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Abstract. Generalized split feasibility problem governed by a widely more generalized hybrid
mapping is studied. In particular, strong convergence of this algorithm is proved. As tools,

resolvents of maximal monotone operators are technically maneuvered to facilitate the argu-

ment of the proof to the main result. Applications to iteration methods for various nonlinear
mappings and to equilibrium problem are included.

1 Introduction

Let $H$ be a real Hilbert space and let $C$ be a nonempty, closed and convex subset of H. $A$

mapping $U$ : $Carrow H$ is called inverse strongly monotone if there exists $\alpha>0$ such that

$\langle x-y, Ux-Uy\rangle\geq\alpha\Vert Ux-Uy\Vert^{2}, \forall x, y\in C.$

Such a mapping $U$ is called $\alpha$-inverse strongly monotone. Let $H_{1}$ and $H_{2}$ be two real Hilbert

spaces. Let $D$ and $Q$ be nonempty, closed and convex subsets of $H_{1}$ and $H_{2}$ , respectively. Let
$A:H_{1}arrow H_{2}$ be a bounded linear operator. Then the split feasibility problem [6] is to find
$z\in H_{1}$ such that $z\in D\cap A^{-1}Q$ . Recently, Byrne, Censor, Gibali and Reich [5] considered
the following problem: Given set-valued mappings $A_{i}$ : $H_{1}arrow 2^{H_{1}},$ $1\leq i\leq m$ , and $B_{j}$ : $H_{2}arrow$

$2^{H_{2}},$ $1\leq j\leq n$ , respectively, and bounded linear operators $T_{j}$ : $H_{1}arrow H_{2},$ $1\leq j\leq n$ , the
split common null point problem [5] is to find a point $z\in H_{1}$ such that

$z \in(口_{}i=1^{m}A_{i}^{-1}0)\cap(\bigcap_{j=1}^{n}T_{j}^{-1}(B_{j}^{-1}0))$ ,

where $A_{i}^{-1}0$ and $B_{j}^{-1}0$ are null point sets of $A_{i}$ and $B_{j}$ , respectively. Defining $U=A^{*}(I-P_{Q})A$

in the split feasibility problem, we have that $U$ : $H_{1}arrow H_{1}$ is an inverse strongly monotone

operator, where $A^{*}$ is the adjoint operator of $A$ and $P_{Q}$ is the metric projection of $H_{2}$ onto
$Q$ . Furthermore, if $D\cap A^{-1}Q$ is nonempty, then $z\in D\cap A^{-1}Q$ is equivalent to

$z=P_{D}(I-\lambda A^{*}(I-P_{Q})A)z,$

where $\lambda>0$ and $P_{D}$ is the metric projection of $H_{1}$ onto $D$ . Using such results regarding

nonlinear operators and fixed points, many authors have studied the split feasibility problem

and generalized split feasibility problems including the split common null point problem; see,

for instance, [5, 7, 17, 30]. In the study, they used established results for solving the problems.
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In particular, established convergence theorems have been used for finding solutions of the
problems. On the other hand, we know many existence and convergence theorems for inverse
strongly monotone mappings in Hilbert spaces; see, for instance, [9, 18, 20, 22, 26, 27].

In this article, motivated by the ideas of these problems and results, we consider generalized
split feasibility problem and then the problem governed by a widely more generalized hybrid
mapping is studied. In particular, strong convergence of this algorithm is proved. As tools,
resolvents of maximal monotone operators are technically maneuvered to facilitate the argu-
ment of the proof to the main result. Applications to iteration methods for various nonlinear
mappings and to equilibrium problem are included.

