# Generalized split null point problem governed by widely more generalized widely more hybrid mappings in Hilbert spaces

芝浦工業大学教育イノベーション推進センター 北條 真弓 (Mayumi Hojo) Center for Promotion of Educational Innovation Shibaura Institute of Technology, Saitama, 337-8570, Japan

Abstract. Generalized split feasibility problem governed by a widely more generalized hybrid mapping is studied. In particular, strong convergence of this algorithm is proved. As tools, resolvents of maximal monotone operators are technically maneuvered to facilitate the argument of the proof to the main result. Applications to iteration methods for various nonlinear mappings and to equilibrium problem are included.

### 1 Introduction

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H. A mapping  $U: C \to H$  is called inverse strongly monotone if there exists  $\alpha > 0$  such that

$$\langle x-y, Ux-Uy \rangle \ge lpha \|Ux-Uy\|^2, \quad \forall x, y \in C.$$

Such a mapping U is called  $\alpha$ -inverse strongly monotone. Let  $H_1$  and  $H_2$  be two real Hilbert spaces. Let D and Q be nonempty, closed and convex subsets of  $H_1$  and  $H_2$ , respectively. Let  $A: H_1 \to H_2$  be a bounded linear operator. Then the *split feasibility problem* [6] is to find  $z \in H_1$  such that  $z \in D \cap A^{-1}Q$ . Recently, Byrne, Censor, Gibali and Reich [5] considered the following problem: Given set-valued mappings  $A_i: H_1 \to 2^{H_1}, 1 \leq i \leq m$ , and  $B_j: H_2 \to 2^{H_2}, 1 \leq j \leq n$ , respectively, and bounded linear operators  $T_j: H_1 \to H_2, 1 \leq j \leq n$ , the split common null point problem [5] is to find a point  $z \in H_1$  such that

$$z \in \left( \bigcap_{i=1}^{m} A_i^{-1} 0 \right) \cap \left( \bigcap_{j=1}^{n} T_j^{-1} (B_j^{-1} 0) \right),$$

where  $A_i^{-1}0$  and  $B_j^{-1}0$  are null point sets of  $A_i$  and  $B_j$ , respectively. Defining  $U = A^*(I-P_Q)A$ in the split feasibility problem, we have that  $U : H_1 \to H_1$  is an inverse strongly monotone operator, where  $A^*$  is the adjoint operator of A and  $P_Q$  is the metric projection of  $H_2$  onto Q. Furthermore, if  $D \cap A^{-1}Q$  is nonempty, then  $z \in D \cap A^{-1}Q$  is equivalent to

$$z = P_D(I - \lambda A^*(I - P_Q)A)z,$$

where  $\lambda > 0$  and  $P_D$  is the metric projection of  $H_1$  onto D. Using such results regarding nonlinear operators and fixed points, many authors have studied the split feasibility problem and generalized split feasibility problems including the split common null point problem; see, for instance, [5, 7, 17, 30]. In the study, they used established results for solving the problems. In particular, established convergence theorems have been used for finding solutions of the problems. On the other hand, we know many existence and convergence theorems for inverse strongly monotone mappings in Hilbert spaces; see, for instance, [9, 18, 20, 22, 26, 27].

In this article, motivated by the ideas of these problems and results, we consider generalized split feasibility problem and then the problem governed by a widely more generalized hybrid mapping is studied. In particular, strong convergence of this algorithm is proved. As tools, resolvents of maximal monotone operators are technically maneuvered to facilitate the argument of the proof to the main result. Applications to iteration methods for various nonlinear mappings and to equilibrium problem are included.

