C_{0}=X$

is a closed convex set such that $F\subset C_{0}$ , and a point $x_{0}\in X$ is given. Suppose that
$C_{k}$ is defined as a closed convex subset of $X$ which includes $F$ for some $k\in \mathbb{N}$ . Then,
$x_{k}=P_{C_{k}}x_{0}$ is defined. Since $S$ and $T$ are quasinonexpansive and $\sin t$ is concave on
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$t\in[0, \pi/2]$ with $\sin 0=0$ , for $z\in F$ we have that

$\cos d(y_{k}, z)$ s.in $d(Sx_{k}, Tx_{k})$

$=\cos d(\alpha_{k}Sx_{k}\oplus(1-\alpha_{k})Tx_{k}, z)\sin d(Sx_{k}, Tx_{k})$

$\geq\cos d(Sx_{k}, z)\sin(\alpha_{k}d(Sx_{k}, Tx_{k}))+\cos d(Tx_{k}, z)\sin((1-\alpha_{k})d(Sx_{k}, Tx_{k}))$

$\geq\cos d(x_{k}, z)(\sin(\alpha_{k}d(Sx_{k}, Tx_{k}))+\sin((1-\alpha_{k})d(Sx_{k},$ $Tx_{k}$

$\geq\cos d(x_{k}, z)(\alpha_{k}\sin d(Sx_{k}, Tx_{k})+(1-\alpha_{k})\sin d(Sx_{k}, Tx_{k}))$

$=\cos d(x_{k}, z)\sin d(Sx_{k}, Tx_{k})$ ,

and thus $d(y_{k}, z)\leq d(x_{k}, z)$ . This implies that

$F\subset\{z\in X:d(y_{k}, z)\leq d(x_{k}, z)\}\cap C_{k}=C_{k+1}.$

It is obvious from the continuity of the metric and the assumption of the space that
$C_{k}$ is closed and convex. Hence $\{x_{n}\}$ is well defined and $\{C_{n}\}$ is a sequence of closed
convex subsets of $X$ satisfying that $F\subset C_{n}$ for every $n\in \mathbb{N}.$

It holds by definition that $\{C_{n}\}$ is decreasing with respect to inclusion and $C_{\infty}=$

$\bigcap_{n=1}^{\infty}C_{n}$ is nonempty since $C_{\infty}\supset F$ . Since $x_{n}=P_{C_{n}}x_{0}$ for every $n\in \mathbb{N}$ , we
have that $\{d(x_{n}, x_{0})\}$ is nondecreasing and bounded above. Thus there exists $d=$

$\lim_{narrow\infty}d(x_{n}, x_{0})$ .
Let $m,$ $n\in \mathbb{N}$ such that $m\leq n$ . Then, both $x_{m}$ and $x_{n}$ belong to $C_{m}$ and since $C_{m}$

is convex, we have that

$\cos d(x_{m}, x_{0})\sin d(x_{m}, x_{n})$

$\geq\cos d(\frac{1}{2}x_{m}+\frac{1}{2}x_{n}, x_{0})\sin d(x_{m}, x_{n})$

$\geq\cos d(x_{rn}, x_{0})\sin(\frac{1}{2}d(x_{m}, x_{n}))+\cos d(x_{n}, x_{0})\sin(\frac{1}{2}d(x_{m}, x_{n}))$ .

Since

$\cos d(x_{m}, x_{0})\sin d(x_{rn}, x_{n})=2\cos d(x_{m}, x_{0})\sin(\frac{1}{2}d(x_{rn}, x_{n}))\cos(\frac{1}{2}d(x_{m}, x_{n}))$ ,

we have that

$2 \cos d(x_{m}, x_{0})\cos(\frac{1}{2}d(x_{m}, x_{n}))\geq\cos d(x_{m}, x_{0})+\cos d(x_{n}, x_{0})$

and since $d(x_{7n}, x_{0})\leq d(x_{n}, x_{0})$ , we get that

$\cos(\frac{1}{2}d(x_{m}, x_{n}))\geq\frac{\cos d(x_{rn},x_{0})+\cos d(x_{n},x_{0})}{2\cos d(x_{m},x_{0})}$

$\geq\frac{\cos d(x_{n},x_{0})}{\cos d(x_{m},x_{0})},$
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which is equivalent to that

$- \log\cos(\frac{1}{2}d(x_{m}, x_{n}))\leq\log\cos d(x_{m}, x_{0})-\log\cos d(x_{n}, x_{0})$ .