2 Preliminaries

Let $H$ be a real Hilbert space with inner product and norm $\Vert$ . respectively. For $x,$ $y\in H$

and $\lambda\in \mathbb{R}$ , we have from [25] that

$\Vert x+y\Vert^{2}\leq\Vert x\Vert^{2}+2\langle y, x+y\rangle$ ;

$\Vert\lambda x+(1-\lambda)y\Vert^{2}=\lambda\Vert x\Vert^{2}+(1-\lambda)\Vert y\Vert^{2}-\lambda(1-\lambda)\Vert x-y\Vert^{2}.$

Furthermore we have that for $x,$ $y,$ $u,$ $v\in H,$

$2\langle x-y, u-v.\rangle=\Vert x-v\Vert^{2}+\Vert y-u\Vert^{2}-\Vert x-u\Vert^{2}-\Vert y-v\Vert^{2}.$

Let $C$ be a nonempty, closed and convex subset of a Hilbert space, $H$ . The nearest point
projection of $H$ onto $C$ is denoted by $P_{C}$ , that is, $\Vert x-P_{C}x\Vert\leq\Vert x-y\Vert$ for all $x\in H$ and
$y\in C$ . Such $P_{C}$ is called the metric projection of $H$ onto $C$ . We know that the metric
projection $P_{C}$ is firmly nonexpansive, i.e.,

$\Vert P_{C}x-P_{C}y\Vert^{2}\leq\langle P_{C}x-P_{C}y, x-y\rangle$

for all $x,$ $y\in H$ . Furthermore $\langle x-P_{C}x,$ $y-P_{C}x\rangle\leq 0$ holds for all $x\in H$ and $y\in C$ ;
see [23]. Let $\alpha>0$ be a given constant. A mapping $A:Carrow H$ is said to be $\alpha$-inverse
strongly monotone if $\langle x-y,$ $Ax-Ay\rangle\geq\alpha\Vert Ax-Ay\Vert^{2}$ for all $x,$ $y\in C$ . It is known that
$\Vert Ax-Ay\Vert\leq(1/\alpha)\Vert x-y\Vert$ for all $x,$ $y\in C$ if $A$ is a inverse-strongly monotone. Let $B$ be a
mapping of $H$ into $2^{H}$ . The effective domain of $B$ is denoted by $D(B)$ , that is, $D(B)=\{x\in$
$H$ : $Bx\neq\emptyset\}$ . A multi-valued mapping $B$ on $H$ is said to be monotone if $\langle x-y,$ $u-v\rangle\geq 0$ for
all $x,$ $y\in D(B)$ , $u\in Bx$ , and $v\in By$ . A monotone operator $B$ on $H$ is said to be maximal if
its graph is not properly contained in the graph of any other monotone operator on $H$ . For
a maximal monotone operator $B$ on $H$ and $r>0$ , we may define a single-valued operator
$J_{r}=(I+rB)^{-1}:Harrow D(B)$ , which is called the resolvent of $B$ for $r$ . Let $B$ be a maximal
monotone operator on $H$ and let $B^{-1}0=\{x\in H : 0\in Bx\}$ . It is known that the resolvent $J_{r}$

is firmly nonexpansive and $B^{-1}0=F(J_{r})$ for all $r>0$ , where $F(J_{r})$ is the set of fixed points
of $J_{r}$ . It is also known that $||J_{\lambda}x-J_{\mu}x\Vert\leq(|\lambda-\mu|/\lambda)\Vert x-J_{\lambda}x\Vert$ holds for all $\lambda,$ $\mu>0$ and
$x\in H$ ; see [23, 10] for more details. As a matter of fact, we know the following lemma [22].

Lemma 2.1. Let $H$ be a real Hilbert space and let $B$ be a maximal monotone operator on $H.$

For $r>0$ and $x\in H$ , define the resolvent $J_{r}x$ . Then the following holds:

$\frac{s-t}{s}\langle J_{\mathcal{S}}x-J_{t^{X}}, J_{s}x-x\rangle\geq\Vert J_{s}x-J_{t}x\Vert^{2}$
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for all $s,$ $t>0$ and $x\in H.$

We also know the following lemmas:

