B RAT IR SC AT R ZE 6k
% 1963 % 2015 4E 44-51 44

STRONG CONVERGENCE OF ITERATIVE ALGORITHMS FOR
SOLVING OPTIMIZATION PROBLEMS

JONG SOO JUNG

DEPARTMENT OF MATHEMATICS, DONG-A UNIVERSITY

ABSTRACT. In this talk, we consider iterative algorithms for solving a certain optimization
problem in Hilbert spaces, where the constraint set is the set of fixed points of strictly
pseudocontractive mapping 7. Under suitable conditions on control parameters, we estab-
lish strong convergence of the sequence generated by the proposed iterative algorithm to
a fixed point of the mapping T, which is the unique solution of the optimization problem.
As a direct consequence, we obtain the unique minimum-norm fixed point of T'.

1. INTRODUCTION AND PRELIMINARIES

Let H be a real Hilbert space with the inner product (-,-) and the induced norm | - ||.
Let C be a nonempty closed convex subset of H, and let T': C — C be a self-mapping on
C. We denote by F(T) the set of fixed points of T', that is, F(T) := {z € C : Tz = z}.

We recall that a mapping T': C — H is said to be k-strictly pseudocontractive if there
exists a constant k € [0, 1)such that

ITz — Ty|2 < |z -yl + k(I - T)z — (I - Thy|?, Ve, y€C.

Note that the class of k-strictly pseudocontractive mappings includes the class of nonex-
pansive mappings as a subclass. That is, T is nonexpansive (i.e., [Tz — Ty|| < |z — yl|,
Vz, y € C) if and only if T is O-strictly pseudocontractive. Recently, many authors have
been devoting the studies on the problems of finding fixed points for pseudocontractive
mappings, see, for example, [1, 3, 4, 5, 11, 16] and the references therein

Let A be a strongly positive bounded linear self-adjoint operator on H with a constant
5 > 0, that is, there exists a constant 7 > 0 such that

(Az,z) >7|<|?, Vz e H.

Let f : C — C be a contractive mapping with constant o € (0,1), that is, there exists a
constant a € (0,1) such that ||f(z) — f(¥)|| < oz —y|| forall z, y € C.
The following optimization problem has been studied extensively by many authors:

in & Loz —
min 5 (Az,7) + 5 ||z — ull® — h(z),

where Q@ = (2, Ci, C1,Cy,- -, are infinitely many closed convex subsets of H such that
N2, Ci # 0, w € H, p > 0 is a real number, A is a strongly positive bounded linear
self-adjoint operator on H and h is a potential function for vf (i.e., h'(z) = vf(z) for all
z € H). For this kind of minimization problems, see, for example, Bauschke and Borwein
[2], Combettes [7], Deutsch and Yamada [8], Jung [10] and Xu [18] when h(zx) = (z,b) for
b is a given point in H.
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Iterative algorithms for nonexpansive mappings and strictly pseudocontractive mappings
have recently been applied to solve the optimization problem, where the constraint set is the
set of fixed points of the mapping, see, e.q., [5, 8, 11, 15, 19, 20] and the references therein.
Some iterative algorithms for equilibrium problems, variational inequality problems and
fixed point problems to solve optimization problem, where the constraint set is the common
set of the set of solutions of the problems and the set of fixed points of the mappings, were
also investigated by many authors recently, see, e.q., [12, 21, 22] and the references therein.

Inspired and motivated by the recent works in this direction, in this paper, we consider
the following optimization problem

W 1 2

L (Az,2) + 5llz — ull” — h(z), (1.1)
where F'(T') is the set of fixed points of a k-strictly pseudocontractive mapping T. We
introduce new implicit and explicit iterative algorithms for a k-strictly pseudocontractive
mapping T related to the optimization problem (1:1), and then prove that the sequences
generated by the proposed iterative algorithms converge strongly to a fixed point of the
mapping T, which solves the optimization problem (1.1). In particular, in order to establish
strong convergence of explicit iterative algorithm, we utilize weak and different control
conditions in comparison with previous ones. As a direct consequence, we obtain the
unique minimum-norm point in the set F'(T).