#### 2 Preliminaries

Let H be a real Hilbert space with inner product  $\langle \cdot \rangle$  and norm  $\|\cdot\|$ , respectively. For  $x, y \in H$  and  $\lambda \in \mathbb{R}$ , we have from [25] that

$$\begin{split} \|x+y\|^2 &\leq \|x\|^2 + 2\langle y, x+y\rangle;\\ \|\lambda x + (1-\lambda)y\|^2 &= \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\|x-y\|^2. \end{split}$$

Furthermore we have that for  $x, y, u, v \in H$ ,

$$2\langle x-y, u-v \rangle = \|x-v\|^2 + \|y-u\|^2 - \|x-u\|^2 - \|y-v\|^2$$

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest point projection of H onto C is denoted by  $P_C$ , that is,  $||x - P_C x|| \le ||x - y||$  for all  $x \in H$  and  $y \in C$ . Such  $P_C$  is called the metric projection of H onto C. We know that the metric projection  $P_C$  is firmly nonexpansive, i.e.,

$$\left\|P_{C}x - P_{C}y\right\|^{2} \leq \langle P_{C}x - P_{C}y, x - y \rangle$$

for all  $x, y \in H$ . Furthermore  $\langle x - P_C x, y - P_C x \rangle \leq 0$  holds for all  $x \in H$  and  $y \in C$ ; see [23]. Let  $\alpha > 0$  be a given constant. A mapping  $A: C \to H$  is said to be  $\alpha$ -inverse strongly monotone if  $\langle x - y, Ax - Ay \rangle \geq \alpha ||Ax - Ay||^2$  for all  $x, y \in C$ . It is known that  $||Ax - Ay|| \leq (1/\alpha) ||x - y||$  for all  $x, y \in C$  if A is  $\alpha$ -inverse-strongly monotone. Let B be a mapping of H into  $2^H$ . The effective domain of B is denoted by D(B), that is,  $D(B) = \{x \in$  $H: Bx \neq \emptyset\}$ . A multi-valued mapping B on H is said to be monotone if  $\langle x - y, u - v \rangle \geq 0$  for all  $x, y \in D(B), u \in Bx$ , and  $v \in By$ . A monotone operator B on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H. For a maximal monotone operator B on H and r > 0, we may define a single-valued operator  $J_r = (I + rB)^{-1}: H \to D(B)$ , which is called the resolvent of B for r. Let B be a maximal monotone operator on H and  $let B^{-1}0 = \{x \in H: 0 \in Bx\}$ . It is known that the resolvent  $J_r$ is firmly nonexpansive and  $B^{-1}0 = F(J_r)$  for all r > 0, where  $F(J_r)$  is the set of fixed points of  $J_r$ . It is also known that  $||J_\lambda x - J_\mu x|| \leq (|\lambda - \mu|/\lambda) ||x - J_\lambda x||$  holds for all  $\lambda, \mu > 0$  and  $x \in H$ ; see [23, 10] for more details. As a matter of fact, we know the following lemma [22].

**Lemma 2.1.** Let H be a real Hilbert space and let B be a maximal monotone operator on H. For r > 0 and  $x \in H$ , define the resolvent  $J_r x$ . Then the following holds:

$$\frac{s-t}{s}\langle J_s x - J_t x, J_s x - x \rangle \ge \|J_s x - J_t x\|^2$$

for all s, t > 0 and  $x \in H$ .

We also know the following lemmas:

**Lemma 2.2** ([2], [29]). Let  $\{s_n\}$  be a sequence of nonnegative real numbers, let  $\{\alpha_n\}$  be a sequence of [0,1] with  $\sum_{n=1}^{\infty} \alpha_n = \infty$ , let  $\{\beta_n\}$  be a sequence of nonnegative real numbers with  $\sum_{n=1}^{\infty} \beta_n < \infty$ , and let  $\{\gamma_n\}$  be a sequence of real numbers with  $\limsup_{n\to\infty} \gamma_n \leq 0$ . Suppose that

$$s_{n+1} \le (1 - \alpha_n)s_n + \alpha_n\gamma_n + \beta_n$$

for all  $n = 1, 2, \dots$  Then  $\lim_{n \to \infty} s_n = 0$ .