Lemma 2.2 ([2], [29]). Let $\{s_{n}\}$ be a sequence of nonnegative real numbers, let $\{\alpha_{n}\}$ be a

sequence of $[0$ , 1$]$ with $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ , let $\{\beta_{n}\}$ be a sequence of nonnegative real numbers with
$\sum_{n=1}^{\infty}\beta_{n}<\infty$ , and let $\{\gamma_{n}\}$ be a sequence of real numbers with $\lim\sup_{narrow\infty}\gamma_{n}\leq 0$ . Suppose

that
$s_{n+1}\leq(1-\alpha_{n})s_{n}+\alpha_{n}\gamma_{n}+\beta_{n}$

for all $n=1$ , 2, Then $\lim_{narrow\infty}s_{n}=0.$

Lemma 2.3 ([16]). Let $\{\Gamma_{n}\}$ be a sequence of real numbers that does not decrease at infinity

in the sense that there exists a subsequence $\{\Gamma_{n_{t}}\}$ of $\{\Gamma_{n}\}$ which satisfies $\Gamma_{n_{i}}<\Gamma_{n:+1}$ for all
$i\in \mathbb{N}$ . Define the sequence $\{\tau(n)\}_{n\geq n_{0}}$ of integers as follows:

$\tau(n)=\max\{k\leq n: \Gamma_{k}<\Gamma_{k+1}\},$

where $n_{0}\in \mathbb{N}$ such that $\{k\leq n_{0}:\Gamma_{k}<\Gamma_{k+1}\}\neq\emptyset$ . Then, the fotlowing hold:

(i) $\tau(n_{0})\leq\tau(n_{0}+1)\leq\ldots$ and $\tau(n)arrow\infty$ ;

(ii) $\Gamma_{\tau(n)}\leq\Gamma_{\tau(n)+1}$ and $\Gamma_{n}\leq\Gamma_{\tau(n)+1},$ $\forall n\geq n_{0}.$

From [28], we also have the following lemmas.

Lemma 2.4. Let $H_{1}$ and $H_{2}$ be Hilbert spaces. Let $A$ : $H_{1}arrow H_{2}$ be a bounded linear
operator such that $A\neq$ O. Let $T$ : $H_{2}arrow H_{2}$ be a nonexpansive mapping. Then a mapping
$A^{*}(I-T)A:H_{1}arrow H_{1}$ is $\frac{1}{2||A\Vert^{2}}$ -inverse strongly monotone.

Lemma 2.5. Let $H_{1}$ and $H_{2}$ be Hilbert spaces. Let $B:H_{1}arrow 2^{H_{1}}$ be a maximal monotone
mapping and let $J_{\lambda}=(I+\lambda B)^{-1}$ be the resolvent of $B$ for $\lambda>$ O. Let $T$ : $H_{2}arrow H_{2}$ be
a nonexpansive mapping and let $A$ : $H_{1}arrow H_{2}$ be a bounded linear operator. Suppose that
$B^{-1}0\cap A^{-1}F(T)\neq\emptyset$ . Let $\lambda,$ $r>0$ and $z\in H$ . Then the following are equivalent:

(i) $z=J_{\lambda}(I-rA^{*}(I-T)A)z$ ;
(ii) $0\in A^{*}(I-T)Az+Bz$ ;
(iii) $z\in B^{-1}0\cap A^{-1}F(T)$ .

3 Main result

Let $H$ be a Hilbert space and let $C$ be a nonempty, closed and convex subset of $H$ . Then, $a$

mapping $T:Carrow H$ is called generalized hybrid [15] if there exist $\alpha,$
$\beta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty||^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta||Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$

for all $x,$ $y\in C$ . We call such a mapping $(\alpha, \beta)$-generalized hybrid. Notice that the mapping

above covers several well-known mappings. For example, an $(\alpha, \beta)$ -generalized hybrid mapping
is nonexpansive for $\alpha=1$ and $\beta=0$ , nonspreading for $\alpha=2$ and $\beta=1$ , and hybrid for $\alpha=\frac{3}{2}$

and $\beta=\frac{1}{2}$ . Kawasaki and Takahashi [14] defined a more broad class of nonlinear mappings
than the class of generalized hybrid mappings. A mapping $S$ from $C$ into $H$ is said to be
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widely more generalized hybrid if there exist $\alpha,$
$\beta,$

$\gamma,$
$\delta,$

$\epsilon,$
$\zeta,$ $\eta\in \mathbb{R}$ such that

$\alpha\Vert Sx-Sy\Vert^{2}+\beta\Vert x-Sy\Vert^{2}+\gamma\Vert Sx-y\Vert^{2}+\delta\Vert x-y\Vert^{2}$