2. PRELIMINARIES AND LEMMAS

Let H be a real Hilbert space and let C' be a nonempty closed convex subset of H. In the
following, when {x,} is a sequence in F, then z, — z (resp., z, — ) will denote strong
(resp., weak) convergence of the sequence {z,} to z.

We need some facts:and tools in a real Hilbert space which are listed as lemmas below.
We will use them in the proofs for the main results in next section.

Recall that for every point 2 € H, there exists a unique nearest point in C, denoted by
Pc(z), such that

e~ Po(@)l < e -yl
for all y € C. P¢ is called the metric projection of H onto C. It is well known that Pp is
nonexpansive.

Lemma 2.1 ([9]). Let H a real Hilbert space, let C be a nonempty closed convex subset of

H, and let T : C — C be a nonezpansive mapping with F(T) # 0. If {z,} is a sequence in
C weakly converging to z and if {(I — T)z,} converges strongly to y, then (I —T)x = y.

The following Lemmas 2.2 and 2.3 are not hard to prove (see also Lemmas 2.3 and 2.5
in [15]).
Lemma 2.2. Let u > 0, and let A: H — H be a strongly positive bounded linear self-
adjoint operator on a Hilbert space H with a constant ¥ € (0,1) such that (1 + u)y.< 1.
Let 0 < p < (1 + p[|Af)~". Then |1 - p(I + pA)l| <1 - p(1+ w).
Lemma 2.3. Let H be a real Hilbert space, and let C be a nonempty closed subspace of H.
Let f : C — C be a contractive mapping with constant a € (0,1), and let A: C — C be a
strongly positive bounded linear self-adjoint operator with a constant 5 € (0,1). Let u > 0
and 0 <y < (1+ p)¥/a with (1+ pu)7 < 1. Then for allz, y € C,

(@ =y, (I +pd) = yf)e — (I +pd) ~ 7 )y) > (1 + w7 - ya)[z - yl*.
That is, (I + pA) —~vf is strongly monotone with a constant (1 + )y — vya.

Lemma 2.4 ([23]). Let H be a Hilbert space, let C' be a nonempty closed convex subset of
H, and let T : C — H be a k-strictly pseudocontractive mapping. Then the following hold:

(i) The fized point set F(T) is closed convez so that the projection Pp1y is well defined,
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(i) F(PcT) = F(T),
(iii) If we define a mapping S : C — H by Sz = Az + (1 - ATz for all z € C. Then,
as \ € [k,1), S is a nonezpansive mapping such that F(S) = F(T).

Lemma 2.5 ([14, 18]). Let {sn} be a sequence of non-negative real numbers satisfying
Sn+1 < (1 - )\n)sn + )‘n(sn + T, Vn > 0,

where {\n}, {6n} and {rp} satisfy the following conditions:
(i) {Mn} C[0,1] and 3 ;2 g An = 00,
(i) Hmsup, oo 0n <0 07 Y oo g Anldn| < 00,
(iii) 7, >0 (R >0), YomogTn < 0.
Then limy o0 Sp = 0.
Lemma 2.6. In a Hilbert space H, the following inequality holds:

Iz +yll* < llel® + 2(y, 2 +y), Vz, y€H.

Let LIM be a Banach limit. According to time and circumstances, we use LIMp(an)
instead of LIM(a) Then the following are well-known:

(i) for all n > 1, an < ¢, implies LIMy(arn) < LIMy(cy),
(ii) LIMy(an+n) = LIMy(a,) for any fixed positive integer N,
(iii) liminf, o0 an < LIMp(ay) < limsup,_,, an for all {a,} € I

The following lemma was given in Proposition 2 in [17].

Lemma 2.7. Let a € R be a real number, and let a sequence {a,} € £ satisfy the
condition LIMy(a,) < a for all Banach limit LIM. If imsup,_,.(ant1 — an) < 0, then
limsup,,_, an < a.

The following lemma can be found in [21](see also Lemma 2.1 in [10]).

