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Generalized split null point problem governed by widely more

generalized widely more hybrid mappings in Hilbert spaces

CHIEREREA /) R—Ya Vi 22— Jug ES (Mayumi Hojo)
Center for Promotion of Educational Innovation Shibaura Institute of Technology,
Saitama, 337-8570, Japan

Abstract. Generalized split feasibility problem governed by a widely more generalized hybrid
mapping is studied. In particular, strong convergence of this algorithm is proved. As tools,
resolvents of maximal monotone operators are technically maneuvered to facilitate the argu-
ment of the proof to the main result. Applications to iteration methods for various nonlinear
mappings and to equilibrium problem are included.

1 Introduction

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H. A
mapping U : C — H is called inverse strongly monotone if there exists a > 0 such that

(x —y,Uz - Uy) > o|Uz - Uy|?>, Vz,yeC.

Such a mapping U is called a-inverse strongly monotone. Let H; and Hy be two real Hilbert
spaces. Let D and @ be nonempty, closed and convex subsets of H; and Hj, respectively. Let
A : H; —» H, be a bounded linear operator. Then the split feasibility problem [6] is to find
z € H; such that z € DN A7'Q. Recently, Byrne, Censor, Gibali and Reich [5] considered
the following problem: Given set-valued mappings 4; : H; — 2H1, 1 < i <m, and B; : Hy —
2H2 1 < j < n, respectively, and bounded linear operators T; : Hy — Ha, 1 < j < n, the
split common null point problem [5] is to find a point z € H; such that

ze (N2 A770)N (n;;lTj—l(Bj—IO)),

where A; 0 and By 10 are null point sets of A; and Bj, respectively. Defining U = A*(I—Pg)A
in the split feasibility problem, we have that U : H; — H; is an inverse strongly monotone
operator, where A* is the adjoint operator of A and Pg is the metric projection of H3 onto
Q. Furthermore, if D N A~1Q is nonempty, then z € DN A~!Q is equivalent to

z = PD(I - )\A*(I — PQ)A)Z,

where A > 0 and Pp is the metric projection of H; onto D. Using such results regarding
nonlinear operators and fixed points, many authors have studied the split feasibility problem
and generalized split feasibility problems including the split common null point problem; see,
for instance, [5, 7, 17, 30]. In the study, they used established results for solving the problems.



In particular, established convergence theorems have been used for finding solutions of the
problems. On the other hand, we know many existence and convergence theorems for inverse
strongly monotone mappings-in Hilbert spaces; see, for instance, [9, 18, 20, 22, 26, 27].

In this article, motivated by the ideas of these problems and results, we consider generalized
split feasibility problem and then the problem governed by a widely more generalized hybrid
mapping is studied. In particular, strong convergence of this algorithm is proved. As tools,
resolvents of maximal monotone operators are technically maneuvered to facilitate the argu-
ment of the proof to the main result. Applications to iteration methods for various nonlinear
mappings and to equilibrium problem are included.

2  Preliminaries

Let H be a real Hilbert space with inner product (-) and norm || - ||, respectively. For z,y € H
and A € R, we have from [25] that

Iz +yl* < ll=l® + 2(y, z +y);
1Az + (1 = Nyl = Alle|® + (1 = Myl* = A1 = Nz ~ yi*.
Furthermore we have that for z,y,u,v € H,
Az -y u—v) = |z~ + lly —uf)® = lle — ul® - ly —v|*.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest point
projection of H onto C is denoted by P, that is, |z — Poz|| < ||z — y| for all z € H and
y € C. Such Pg is called the metric projection of H onto C. We know that the metric
projection P¢ is firmly nonexpansive, i.e.,

|Poz — Pey|)? < (Poz — Poy,x —y)