$+\epsilon\Vert x-Sx\Vert^{2}+\zeta\Vert y-Sy\Vert^{2}+\eta\Vert(x-Sx)-(y-Sy)\Vert^{2}\leq 0$

for all $x,$ $y\in C$ . Such a mapping $S$ is called $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid.
An $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid mapping is generalized hybrid in the sense
of Kocourek, Takahashi and Yao [15] if $\alpha+\beta=-\gamma-\delta=1$ and $\epsilon=\zeta=\eta=0$ . A generalized
hybrid mapping with a fixed point is quasinonexpansive. However, a widely more generalized
hybrid mapping is not quasi-nonexpansive generally even if it has a fixed point. We know the
following theorem from Kawasaki and Takahashi [14].

Theorem 3.1 ([14]). Let $H$ be a Hilbert space, let $C$ be a nonempty, closed and convex subset
of $H$ and let $S$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from $C$ into
itself which satisfies the following conditions (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma+\epsilon+\eta>0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta+\zeta+\eta>0$ and $\epsilon+\eta\geq 0.$

Then $S$ has a fixed point if and only if there exists $z\in C$ such that $\{S^{n}z : n=0, 1, . . .\}$ is
bounded. In particular, a fixed point of $S$ is unique in the case of $\alpha+\beta+\gamma+\delta>0$ on the
conditions (1) and (2).

The following lemmas for widely more generalized hybrid mappings are essencial for proving
our main theorem.

Lemma 3.2 ([14]). Let $H$ be a Hilbert space, let $C$ be a nonempty, closed and convex subset
of $H$ and let $S$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from $C$ into
itself such that $F(S)\neq\emptyset$ and it satisfies the conditions (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\zeta+\eta\geq 0$ and $\alpha+\beta>0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\epsilon+\eta\geq 0$ and $\alpha+\gamma>0.$

Then $S$ is quasi-nonexpansive.

Lemma 3.3 ([12]). Let $H$ be a Hilbert space and let $C$ be a nonempty, closed and convex
subset of H. Let $S$ : $Carrow H$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping.
Suppose that it satisfies the following conditions(1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ and $\alpha+\gamma+\epsilon+\eta>0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0$ and $\alpha+\beta+\zeta+\eta>0.$

If $x_{n}arrow z$ and $x_{n}-Sx_{n}arrow 0$ , then $z\in F(S)$ .

In this section, we solve generalized split feasibility problem governed by a widely more
generalized hybrid mapping in Hilbert spaces.

Theorem 3.4 ([13]). Let $H_{1}$ and $H_{2}$ be Hilbert spaces and let $C$ be a nonempty, closed and
convex subset of $H_{1}$ . Let $B:H_{1}arrow 2^{H_{1}}$ be a maximal monotone mapping such that $D(B)\subset C$

and let $J_{\lambda}=(I+\lambda B)^{-1}$ be the resolvent of $B$ for $\lambda>0$ . Let $S$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely
more generalized hybrid mapping from $C$ into $C$ which satisfies the conditions (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0$ and $\epsilon+\eta\geq 0.$

Let $T:H_{2}arrow H_{2}$ be a nonexpansive mapping. Let $A:H_{1}arrow H_{2}$ be a bounded linear operator.
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Suppose that $B^{-1}0\cap F(S)\cap A^{-1}F(T)\neq\emptyset$ . Let $\{u_{n}\}$ be a sequence in $C$ such that $u_{n}arrow u.$

Let $x_{1}=x\in C$ and let $\{x_{n}\}\subset C$ be a sequence generated by

$x_{n+1}=\beta_{n}x_{n}+(1-\beta_{n})(\alpha_{n}u_{n}+(1-\alpha_{n})SJ_{\lambda_{n}}(I-\lambda_{n}A^{*}(I-T)A)x_{n})$

for all $n\in \mathbb{N}$ , where $\{\lambda_{n}\}\subset(0, \infty)$ , $\{\beta_{n}\}\subset(0,1)$ and $\{\alpha_{n}\}\subset(0,1)$ satisfy

$0<a \leq\lambda_{n}\leq b<\frac{1}{\Vert A\Vert^{2}}, 0<c\leq\beta_{n}\leq d<1,$