Lemma 2.8. Let C be a nonempty closed convex subset of a real Hilbert space H, and let
g:C — RU{oo} be a proper lower semicontiunous differentiable convez function. If z* is
a solution to the minimization problem
* .
9(z") = inf g(z),
then
(g (z*),z—z*) >0, zeC.

In particular, if z* solves the optimization problem
1
min £(Az, 7) + 5|z — ul* ~ h(z),

then
(u+(vf-T+pA))z*z—2") <0, zeC,

where h is a potential function for vf.

Finally, we recall that the sequence {z,} in H is said to be weakly asymptotically regular
if

w— lim (Zp41 —zn) =0, thatis, zpy1 —2,—0
n—roo
and asymptotically regular if
lim [Jzis — zall =0,

respectively.
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3. MAIN RESULTS

Throughout the rest of this paper, we always assume the following:

e H is a real Hilbert space;

e C is a nonempty closed subspace of H;

e T :C — H is a k-strictly pseudocontractive mapping with F(T) # () for some
0<k<1;

e 5:C — H is a mapping defined by Sz = kz + (1 — k)T'z;

e A:(C — Cisastrongly positive bounded linear self-adjoint operator with a constant

5 €(0,1);

f:C — C is a contractive mapping with a constant o € (O 1);

u>0and 0 <vy< (14 p)7/awith (1+p)7<1;

u € C is afixed element;

Fc is a metric projection of H onto C.

First, in order to find a solution of the optimization problem (1.1), we construct the
following iterative algorithm which generates a net {z;} in an implicit way:

zy =t(u+vf(x)) + (I — t(I + pA))PoSz, VteE. (0, i:%—lw) (3.1)

To this end, for ¢ € (0,1) such that ¢ < (1 + ul|A|)~?, consider a mapping Q; : C — C by
Qi =t(u+f(z)) + (I —t(I + pA))PcSz, VzreC.

It is easy to see that Q; is a contraction with constant 1 — ¢((1 + p)¥ — va). Indeed, by
Lemma 2.2, we have

Qe — Quyll < 4]l £ (x) — FWI| + (I — ¢t + pA))(PoSz — PeSy)||
< tyafle -yl + (1 — (1 + p)F)llz — yll
= (1= ¢((1 + p)y —ya))llz -yl
Hence @; has a unique fixed point, denoted z;, which uniquely solve the fixed point equation
o = t(u+vf(z)) + (I — t(I + pA))PcSzs.
If we take 4 =0, u =0 and f = 0 in (3.1), then we have
zt = (1 —t)PcSz:, Vte (0,1). (3.2)

We summary the basic properties of the net {z:}, which can be proved by the same
method in [15].

Proposition 3.1. Let {x:} be defined by the implicit algorithm (3.1). Then

() {z¢} is bounded for t € (0, (1 + pl|A|)~Y);
(ii) limt_m “:Ct — PC'S:L‘t“ = 0,‘
(iii) z; defines a continuous path from (0, (1 + u|Al)~!) in C.

We provide the following result for the existence of solutions of the optimization problem

(1.1).

Theorem 3.2. The net {z:} defined by the implicit algorithm (3.1) converges strongly to
a fized point T of T as t — 0, which solves the following variational inequality:

(ut+ (yf - (T +pA)T,p-2)<0, peF(D).
This T is a solution of the optimization problem (1.1).

From Theorem 3.2, we can deduce the following result.
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Corollary 3.3. The net {z;} defined by the implicit algorithm (3.2) converges strongly
to a fized point T of T as t — 0, which solves the following minimization problem: find
z* € F(T) such that

=" = min liz]

Now, we propose the following iterative algorithm which generates a sequence {zn} in
an explicit way:

Tnt1 = an(u+71f(2n)) + (I — an(l + pA))PoSza, 1 20, (3.3)

where {ay} is a sequence in (0,1) and 2o € C is selected arbitrarily.
First, we prove the following main result.

Theorem 3.4. Let {x,} be a sequence in C generated by the iterative algorithm (3.3), and
let {a,} be a sequence.in (0,1) which satisfies condition:

(C1) limp 00 o = 0.
Let LIM be a Banach limit. Then

LIMy({u+7f(q) — (I + nA)g,zn — q)) <0,
where g = lim,_,o+ x; with z; being defined by the implicit algorithm (3.1).