for all z,y € H. Furthermore (z — Pox,y — Poz) < 0 holds for all z € H and y € C;
see [23]. Let a > 0 be a given constant. A mapping A: C — H is said to be a-inverse
strongly monotone if (z — y, Az — Ay) > oAz — AyH for all z,y € C. It is known that
|Az — Ay|| < (1/a) ||:c —y|| for all z,y € C if A is a-inverse-strongly monotone. Let B be a
mapping of H into 2¥. The effective domain of B is denoted by D(B), that is, D(B) = {z €
H: Bz #0}. A multl-valued mapping B on H is said to be monotone if (x — y,u —v) > 0 for
all z,y € D(B), u € Bz, and v € By. A monotone operator B on H is said to be maximal if
its graph is not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued operator
Jr = (I +rB)~': H — D(B), which is called the resolvent of B for r. Let B be a maximal
monotone operator on H and let B~10 = {z € H : 0 € Bz}. It is known that the resolvent J,
is firmly nonexpansive and B~'0 = F(J,) for all 7 > 0, where F(J,) is the set of fixed points
of Jr. It is also known that || Jyz — J,z|| < (|]A — p|/)) ||z — Jaz|| holds for all A,z > 0 and
T € H; see [23, 10] for more details. As a matter of fact, we know the following lemma, [22].

Lemma 2.1. Let H be a real Hilbert space and let B be a mazimal monotone operator on H.
Forr >0 and x € H, define the resolvent J.z. Then the following holds:

Sz, Jsz — ) > || oz — Jyz||?
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for all s,t >0 andz € H.
We also know the following lemmas:

Lemma 2.2 ([2], [29]). Let {s,} be a sequence of nonnegative real numbers, let {an} be a
sequence of [0,1] with Y oo | an = 00, let {Bn} be a sequence of nonnegative real numbers with
S o 1 Bn < 00, and let {n} be a sequence of real numbers with limsup,,_,o, Yn < 0. Suppose
that

Sn+1 S (1 - an)sn + anYn + Bn

for allm =1,2,.... Then lim, ;o Sn =0.

Lemma 2.3 ([16]). Let {T',} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {I'n,} of {T'n} which satisfies 'y, < I'n,41 for all
i € N. Define the sequence {7(n)}n>n, of integers as follows:

7(n) = max{k <n: Tk <Thy1},

where ng € N such that {k < ng : T < Txq1} # 0. Then, the following hold:

(i) T(ng) <7(no+1) <... and 7(n) = oo;
(7,2) F'r(n) S FT(n)+1 and I‘n < FT(n)+1, n > ng.

From [28], we also have the following lemmas.

Lemma 2.4. Let H; and H, be Hilbert spaces. Let A : Hy — Hy be a bounded linear
operator such that A # 0. Let T : Hy — Ha be a nonezpansive mapping. Then a mapping
A*(I-T)A:H, - H; is W—inverse strongly monotone.

Lemma 2.5. Let H; and H, be Hilbert spaces. Let B : Hy — 251 be a mazimal monotone
mapping and let Jx = (I + AB)™! be the resolvent of B for A > 0. Let T : Hy — Hj be
a nonezxpansive mapping and let A : Hy — Hj be a bounded linear operator. Suppose that
B 0N A"IF(T) # 0. Let \,r > 0 and z € H. Then the following are equivalent:

(i) z=J\(I—-rA*(I —T)A)z;
(i) 0 € A*(I —T)Az + Bz;
(i1i) z € B710N A~1F(T).

3 Main result

Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Then, a
mapping T : C — H is called generalized hybrid [15] if there exist «, 8 € R such that

a|Tz - Tyll> + (1 - a)llz - Tyll* < BTz ~ ylI* + (1 - B)llz -yl

for all z,y € C. We call such a mapping («, 3)-generalized hybrid. Notice that the mapping
above covers several well-known mappings. For example, an («, 8)-generalized hybrid mapping
is nonexpansive for o = 1 and 8 = 0, nonspreading for a = 2 and # = 1, and hybrid for o = %
and 8 = % Kawasaki and Takahashi [14] defined a more broad class of nonlinear mappings

than the class of generalized hybrid mappings. A mapping S from C into H is said to be