**Lemma 2.3** ([16]). Let  $\{\Gamma_n\}$  be a sequence of real numbers that does not decrease at infinity in the sense that there exists a subsequence  $\{\Gamma_{n_i}\}$  of  $\{\Gamma_n\}$  which satisfies  $\Gamma_{n_i} < \Gamma_{n_i+1}$  for all  $i \in \mathbb{N}$ . Define the sequence  $\{\tau(n)\}_{n \ge n_0}$  of integers as follows:

$$\tau(n) = \max\{k \le n : \Gamma_k < \Gamma_{k+1}\},\$$

where  $n_0 \in \mathbb{N}$  such that  $\{k \leq n_0 : \Gamma_k < \Gamma_{k+1}\} \neq \emptyset$ . Then, the following hold:

(i)  $\tau(n_0) \leq \tau(n_0+1) \leq \dots$  and  $\tau(n) \to \infty$ ; (ii)  $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$  and  $\Gamma_n \leq \Gamma_{\tau(n)+1}, \quad \forall n \geq n_0$ .

From [28], we also have the following lemmas.

**Lemma 2.4.** Let  $H_1$  and  $H_2$  be Hilbert spaces. Let  $A : H_1 \to H_2$  be a bounded linear operator such that  $A \neq 0$ . Let  $T : H_2 \to H_2$  be a nonexpansive mapping. Then a mapping  $A^*(I-T)A : H_1 \to H_1$  is  $\frac{1}{2||A||^2}$ -inverse strongly monotone.

**Lemma 2.5.** Let  $H_1$  and  $H_2$  be Hilbert spaces. Let  $B : H_1 \to 2^{H_1}$  be a maximal monotone mapping and let  $J_{\lambda} = (I + \lambda B)^{-1}$  be the resolvent of B for  $\lambda > 0$ . Let  $T : H_2 \to H_2$  be a nonexpansive mapping and let  $A : H_1 \to H_2$  be a bounded linear operator. Suppose that  $B^{-1}0 \cap A^{-1}F(T) \neq \emptyset$ . Let  $\lambda, r > 0$  and  $z \in H$ . Then the following are equivalent:

(i)  $z = J_{\lambda}(I - rA^*(I - T)A)z;$ (ii)  $0 \in A^*(I - T)Az + Bz;$ (iii)  $z \in B^{-1}0 \cap A^{-1}F(T).$ 

#### 3 Main result

Let *H* be a Hilbert space and let *C* be a nonempty, closed and convex subset of *H*. Then, a mapping  $T: C \to H$  is called generalized hybrid [15] if there exist  $\alpha, \beta \in \mathbb{R}$  such that

$$\alpha \|Tx - Ty\|^{2} + (1 - \alpha)\|x - Ty\|^{2} \le \beta \|Tx - y\|^{2} + (1 - \beta)\|x - y\|^{2}$$

for all  $x, y \in C$ . We call such a mapping  $(\alpha, \beta)$ -generalized hybrid. Notice that the mapping above covers several well-known mappings. For example, an  $(\alpha, \beta)$ -generalized hybrid mapping is nonexpansive for  $\alpha = 1$  and  $\beta = 0$ , nonspreading for  $\alpha = 2$  and  $\beta = 1$ , and hybrid for  $\alpha = \frac{3}{2}$ and  $\beta = \frac{1}{2}$ . Kawasaki and Takahashi [14] defined a more broad class of nonlinear mappings than the class of generalized hybrid mappings. A mapping S from C into H is said to be widely more generalized hybrid if there exist  $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta \in \mathbb{R}$  such that

$$\begin{aligned} \alpha \|Sx - Sy\|^2 + \beta \|x - Sy\|^2 + \gamma \|Sx - y\|^2 + \delta \|x - y\|^2 \\ + \varepsilon \|x - Sx\|^2 + \zeta \|y - Sy\|^2 + \eta \|(x - Sx) - (y - Sy)\|^2 \leq 0 \end{aligned}$$

for all  $x, y \in C$ . Such a mapping S is called  $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid. An  $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping is generalized hybrid in the sense of Kocourek, Takahashi and Yao [15] if  $\alpha + \beta = -\gamma - \delta = 1$  and  $\varepsilon = \zeta = \eta = 0$ . A generalized hybrid mapping with a fixed point is quasinonexpansive. However, a widely more generalized hybrid mapping is not quasi-nonexpansive generally even if it has a fixed point. We know the following theorem from Kawasaki and Takahashi [14].