Since $\{\log\cos d(x_{n}, x_{0})\}$ is a convergent sequence to $\log\cos d$ , there exists a sequence
$\{t_{n}\}$ converging to $0$ such that

$0\leq\log\cos d(x_{m}, x_{0})-\log\cos d(x_{n}, x_{0})\leq t_{n}$

for all $m,$ $n\in \mathbb{N}$ with $m\leq n$ . Then we have that

$d(x_{m}, x_{n})\leq 2\arccos e^{-t_{n}}$

for all $m,$ $n\in \mathbb{N}$ with $m\leq n$ and $\lim_{narrow\infty}2\arccos e^{-t_{n}}=$ O. It shows that $\{x_{n}\}$ is a
Cauchy sequence and therefore it has a limit $x_{\infty}\in X.$

For fixed $k\in \mathbb{N},$ $\{x_{n+k}\}$ is a sequence in $C_{k}$ . It follows from the closedness of $C_{k}$

that $x_{\infty}$ is a point in $C_{k}$ and thus we have that

$d(y_{k}, x_{\infty})\leq d(x_{k}, x_{\infty})$ .

Tending $karrow\infty$ , we obtain that $\{y_{k}\}$ also converges to $x_{\infty}$ . In addition, we also have
that $x_{\infty} \in\bigcap_{k=1}^{\infty}C_{k}=C_{\infty}$ . We next show that $x_{\infty}$ belongs to $F$ . For $z\in F$ , we have
that $z\in C_{\infty}$ and

$\cos d(y_{n}, z)\sin d(Sx_{n}, Tx_{n})$

$=\cos d(\alpha_{n}Sx_{n}\oplus(1-\alpha_{n})Tx_{n}, z)\sin d(Sx_{n}, Tx_{n})$

$\geq\cos d(Sx_{n}, z)\sin(\alpha_{n}d(Sx_{n}, Tx_{n}))+\cos d(Tx_{n}, z)\sin((1-\alpha_{n})d(Sx_{n}, Tx_{n}))$

$\geq\cos d(x_{n}, z)(\sin(\alpha_{n}d(Sx_{n}, Tx_{n}))+\sin((1-\alpha_{n})d(Sx_{n},$ $Tx_{n}$

$=2 \cos d(x_{n}, z)\sin(\frac{1}{2}d(Sx_{n}, Tx_{n}))\cos((\frac{1}{2}-\alpha_{n})d(Sx_{n}, Tx_{n}))$ .

Since

$\sin d(Sx_{n}, Tx_{n})=2\sin(\frac{1}{2}d(Sx_{n}, Tx_{n}))\cos(\frac{1}{2}d(Sx_{n}, Tx_{n}))$ ,

we have that

$\cos d(y_{n}, z)\cos(\frac{1}{2}d(Sx_{n}, Tx_{n}))$

$\geq\cos d(x_{n}, z)\cos((\frac{1}{2}-\alpha_{n})d(Sx_{n}, Tx_{n}))$ .

for all $n\in \mathbb{N}$ . Then, for a subsequence $\{\alpha_{n_{i}}\}$ of $\{a_{n}\}$ whose limit is $\alpha_{\infty}\in$ ] $0$ , 1 [,

$\cos d(x_{\infty}, z)\cos(\frac{1}{2}\lim_{iarrow}\sup_{\infty}d(Sx_{n_{i}}, Tx_{n_{i}}))$
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$\geq\cos d(x_{\infty}, z)\cos((\frac{1}{2}-\alpha_{\infty})\lim_{iarrow}\sup_{\infty}d(Sx_{n_{i}}, Tx_{n_{i}}))$ ,

which implies that $\lim_{iarrow\infty}d(Sx_{n_{i}}, Tx_{n_{i}})=0$ . Hence we have that

$d(x_{\infty}, Sx_{\infty})= \lim_{iarrow\infty}d(y_{n_{i}}, Sx_{n_{i}})$

$= \lim_{iarrow\infty}d(\alpha_{n_{i}}Sx_{n_{i}}\oplus(1-\alpha_{n_{i}})Tx_{n_{i}}, Sx_{n_{i}})$

$= \lim_{iarrow\infty}(1-\alpha_{n_{i}})d(Tx_{n_{i}}, Sx_{n_{i}})$

$=(1- \alpha_{\infty})\lim_{iarrow\infty}d(Tx_{n_{i}}, Sx_{n_{i}})$

$=0,$

and, in a similar fashion, we get that $d(x_{\infty}, Tx_{\infty})=0$ . Thus $x_{\infty}\in F(S)\cap F(T)=F.$

Since $F\subset C_{\infty}$ , we have that

$d(x_{0}, x_{\infty})= \lim_{iarrow\infty}d(x_{0}, P_{C_{i}}x_{0})\leq d(x_{0}, P_{F}x_{0})\leq d(x_{0}, x_{\infty})$

and, from the uniqueness of the minimizing point of the distance between $x_{0}$ and $F,$

we have $x_{\infty}=P_{F}x_{0}$ . This is the desired result. $\square$
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