widely more generalized hybrid if there exist a, 3,7, d,¢,(,n € R such that

oSz = Sy||* + Bllw — Syl* + vI|Sz — y||* + 8|z — y|*
+ellz — Sz* + Clly = SylI* + nli(z - Sz) - (y - Sy)|* <0

for all z,y € C. Such a mapping S is called («, 8,7, d, ¢, {,n)-widely more generalized hybrid.
An (o, 8,7, 4,€,¢,n)-widely more generalized hybrid mapping is generalized hybrid in the sense
of Kocourek, Takahashi and Yao [15] if a+8=—-y—d=1and e = ( =75 =0. A generalized
hybrid mapping with a fixed point is quasinonexpansive. However, a widely more generalized
hybrid mapping is not quasi-nonexpansive generally even if it has a fixed point. We know the
following theorem from Kawasaki and Takahashi [14].

Theorem 3.1 ([14]). Let H be a Hilbert space, let C be a nonempty, closed and conver subset
of H and let S be an (a,f,v,9,¢,(,n)-widely more generalized hybrid mapping from C into
itself which satisfies the following conditions (1) or (2):

(1) a+B8+~v+6>0, a+y+e+n>0 and (+1n>0;

(2) a+B+v+d0>0, a+B8+(+n>0 and e+n>0.
Then S has a fized point if and only if there exists z € C such that {S"z : n = 0,1,...} is
bounded. In particular, a fized point of S is unique in the case of a + B +y+ 38 > 0 on the
conditions (1) and (2).

The following lemmas for widely more generalized hybrid mappings are essencial for proving
our main theorem.

Lemma 3.2 ([14]). Let H be a Hilbert space, let C be a nonempty, closed and convez subset
of H and let S be an (a,B3,7,6,¢,{,n)-widely more generalized hybrid mapping from C into
itself such that F(S) # 0 and it satisfies the conditions (1) or (2):

(1) a+B+v+d5>0, (+1n>0 and a+8>0;
(2) a+B8+7+8>0, e+n>0 and a+v> 0.

Then S is quasi-nonexpansive.

Lemma 3.3 ([12]). Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let S: C — H be an (o, 8,7, 6,¢,¢,n)-widely more generalized hybrid mapping.
Suppose that it satisfies the following conditions (1) or (2):

(1) a+B+v+6>0 and a+y+e+n>0;
(2 a+B+v+6>0 and a+B+C+n>0.

If zn = z and z,, — Sz, — 0, then 2z € F(S).

In this section, we solve generalized split feasibility problem governed by a widely more
generalized hybrid mapping in Hilbert spaces.

Theorem 3.4 ([13]). Let H, and Hy be Hilbert spaces and let C be a nonempty, closed and
convez subset of Hy. Let B : Hy — 21 be a mazimal monotone mapping such that D(B)cC
and let Jy = (I + AB)™! be the resolvent of B for A > 0. Let S be an (o, B,7,6,¢,¢,n)-widely
more generalized hybrid mapping from C into C' which- satisfies the conditions (1) or (2):

(1) a+B+v+6>0, a+B>0 and (+n>0;
(2 a+B+v+6>0, a+v>0 and e+n>0.

Let T : Hy — Hs be a nonezpansive mapping. Let A : Hy — H, be a bounded linear operator.
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Suppose that B-10NF(S)N A7IF(T) # 0. Let {un} be a sequence in C such that u, — u.
Let zy =z € C and let {z,} C C be a sequence generated by

Tnt1 = BnZn + (1 = Bn)(onun + (1 — an)SJdx, (I = MgA*(I - T)A)z,)
for alln € N, where {\p,} C (0,00), {Bn} C (0,1) and {a,} C (0,1) satisfy

0<a§)\n§b<“—£—”—2, 0<c<pBp<d<]l,

oo
lim o, =0 and E Qa, = 00.
n—oo 1

n=

Then the sequence {z,} converges strongly to a point zo € B~10N F(S) N A™'F(T), where
20 = Pp-10nFr(8)na-1F(T)U-

4 Applications

Let H be a Hilbert space and let f be a proper, lower semicontinuous and convex function of
H into (—o0,00]. Then the subdifferential 3f of f is defined as follows:

Of(x)y={2€H: f(z)+(2,y—2z) < f(y), Yy€ H}

for all z € H. By Rockafellar [19], it is shown that Jf is maximal monotone. Let C be a
nonempty, closed and convex subset of H and let i¢ be the indicator function of C, i.e.,

io(z) = 0, ifxeC,
ST o, itz gl

Then i¢c : H — (—00,00] is a proper, lower semicontinuous and convex function on H and
hence dic is a maximal monotone operator. Thus we can define the resolvent Jy of di¢ for
A > 0 as follows:

e =1+ )\aic)_lx, Ve e H, A>0.

Putting B = dic in Theorem 3.4, we have Jy = Pc. Thus we obtain the following theorem
from Theorem 3.4.

Theorem 4.1. Let H, and Hy be Hilbert spaces and let C be a nonempty, closed and convex
subset of Hy. Let S be an (o, B,7,96,¢€,(,n)-widely more generalized hybrid mapping from C
into C which satisfies the conditions (1) or (2):

(1) a4+B+7+6>0, a+8>0 and C+n>0;
(2) a+B+v+6>0, a+v>0 and e+n=>0.

Let T : Hy — Hy be a nonexpansive mapping. Let A: Hy — Hs be a bounded linear operator.
Suppose that F(S) N A~'F(T) # 0. Let {u,} be a sequence in C such that u, — u. Let
z1 =z € C and let {z,} C C be a sequence generated by

Tnt1 = Brnxn + (1 - ﬁn)(anun + (1 - Otn)SPC(I - /\'IIA*(I - T)A):L’n)
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for alln € N, where {M\} C (0,00), {8} C (0,1) and {a,,} C (0,1) satisfy

0<a<A,< 0<c<B,<d<1,

1
b< ——
1Al

[o.@]
lim a, =0 and E Qy = 00.
n—o00 1

n=

Then the sequence {z,} converges strongly to a point zg € F(S) N A~YF(T), where zyp =
Ppsyna-1r(T)u.

Replacing a widely more generalized hybrid mapping in Theorem 3.4 by a generalized hybrid
mapping, we have the following theorem.

Theorem 4.2. Let Hy and Hy be Hilbert spaces and let C be a nonempty closed convex
subset of Hyi. Let B : Hy — 21 be a mazimal monotone mapping such that D(B) c C and
let Jx = (I + AB)~! be the resolvent of B for A > 0. Let S be a generalized hybrid mapping
from C into C. Let T : Hy — Hy be a nonexpansive mapping. Let A : Hy — Hs be a bounded
linear operator. Suppose that B-1ONF(S)NA™YF(T) # 0. Let {u,} be a sequence in C such
that up, — u. Let 1 = 2 € C and let {z,} C C be a sequence generated by

Tnt1 = BnZn + (1 — B) (Qn i, + (1- O‘n)SJAn (I — AnA™(I - T)A)xn)
for allm € N, where {A\n} C (0,00), {B.} C (0,1) and {c,} C (0,1) satisfy

1
0<a§An§b<W, 0<Cfﬁn§d<1,

oo
lim o, =0 and E o, = 00.
n—roo 1

n=

Then the sequence {z,} converges strongly to a point zo € B~*0 N F(S) N A~'F(T), where
20 = Pp-10nF($)nA-1F(T)U-

We also get the following theorem from Theorem 4.2.
Theorem 4.3. Let Hy and Hy be Hilbert spaces and let C be a nonempty closed convezr subset
of H. Let S : C — C be a nonezpansive mapping and let T : Hy — Hy be a nonexrpansive
mapping. Let A : Hy — H be a bounded linear operator. Suppose that F(S) N A™YF(T) # 0.