$\lim_{narrow\infty}\alpha_{n}=0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty.$

Then the sequence $\{x_{n}\}$ converges strongly to a point $z_{0}\in B^{-1}0\cap F(S)\cap A^{-1}F(T)$ , where
$z_{0-1}=P_{B0\cap F(S)\cap AF(T)}-1u.$

4 Applications

Let $H$ be a Hilbert space and let $f$ be a proper, lower semicontinuous and convex function of
$H$ into $(-\infty, \infty$]. Then the subdifferential $\partial f$ of $f$ is defined as follows:

$\partial f(x)=\{z\in H:f(x)+\langle z, y-x\rangle\leq f(y), \forall y\in H\}$

for all $x\in H$ . By Rockafellar [19], it is shown that $\partial f$ is maximal monotone. Let $C$ be a
nonempty, closed and convex subset of $H$ and let $i_{C’}$ be the indicator function of $C$ , i.e.,

$i_{C}(x)=\{\begin{array}{ll}0, if x\in C,\infty, if x\not\in C.\end{array}$

Then $i_{C}$ : $Harrow(-\infty, \infty$ ] is a proper, lower semicontinuous and convex function on $H$ and
hence $\partial i_{C}$ is a maximal monotone operator. Thus we can define the resolvent $J_{\lambda}$ of $\partial i_{C}$ for
$\lambda>0$ as follows:

$J_{\lambda}x=(I+\lambda\partial i_{C})^{-1}x, \forall x\in H, \lambda>0.$

Putting $B=\partial i_{C}$ in Theorem 3.4, we have $J_{\lambda}=P_{C}$ . Thus we obtain the following theorem
from Theorem 3.4.

Theorem 4.1. Let $H_{1}$ and $H_{2}$ be Hilbert spaces and let $C$ be a nonempty, closed and convex
subset of $H_{1}$ . Let $S$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid mapping from $C$

into $C$ which satisfies the conditions (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0$ and $\epsilon+\eta\geq 0.$

Let $T:H_{2}arrow H_{2}$ be a nonexpansive mapping. Let $A$ : $H_{1}arrow H_{2}$ be a bounded linear operatOr.

Suppose that $F(S)\cap A^{-1}F(T)\neq\emptyset$ . Let $\{u_{n}\}$ be a sequence in $C$ such that $u_{n}arrow u$ . Let
$x_{1}=x\in C$ and let $\{x_{n}\}\subset C$ be a sequence generated by

$x_{n+1}=\beta_{n}x_{n}+(1-\beta_{n})(\alpha_{n}u_{n}+(1-\alpha_{n})SP_{C}(I-\lambda_{n}A^{*}(I-T)A)x_{n})$
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for $altn\in \mathbb{N}$ , where $\{\lambda_{n}\}\subset(0, \infty)$ , $\{\beta_{n}\}\subset(0,1)$ and $\{\alpha_{n}\}\subset(0,1)$ satisfy

$0<a \leq\lambda_{n}\leq b<\frac{1}{\Vert A\Vert^{2}}, 0<c\leq\beta_{n}\leq d<1,$

$\lim_{narrow\infty}\alpha_{n}=0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty.$

Then the sequence $\{x_{n}\}converge\mathcal{S}$ strongly to a point $z_{0}\in F(S)\cap A^{-1}F(T)$ , where $z_{0}=$

$P_{F(S)\cap AF(T)}-1u.$

Replacing a widely more generalized hybrid mapping in Theorem 3.4 by a generalized hybrid
mapping, we have the following theorem.