Now, using Theorem 3.4, we establish the strong convergence of the explicit algorithm
(3.3) for finding a solution of the optimization problem (1.1).

Theorem 3.5. Let {x,} be a sequence in C generated by the iterative algorithm (3.3), and
let {an} be a sequence in (0,1) which satisfies conditions:

(C1) limp 00 atp = 0;

(C2) Yool yom = 0.
If {x,} is weakly asymptotically regular, then {x,} converges strongly to g € F(T), which
solves the optimization problem (1.1).

Proof. First we note that from condition (C1), without loss of generality, we assume that
o < (1+ pl|Al)~! and —(l+—“)1ﬂa < 1for n > 0. Let ¢ = limy_,ox; with z; being

—apyo
defined by (3.1). Then we know from Theorem 3.2 that ¢ € F(T'), and q is unique solution
of the optimization problem (1.1).

We divide the proof into three steps:
Step 1. We show that {z,} is bounded. Indeed, we know that |z, — p| < max{”mg -

p|, L& ﬂlﬁ_(ﬁ 37 (ﬁ;“ Al 4 for all n > 0 and all p € F(T) in the proof of Theorem 3.2. Hence

{x,} is bounded and so are {f(zn)}, {PcSzs} and {(I + pA)PcSzys}.

Step 2. We show that limsup,, o (v +7f(q) — (I + pA)g, zn — q) < 0, where ¢ = lim;s0 z¢
with z; being defined by (3.1). To this end, put

= (u+t7f(g) — (I +pd)gzn—q), n21l
Then Theorem 3.2 implies that LIMy(a,) < 0 for any Banach limit LIM. Since {z,} is

bounded, there exists a subsequence {zn,;} of {z,} such that

limsup(ant+1 — an) = hm (anJH Qn,)
n—o00

and z,; — v € H. This implies that zn;11 — v since {z} is weakly asymptotically regular.
Therefore, we have

w_31_1+m (q_m"Lj+1) =w - ll)ngo(q x"lj) = (q—v),
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and so

limsup(an4+1 — an) = jgr{go<u +7f(a) — (I + pA)g, (¢ — Tn;+1) — (¢ — 2n;)) = 0.

n—>o00

Then Lemma 2.7 implies that limsup,,_,, a, < 0, that is,

limsup(u +f(q) — (I + pA)g,z, — g) < 0.
n—r0o0

Step 3. We show that lim, . ||z, — ¢q|| = 0. To do this, set A = I 4+ pA. Indeed, from
Lemma 2.2 and Lemma 2.6, we derive

lZn+1 = all* = llan(u+vf(zn) — Ag) + (I — anA)(PoSzn — q)||
< |(I- anz)(PCSfEn - Q)”2 + 20 (u + v f(Tn) — Zq, Tni1 —q)
< (= an(1+ w7)2llzn — qlf?
+ 2007 {f(zn) — (@) Tnt1 — @) + 20m (u + 7 f(q) — Ag, Tpt1 — q)
< (1= @1+ pAon)? |z, — gl
+ 2any0|zn — gll[Tnt1 — gll + 20n{u +vf(q) — Ag Tnt1 — q)
< (1~ 1+ @) lzn — all? + anyalllzn — gl + |21 — g))?]
+ 2an(u +7f(q) — Ag, Tny1 — q),

that is,
1 =21+ p)Fyan + (1 + p)7)202 + apya
|]mn+1—q|f2§ ( M)'Y nl _(i ’Yap‘) ) n n “-Tn—QHQ
n
+ 28 (kv f(q) — Agyznss — g)
1— apya YJ\gq q,Tn41 — ¢
2((1 + )y — vo)o 14+ p)7)%a2
— 1— (( /1')7 B ) n ”mn_q“2+(( H)’Y) n”mn_q”2
1 - apya 1 —anya
-2yt 7 f(q) — Aq,Tns1 — g)
1= o YJq | q; Tn+1 — (¢
2001 4+ p)7y — vy 2((1 + )y — vyo)a
< 1— ((1 “)7 Y )an)lmn—QHQ"' (( lﬁ)ry Y ) nx
— apya Yo