Let {un} be a sequence in C such that u, — u. Let z; = z € C and let {zn} be a sequence in
C generated by

Tp+1 = By + (1 - ﬂn)(anun + (1 - an)PC(I - )\HA*(I - T)A)mn)
for alln € N, where {)\,} C (0,00), {8.} C (0,1) and {dn} C (0,1) satisfy

0<a§/\n§b<ﬂ_‘/—iﬂ3’ 0<c§ﬂn§d<1,

o
lim a, =0 and E Qp = 00.
n—oo 1

n=

Then the sequence {zn} converges strongly to a point zo of F(S) N A=1F(T), where zy =
Pr(syna-1r(T)u.
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Let C be a nonempty, closed and convex subset of a real Hilbert space H, let f: CxC - R
be a bifunction. Then we consider the following equilibrium problem: Find z € C such that

f(z,y)20, vyeC.
The set of such z € C is denoted by EP(f), ie.,
EP(f)={2€C: f(2,y) 20, Vy € C}.

For solving the equilibrium problem, let us assume that the bifunction f satisfies the following
conditions:

(A1) f(z,z) =0for all z € C;
(A2) f is monotone, i.e., f(z,y) + f(y,z) <0 for all z,y € C;
(A3) for all z,y,2 € C,
limsup f(tz + (1 - t)z,y) < f(z,9);
t—0
(A4) f(z,-) is convex and lower semicontinuous for all z € C.

We know the following lemmas; see, for instance, [4] and [8].

Lemma 4.4 ([4]). Let C be a nonempty closed convez subset of H, let f be a bifunction from
C x C to R satisfying (A1)-(A4) and let T > 0 and x € H. Then, there exists z € C such that

1
Fey)+ (g =22 -2) 20
forallyeC.

Lemma 4.5 ([8]). For r > 0 and z € H, define the resolvent T, : H — C of f forr >0 as
follows:

T,a::{zeC:f(z,y)Jr—l?;(y—z,z—m)20, VyGC}

for all x € H. Then, the following hold:
(i) T, is single-valued;
(i1) T, is firmly nonexpansive, i.e., for all x,y € H,
| Tz — Tryl? < (Trz — Try, z — y);
(ii) F(T,) = EP(f);
(iv) EP(f) is closed and convexz.
Takahashi, Takahashi and Toyoda [22] showed the following. See [1] for a more general

result.

Lemma 4.6 ([22]). Let C be a nonempty, closed and convex subset of a Hilbert space H and
let f: C x C = R be a bifunction satisfying the conditions (A1)-(A4). Define Ay as follows:

A(I)— {ZEH:f(SC’y)Z(y‘m’z)» YyeC}, ifzeC,
77, ifz ¢ C.

Then EP(f) = AJTI(O) and Ay is mazimal monotone with the domain of As in C. Further-
more,
To(z) = (I +1A5) " Yz), Vr>0.
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We obtain the following theorem from Theorem 3.4.

Theorem 4.7. Let H, and Hy be Hilbert spaces and let C be a nonempty closed convez subset
of Hy. Let f : C x C — R satisfy the conditions (A1)-(A4) and let Ty, be the resolvent of
Ay for Ay > 0 in Lemma 4.6. Let S be an (o, 8,7, 6,¢,(,n)-widely more generalized hybrid
mapping from C into C which satisfies the conditions (1) or (2):

(1) a+B+v+62>0, a+B>0 and (+1>0;
(2) a+B+~v+620, a+y>0 and e+n>0.

Let T : Hy — Hj be a nonexpansive mapping. Let A : H; — Hy be a bounded linear operator.
Suppose that EP(f) NF(S)NA™YF(T) # 0. Let {u,} be a sequence in C such that un, — u.
Let 1 =z € C and let {x,} C C be a sequence generated by

Tnt1 = BnZn + (1 = Bn)(onun + (1 — ap)ST, (I — Mg A*(I — T)A)zy)

for alln € N, where {A\,} C (0,00), {8} C (0,1) and {a} C (0,1) satisfy

1
O<a< A, <b<“A||2’ 0<e<p,<d<1,

oo
lim o, =0 and Zan-——oo.

n—00

Then the sequence {xn} converges strongly to a point 20 € EP(f) N F(S) N A7YF(T), where
20 = Pgp(5)nF(s)na-1F(T)U-
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