**Theorem 3.1** ([14]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset of H and let S be an  $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into itself which satisfies the following conditions (1) or (2):

 $\begin{array}{ll} (1) \ \alpha+\beta+\gamma+\delta\geq 0, & \alpha+\gamma+\varepsilon+\eta>0 & and & \zeta+\eta\geq 0; \\ (2) \ \alpha+\beta+\gamma+\delta\geq 0, & \alpha+\beta+\zeta+\eta>0 & and & \varepsilon+\eta\geq 0. \end{array}$ 

Then S has a fixed point if and only if there exists  $z \in C$  such that  $\{S^n z : n = 0, 1, ...\}$  is bounded. In particular, a fixed point of S is unique in the case of  $\alpha + \beta + \gamma + \delta > 0$  on the conditions (1) and (2).

The following lemmas for widely more generalized hybrid mappings are essencial for proving our main theorem.

**Lemma 3.2** ([14]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset of H and let S be an  $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into itself such that  $F(S) \neq \emptyset$  and it satisfies the conditions (1) or (2):

 $\begin{array}{ll} (1) \ \alpha+\beta+\gamma+\delta\geq 0, \ \zeta+\eta\geq 0 \ and \ \alpha+\beta>0; \\ (2) \ \alpha+\beta+\gamma+\delta\geq 0, \ \varepsilon+\eta\geq 0 \ and \ \alpha+\gamma>0. \end{array}$ 

Then S is quasi-nonexpansive.

**Lemma 3.3** ([12]). Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let  $S: C \to H$  be an  $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping. Suppose that it satisfies the following conditions (1) or (2):

 $\begin{array}{ll} (1) \ \alpha+\beta+\gamma+\delta\geq 0 & and \ \alpha+\gamma+\varepsilon+\eta>0; \\ (2) \ \alpha+\beta+\gamma+\delta\geq 0 & and \ \alpha+\beta+\zeta+\eta>0. \end{array}$ 

If  $x_n \rightharpoonup z$  and  $x_n - Sx_n \rightarrow 0$ , then  $z \in F(S)$ .

In this section, we solve generalized split feasibility problem governed by a widely more generalized hybrid mapping in Hilbert spaces.

**Theorem 3.4** ([13]). Let  $H_1$  and  $H_2$  be Hilbert spaces and let C be a nonempty, closed and convex subset of  $H_1$ . Let  $B: H_1 \to 2^{H_1}$  be a maximal monotone mapping such that  $D(B) \subset C$ and let  $J_{\lambda} = (I + \lambda B)^{-1}$  be the resolvent of B for  $\lambda > 0$ . Let S be an  $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into C which satisfies the conditions (1) or (2):

- (1)  $\alpha + \beta + \gamma + \delta \ge 0$ ,  $\alpha + \beta > 0$  and  $\zeta + \eta \ge 0$ ;
- (2)  $\alpha + \beta + \gamma + \delta \ge 0$ ,  $\alpha + \gamma > 0$  and  $\varepsilon + \eta > 0$ .

Let  $T: H_2 \to H_2$  be a nonexpansive mapping. Let  $A: H_1 \to H_2$  be a bounded linear operator.