( (14 w7)*on P S
200+ mwy—va) ' (I+p7—ra
= (1 - )\n)”mn - Q||2 + Anln,

where M) = sup{||z, — g2 : n > 0}, A, = XEEWT=19)  5ng

l-anvya

(u+7f(q) — Ag,zpi1 — q>>

5. — (4 mw7)’an 1
n — j— —_—
2((1+ py = ya) (14 p)7y —ra
From conditions (C1) and (C2) and Step 2, it is easy to see that A, — 0, S°°° / A, = 0o and

limsup,,_,, 6n < 0. Hence, by Lemma 2.5, we conclude z,, — g as n — oo. This completes
the proof. O

1 (u+7f(q) — Aq, xny1 — g).

Corollary 3.6. Let {x,} be a sequence in C generated by the iterative algorithm (3.8), and
let {an} be a sequence in (0,1) which satisfies conditions:

(C1) limy—o0 ap, = 0;

(C2) Yoy yan = .
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If {z,} is asymptotically regular, then {x,} converges strongly to q € F(T'), which solves
the optimization problem (1.1).

Remark 3.7. If {o,} in Corollary 3.6 satisfies conditions (C1), (C2) and

(C3) > omiplansr — an| < 00; or limy, 00 'a%ﬁ?

(C4) |ant1 — an| < o(ant1) + Ony D ome0n < 00 (the perturbed control condition),

=1; or

then the sequence {z,} generated by the iterative algorithm (3.8) is asymptotically regular.
Now, we give only the proof in case when {a,} satisfies conditions (C1), (C2) and (C4). By
Step 1 in the proof of Theorem 3.3, there exists a constant L > 0 such that for all n > 0,

[APcSzal + [ f(za)l < L.
So,we obtain, for all n > 0,
|Zns1 — 2ol = (I — anA)(PcSzn — PoSzn—1) + (0n — an_1)APcSzn_1
+¥lon(f(2n) = f(@n-1)) + f(Zn-1)(an — an-1)]l
< (1= an(l+ pW)len — zo-all + lon — an—1[| APcSza-1||
+ vanalzn — Tp-1| + | f(@n-1)llom — an-1]
< (1= an((1+ )7 —v)|Zn = Tn-1l| + Llom — an—1
< (1= an(@+p)¥ = ve))|zn — zn-1ll + (oan) + on-1)L.

(3.16)

By taking sp41 = |Znt1 — Tnll, An = an((1 4+ p)¥ — v@), Adp = o(op)L and r = o1 L,
from (3.16) we have

Snt+1 < (1 = Ap)sn + Andp + .
Hence, by (C1), (C2), (C4) and Lemma 2.5, we obtain

nlggo |Zn+1 — zn = 0.
In view of this observation, we have the following:

Corollary 3.8. Let {x,} be a sequence in C generated by the iterative algorithm (3.8),
and let {a,} be a sequence in (0,1) which satisfies conditions (C1), (C2) and (C4) (or
conditions (C1), (C2) and (C3)). Then {z,} converges strongly to g € F(T), which solves
the optimization problem (1.1).

From Theorem 3.5, we can also deduce the following result.
Corollary 3.9. Let {z,} be a sequence in C generated by
Tnt1 = (1 — an)PoSzn, Vn >0,

and let {a,}C (0,1) be a sequence satisfying conditions (C1) and (C2). If {zn} is weakly
asymptotically regular, then {z,} converges strongly to a fized point ¢ of T as n — oo,
which solves the following minimization problem: find x* € F(T) such that

«*]| = min_|lz].
z€F(T)

Remark 3.10. (1) In Remark 3.1, condition (C4) on {a,} is independent of condition
(C3), which was imposed by Cho et al. [5], Marino and Xu [15] and others. For this fact,
see [6, 13].

(2) We point out the our iterative algorithms (3.1) and (3.8) are different from those in
the recent works in this direction.
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