Theorem 4.2. Let $H_{1}$ and $H_{2}$ be Hilbert spaces and let $C$ be a nonempty closed convex
subset of $H_{1}$ . Let $B$ : $H_{1}arrow 2^{H_{1}}$ be a maximal monotone mapping such that $D(B)\subset C$ and
let $J_{\lambda}=(I+\lambda B)^{-1}$ be the resolvent of $B$ for $\lambda>$ O. Let $S$ be a generalized hybrid mapping
from $C$ into C. Let $T:H_{2}arrow H_{2}$ be a nonexpansive mapping. Let $A$ : $H_{1}arrow H_{2}$ be a bounded
linear operator. Suppose that $B^{-1}0\cap F(S)\cap A^{-1}F(T)\neq\emptyset$ . Let $\{u_{n}\}$ be a sequence in $C$ such
that $u_{n}arrow u$ . Let $x_{1}=x\in C$ and let $\{x_{n}\}\subset C$ be a sequence generated by

$x_{n+1}=\beta_{n}x_{n}+(1-\beta_{n})(\alpha_{n}u_{n}+(1-\alpha_{n})SJ_{\lambda_{n}}(I-\lambda_{n}A^{*}(I-T)A)x_{n})$

for all $n\in \mathbb{N}$ , where $\{\lambda_{n}\}\subset(0, \infty)$ , $\{\beta_{n}\}\subset(0,1)$ and $\{\alpha_{n}\}\subset(0,1)$ satisfy

$0<a \leq\lambda_{n}\leq b<\frac{1}{\Vert A\Vert^{2}}, 0<c\leq\beta_{n}\leq d<1,$

$\lim_{narrow\infty}\alpha_{n}=0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty.$

Then the sequence $\{x_{n}\}$ converges strongly to a point $z_{0}\in B^{-1}0\cap F(S)\cap A^{-1}F(T)$ , where
$z_{0-1}=P_{B0\cap F(S)\cap A^{-1}F(T)}u.$

We also get the following theorem from Theorem 4.2.

Theorem 4.3. Let $H_{1}$ and $H_{2}$ be Hilbert spaces and let $C$ be a nonempty closed convex subset
of $H_{1}$ . Let $S$ : $Carrow C$ be a nonexpansive mapping and let $T$ : $H_{2}arrow H_{2}$ be a nonexpansive
mapping. Let $A$ : $H_{1}arrow H_{2}$ be a bounded linear operator. Suppose that $F(S)\cap A^{-1}F(T)\neq\emptyset.$

Let $\{u_{n}\}$ be a sequence in $C$ such that $u_{n}arrow u$ . Let $x_{1}=x\in C$ and let $\{x_{n}\}$ be a sequence in
$C$ generated by

$x_{n+1}=\beta_{n}x_{n}+(1-\beta_{n})(\alpha_{n}u_{n}+(1-\alpha_{n})P_{C}(I-\lambda_{n}A^{*}(I-T)A)x_{n})$

for all $n\in \mathbb{N}$ , where $\{\lambda_{n}\}\subset(0, \infty)$ , $\{\beta_{n}\}\subset(0,1)$ and $\{\alpha_{n}\}\subset(0,1)$ satisfy

$0<a \leq\lambda_{n}\leq b<\frac{1}{\Vert A\Vert^{2}}, 0<c\leq\beta_{n}\leq d<1,$

$\lim_{narrow\infty}\alpha_{n}=0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty.$

Then the sequence $\{x_{n}\}$ converges strongly to a point $z_{0}$ of $F(S)\cap A^{-1}F(T)$ , where $z_{0}=$

$P_{F(S)\cap AF(T)}-1u.$
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Let $C$ be a nonempty, closed and convex subset of a real Hilbert space $H$ , let $f$ : $C\cross Carrow \mathbb{R}$

be a bifunction. Then we consider the following equilibrium problem: Find $z\in C$ such that

$f(z, y)\geq 0, \forall y\in C.$

The set of such $z\in C$ is denoted by $EP(f)$ , i.e.,

$EP(f)=\{z\in C:f(z, y)\geq 0, \forall y\in C\}.$

For solving the equilibrium problem, let us assume that the bifunction $f$ satisfies the following

conditions:

(A1) $f(x, x)=0$ for all $x\in C$ ;

(A2) $f$ is monotone, i.e., $f(x, y)+f(y, x)\leq 0$ for all $x,$ $y\in C$ ;

(A3) for all $x,$ $y,$ $\dot{z}\in C,$

$\lim_{tarrow}\sup_{0}f(tz+(1-t)x, y)\leq f(x, y)$ ;

(A4) $f(x, \cdot)$ is convex and lower semicontinuous for all $x\in C.$

We know the following lemmas; see, for instance, [4] and [8].