Suppose that  $B^{-1}0 \cap F(S) \cap A^{-1}F(T) \neq \emptyset$ . Let  $\{u_n\}$  be a sequence in C such that  $u_n \to u$ . Let  $x_1 = x \in C$  and let  $\{x_n\} \subset C$  be a sequence generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n)(\alpha_n u_n + (1 - \alpha_n)SJ_{\lambda_n}(I - \lambda_n A^*(I - T)A)x_n)$$

for all  $n \in \mathbb{N}$ , where  $\{\lambda_n\} \subset (0, \infty)$ ,  $\{\beta_n\} \subset (0, 1)$  and  $\{\alpha_n\} \subset (0, 1)$  satisfy

$$0 < a \le \lambda_n \le b < \frac{1}{\|A\|^2}, \quad 0 < c \le \beta_n \le d < 1,$$

$$\lim_{n \to \infty} \alpha_n = 0 \quad and \quad \sum_{n=1}^{\infty} \alpha_n = \infty.$$

Then the sequence  $\{x_n\}$  converges strongly to a point  $z_0 \in B^{-1}0 \cap F(S) \cap A^{-1}F(T)$ , where  $z_0 = P_{B^{-1}0 \cap F(S) \cap A^{-1}F(T)}u$ .

## 4 Applications

Let H be a Hilbert space and let f be a proper, lower semicontinuous and convex function of H into  $(-\infty, \infty]$ . Then the subdifferential  $\partial f$  of f is defined as follows:

$$\partial f(x) = \{z \in H : f(x) + \langle z, y - x \rangle \leq f(y), \ \forall y \in H\}$$

for all  $x \in H$ . By Rockafellar [19], it is shown that  $\partial f$  is maximal monotone. Let C be a nonempty, closed and convex subset of H and let  $i_C$  be the indicator function of C, i.e.,

$$i_C(x) = egin{cases} 0, & ext{if } x \in C, \ \infty, & ext{if } x 
ot \in C. \end{cases}$$

Then  $i_C : H \to (-\infty, \infty]$  is a proper, lower semicontinuous and convex function on H and hence  $\partial i_C$  is a maximal monotone operator. Thus we can define the resolvent  $J_{\lambda}$  of  $\partial i_C$  for  $\lambda > 0$  as follows:

$$J_{\lambda}x = (I + \lambda \partial i_C)^{-1}x, \quad \forall x \in H, \ \lambda > 0.$$

Putting  $B = \partial i_C$  in Theorem 3.4, we have  $J_{\lambda} = P_C$ . Thus we obtain the following theorem from Theorem 3.4.

**Theorem 4.1.** Let  $H_1$  and  $H_2$  be Hilbert spaces and let C be a nonempty, closed and convex subset of  $H_1$ . Let S be an  $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into C which satisfies the conditions (1) or (2):

(1)  $\alpha + \beta + \gamma + \delta \ge 0$ ,  $\alpha + \beta > 0$  and  $\zeta + \eta \ge 0$ ; (2)  $\alpha + \beta + \gamma + \delta \ge 0$ ,  $\alpha + \gamma > 0$  and  $\varepsilon + \eta \ge 0$ .

Let  $T: H_2 \to H_2$  be a nonexpansive mapping. Let  $A: H_1 \to H_2$  be a bounded linear operator. Suppose that  $F(S) \cap A^{-1}F(T) \neq \emptyset$ . Let  $\{u_n\}$  be a sequence in C such that  $u_n \to u$ . Let  $x_1 = x \in C$  and let  $\{x_n\} \subset C$  be a sequence generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n)(\alpha_n u_n + (1 - \alpha_n)SP_C(I - \lambda_n A^*(I - T)A)x_n)$$

for all  $n \in \mathbb{N}$ , where  $\{\lambda_n\} \subset (0, \infty)$ ,  $\{\beta_n\} \subset (0, 1)$  and  $\{\alpha_n\} \subset (0, 1)$  satisfy

$$\begin{aligned} 0 < a \leq \lambda_n \leq b < \frac{1}{\|A\|^2}, \quad 0 < c \leq \beta_n \leq d < 1, \\ \lim_{n \to \infty} \alpha_n = 0 \quad and \quad \sum_{n=1}^{\infty} \alpha_n = \infty. \end{aligned}$$

Then the sequence  $\{x_n\}$  converges strongly to a point  $z_0 \in F(S) \cap A^{-1}F(T)$ , where  $z_0 = P_{F(S) \cap A^{-1}F(T)}u$ .

Replacing a widely more generalized hybrid mapping in Theorem 3.4 by a generalized hybrid mapping, we have the following theorem.

**Theorem 4.2.** Let  $H_1$  and  $H_2$  be Hilbert spaces and let C be a nonempty closed convex subset of  $H_1$ . Let  $B: H_1 \to 2^{H_1}$  be a maximal monotone mapping such that  $D(B) \subset C$  and let  $J_{\lambda} = (I + \lambda B)^{-1}$  be the resolvent of B for  $\lambda > 0$ . Let S be a generalized hybrid mapping from C into C. Let  $T: H_2 \to H_2$  be a nonexpansive mapping. Let  $A: H_1 \to H_2$  be a bounded linear operator. Suppose that  $B^{-1}0 \cap F(S) \cap A^{-1}F(T) \neq \emptyset$ . Let  $\{u_n\}$  be a sequence in C such that  $u_n \to u$ . Let  $x_1 = x \in C$  and let  $\{x_n\} \subset C$  be a sequence generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n)(\alpha_n u_n + (1 - \alpha_n)SJ_{\lambda_n}(I - \lambda_n A^*(I - T)A)x_n)$$

for all  $n \in \mathbb{N}$ , where  $\{\lambda_n\} \subset (0,\infty)$ ,  $\{\beta_n\} \subset (0,1)$  and  $\{\alpha_n\} \subset (0,1)$  satisfy

$$\begin{aligned} 0 < a &\leq \lambda_n \leq b < \frac{1}{\|A\|^2}, \quad 0 < c \leq \beta_n \leq d < 1, \\ \lim_{n \to \infty} \alpha_n &= 0 \quad and \quad \sum_{n=1}^{\infty} \alpha_n = \infty. \end{aligned}$$

Then the sequence  $\{x_n\}$  converges strongly to a point  $z_0 \in B^{-1}0 \cap F(S) \cap A^{-1}F(T)$ , where  $z_0 = P_{B^{-1}0 \cap F(S) \cap A^{-1}F(T)}u$ .

We also get the following theorem from Theorem 4.2.

**Theorem 4.3.** Let  $H_1$  and  $H_2$  be Hilbert spaces and let C be a nonempty closed convex subset of  $H_1$ . Let  $S : C \to C$  be a nonexpansive mapping and let  $T : H_2 \to H_2$  be a nonexpansive mapping. Let  $A : H_1 \to H_2$  be a bounded linear operator. Suppose that  $F(S) \cap A^{-1}F(T) \neq \emptyset$ . Let  $\{u_n\}$  be a sequence in C such that  $u_n \to u$ . Let  $x_1 = x \in C$  and let  $\{x_n\}$  be a sequence in C generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n)(\alpha_n u_n + (1 - \alpha_n)P_C(I - \lambda_n A^*(I - T)A)x_n)$$

for all  $n \in \mathbb{N}$ , where  $\{\lambda_n\} \subset (0, \infty)$ ,  $\{\beta_n\} \subset (0, 1)$  and  $\{\alpha_n\} \subset (0, 1)$  satisfy

$$\begin{aligned} 0 < a \leq \lambda_n \leq b < \frac{1}{\|A\|^2}, \quad 0 < c \leq \beta_n \leq d < 1, \\ \lim_{n \to \infty} \alpha_n = 0 \quad and \quad \sum_{n=1}^{\infty} \alpha_n = \infty. \end{aligned}$$

Then the sequence  $\{x_n\}$  converges strongly to a point  $z_0$  of  $F(S) \cap A^{-1}F(T)$ , where  $z_0 = P_{F(S) \cap A^{-1}F(T)}u$ .