Lemma 4.4 ([4]). Let $C$ be a nonempty closed convex subset of $H$ , let $f$ be a bifunction from
$C\cross C$ to $\mathbb{R}$ satisfying $(Al)-(A4)$ and let $r>0$ and $x\in H.$ Then, there exists $z\in C$ such that

$f(z, y)+ \frac{1}{r}\langle y-z, z-x\rangle\geq 0$

for all $y\in C.$

Lemma 4.5 ([8]). For $r>0$ and $x\in H$ , define the resolvent $T_{r}:Harrow C$ of $f$ for $r>0$ as

follows:
$T_{r}x= \{z\in C:f\cdot(z, y)+\frac{1}{r}\langle y-z, z-x\rangle\geq 0, \forally\in C\}$

for all $x\in H$ . Then, the following hold:

(i) $T_{r}$ is single valued;
(ii) $T_{r}$ is firmly nonexpansive, i. e., for all $x,$ $y\in H,$

$\Vert T_{r}x-T_{r}y\Vert^{2}\leq\langle T_{r}x-T_{r}y, x-y\rangle$ ;

(iii) $F(T_{r})=EP(f)$ ;
(iv) $EP(f)$ is closed and convex.

Takahashi, Takahashi and Toyoda [22] showed the following. See [1] for a more general
result.

Lemma 4.6 ([22]). Let $C$ be a nonempty, closed and convex subset of a Hilbert space $H$ and

let $f$ : $C\cross Carrow \mathbb{R}$ be a bifunction satisfying the conditions $(Al)-(A4)$ . Define $A_{f}$ as follows:

$A_{f}(x)=\{\begin{array}{ll}\{z\in H:f(x, y)\geq\langle y-x, z\rangle, \forall y\in C\}, ifx\in C,\emptyset, ifx\not\in C.\end{array}$

Then $EP(f)=A_{f}^{-1}(0)$ and $A_{f}$ is maximal monotone with the domain of $A_{f}$ in C. Further-
more,

$T_{f}(x)=(I+rA_{f})^{-1}(x) , \forall r>0.$
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We obtain the following theorem from Theorem 3.4.

Theorem 4.7. Let $H_{1}$ and $H_{2}$ be Hilbert spaces and let $C$ be a nonempty closed convex subset
of $H_{1}$ . Let $f$ : $C\cross Carrow \mathbb{R}$ satisfy the conditions $(Al)-(A4)$ and let $T_{\lambda_{n}}$ be the resolvent of
$A_{f}$ for $\lambda_{n}>0$ in Lemma 4.6. Let $S$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid
mapping from $C$ into $C$ which satisfies the conditions (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0$ and $\epsilon+\eta\geq 0.$

Let $T:H_{2}arrow H_{2}$ be a nonexpansive mapping. Let $A:H_{1}arrow H_{2}$ be a bounded linear operator.
Suppose that $EP(f)\cap F(S)\cap A^{-1}F(T)\neq\emptyset$ . Let $\{u_{n}\}$ be a sequence in $C$ such that $u_{n}arrow u.$

Let $x_{1}=x\in C$ and let $\{x_{n}\}\subset C$ be a sequence generated by

$x_{n+1}=\beta_{n}x_{n}+(1-\beta_{n})(\alpha_{n}u_{n}+(1-\alpha_{n})ST_{\lambda_{n}}(I-\lambda_{n}A^{*}(I-T)A)x_{n})$

for all $n\in \mathbb{N}$ , where $\{\lambda_{n}\}\subset(0, \infty)$ , $\{\beta_{n}\}\subset(0,1)$ and $\{\alpha_{n}\}\subset(0,1)$ satisfy

$0<a \leq\lambda_{n}\leq b<\frac{1}{\Vert A\Vert^{2}}, 0<c\leq\beta_{n}\leq d<1,$

$\lim_{narrow\infty}\alpha_{n}=0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty.$

Then the sequence $\{x_{n}\}$ converges strongly to a point $z_{0}\in EP(f)\cap F(S)\cap A^{-1}F(T)$ , where
$z=P_{EP(f)\cap F(S)\cap AF(T)}u.$
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