Let C be a nonempty, closed and convex subset of a real Hilbert space H, let  $f: C \times C \to \mathbb{R}$ be a bifunction. Then we consider the following equilibrium problem: Find  $z \in C$  such that

$$f(z,y) \ge 0, \quad \forall y \in C.$$

The set of such  $z \in C$  is denoted by EP(f), i.e.,

$$EP(f) = \{ z \in C : f(z, y) \ge 0, \ \forall y \in C \}.$$

For solving the equilibrium problem, let us assume that the bifunction f satisfies the following conditions:

 $\begin{array}{ll} (\mathrm{A1}) \ f(x,x) = 0 \ \text{for all } x \in C; \\ (\mathrm{A2}) \ f \ \text{is monotone, i.e., } f(x,y) + f(y,x) \leq 0 \ \text{for all } x,y \in C; \\ (\mathrm{A3}) \ \text{for all } x,y,z \in C, \\ & \lim_{t \to 0} f(tz + (1-t)x,y) \leq f(x,y); \end{array}$ 

(A4)  $f(x, \cdot)$  is convex and lower semicontinuous for all  $x \in C$ .

We know the following lemmas; see, for instance, [4] and [8].

**Lemma 4.4** ([4]). Let C be a nonempty closed convex subset of H, let f be a bifunction from  $C \times C$  to  $\mathbb{R}$  satisfying (A1)-(A4) and let r > 0 and  $x \in H$ . Then, there exists  $z \in C$  such that

$$f(z,y)+rac{1}{r}\langle y-z,z-x
angle\geq 0$$

for all  $y \in C$ .

**Lemma 4.5** ([8]). For r > 0 and  $x \in H$ , define the resolvent  $T_r : H \to C$  of f for r > 0 as follows:

$$T_r x = \left\{ z \in C : f(z,y) + rac{1}{r} \langle y-z, z-x \rangle \geq 0, \; \forall y \in C 
ight\}$$

for all  $x \in H$ . Then, the following hold:

- (i)  $T_r$  is single-valued;
- (ii)  $T_r$  is firmly nonexpansive, i.e., for all  $x, y \in H$ ,

$$||T_r x - T_r y||^2 \le \langle T_r x - T_r y, x - y \rangle;$$

(iii)  $F(T_r) = EP(f);$ 

(iv) EP(f) is closed and convex.

Takahashi, Takahashi and Toyoda [22] showed the following. See [1] for a more general result.

**Lemma 4.6** ([22]). Let C be a nonempty, closed and convex subset of a Hilbert space H and let  $f: C \times C \to \mathbb{R}$  be a bifunction satisfying the conditions (A1)-(A4). Define  $A_f$  as follows:

$$A_f(x) = \begin{cases} \{z \in H : f(x,y) \ge \langle y-x,z\rangle, \ \forall y \in C\}, & \text{ if } x \in C, \\ \emptyset, & \text{ if } x \notin C. \end{cases}$$

Then  $EP(f) = A_f^{-1}(0)$  and  $A_f$  is maximal monotone with the domain of  $A_f$  in C. Furthermore,

$$T_r(x) = (I + rA_f)^{-1}(x), \quad \forall r > 0.$$

We obtain the following theorem from Theorem 3.4.

**Theorem 4.7.** Let  $H_1$  and  $H_2$  be Hilbert spaces and let C be a nonempty closed convex subset of  $H_1$ . Let  $f: C \times C \to \mathbb{R}$  satisfy the conditions (A1)-(A4) and let  $T_{\lambda_n}$  be the resolvent of  $A_f$  for  $\lambda_n > 0$  in Lemma 4.6. Let S be an  $(\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from C into C which satisfies the conditions (1) or (2):

- $\begin{array}{ll} (1) \ \alpha+\beta+\gamma+\delta\geq 0, \ \alpha+\beta>0 \ and \ \zeta+\eta\geq 0; \\ (2) \ \alpha+\beta+\gamma+\delta\geq 0, \ \alpha+\gamma>0 \ and \ \varepsilon+\eta\geq 0. \end{array}$

Let  $T: H_2 \to H_2$  be a nonexpansive mapping. Let  $A: H_1 \to H_2$  be a bounded linear operator. Suppose that  $EP(f) \cap F(S) \cap A^{-1}F(T) \neq \emptyset$ . Let  $\{u_n\}$  be a sequence in C such that  $u_n \to u$ . Let  $x_1 = x \in C$  and let  $\{x_n\} \subset C$  be a sequence generated by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n)(\alpha_n u_n + (1 - \alpha_n)ST_{\lambda_n}(I - \lambda_n A^*(I - T)A)x_n)$$

for all  $n \in \mathbb{N}$ , where  $\{\lambda_n\} \subset (0,\infty)$ ,  $\{\beta_n\} \subset (0,1)$  and  $\{\alpha_n\} \subset (0,1)$  satisfy

$$\begin{split} 0 < a \leq \lambda_n \leq b < \frac{1}{\|A\|^2}, \quad 0 < c \leq \beta_n \leq d < 1, \\ \lim_{n \to \infty} \alpha_n = 0 \quad and \quad \sum_{n=1}^{\infty} \alpha_n = \infty. \end{split}$$

Then the sequence  $\{x_n\}$  converges strongly to a point  $z_0 \in EP(f) \cap F(S) \cap A^{-1}F(T)$ , where  $z_0 = P_{EP(f) \cap F(S) \cap A^{-1}F(T)}u.$ 

#### References

- [1] K. Aoyama, Y. Kimura and W. Takahashi, Maximal monotone operators and maximal monotone functions for equilibrium problems, J. Convex Anal. 15 (2008), 395–409.
- [2] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. **67** (2007), 2350–2360.
- [3] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal. 8 (2007), 471-489.
- [4] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145.
- [5] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), 759–775.
- [6] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221-239.
- [7] Y. Censor and A. Segal, The split common fixed-point problem for directed operators, J. Convex Anal. 16 (2009), 587-600.
- [8] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136.
- [9] H. Cui and F. Wang, Strong convergence of the gradient-projection algorithm in Hilbert spaces, J. Nonlinear Convex Anal. 14 (2013), 245–251.
- [10] K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, JP J. Fixed Point Theory Appl. 2 (2007), 105–116.

- B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957– 961.
- [12] M. Hojo, T. Suzuki and W. Takahashi, Fixed point theorems and convergence theorems for generalized hybrid non-self mappings in Hilbert spaces, Nihonkai Math. J., to appear.
- [13] M. Hojo and W. Takahashi, Generalized split feasibility problem governed by widely more generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 14 (2013), 363– 376.
- [14] T. Kawasaki and W. Takahashi, Existence and mean approximation of fixed points of generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 14 (2013), 71– 87.
- [15] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497-2511.
- [16] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899–912.
- [17] A. Moudafi, The split common fixed point problem for demicontractive mappings, Inverse Problems **26** (2010), 055007, 6 pp.
- [18] N. Nadezhkina and W. Takahashi, Strong convergence theorem by hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), 1230-1241.
- [19] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216.
- [20] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. **331** (2007), 506-515.
- [21] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), 1025– 1033.
- [22] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), 27-41.
- [23] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [24] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese).
- [25] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
- [26] W. Takahashi, Strong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applications, J. Optim. Theory Appl. 157 (2013), 781-802.
- [27] W. Takahashi, N.-C. Wong and J.-C. Yao Weak and strong mean convergence theorems for extended hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 12 (2011), 553-575.
- [28] W. Takahashi, H. K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., to appear.
- [29] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109–113.
- [30] H. K. Xu, A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems 22 (2006), 2021–2034.