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ON COMPACTNESS IN L!

HIROMICHI MIYAKE (=% %)

1. INTRODUCTION

Let (€2, A, 1) be a positive measure space with o-algebra A and mea-
sure p and let F be the family of measurable subsets of Q with finite
measure. Let L! and L* be the space of integrable functions defined
on {) and the space of essentially-bounded measurable functions de-
fined on €2, respectively. We denote by L$2 the vector subspace of L
consisting of essentially-bounded measurable functions f defined on
for which u{w € Q : f(w) # 0} < co. In [5], we discussed a method of
constructing a separated locally convex topology 7 on L' generated by
the semi-norms f +— [, |f|dy (E € F) with the assumption that u is
cf—ﬁnite The topological dual of (L!,7) is algebraically isomorphic to

L. A notion of local uniform integrability for subsets of L' was also
discussed to obtain a necessary and sufficient condition for a bounded
subset of L' relative to L'-norm to be relatively weakly compact in
(L', 7): Whenever C is a bounded subset of L' relative to L!-norm,
C is locally uniformly integrable if and only if C is relatively weakly
compact in (L', 7). We applied it to show the existence of the mean
values for commutative semigroups of Dunford-Schwartz operators on
L'. This result gives an identification of the limit function in almost ev-
erywhere convergence of the Cesaro means n=*Y o T*f of an f € L;
see [6] for details.

In this paper, we summarize the arguments presented in [7] and [8]
about a characterization of compactness for the weak topology of L*
associated with 7, and then apply similar arguments to discuss some
necessary and sufficient conditions of compactness for the topology on
L' generated by the metric (f, g) — fn | f—g| du and the weak topology

o(L',L>®) on L' generated by L™, respectively. As their applications,
(weak) almost periodicity of linear and non-linear operators in L' is
also discussed.

2. PRELIMINARIES

Throughout the paper, let N, and R denote the set of non-negative
integers and the set of real numbers, respectively. Let (E, F) be a
duality between vector spaces E and F over R. If A is a subset of
E, then A° = {y € F : (z,y) < 1(z € A)} is a subset of F, called
the polar of A. For each y € F, we define a linear form f, on E by



fy(z) = (z,y) (z € E). Then, o(E, F) denotes the weak topology
on E generated by the family {f, : y € F} and 7(E, F') denotes the
Mackey topology on E with respect to (E, F'), that is, the topology of
uniform convergence on the circled, convex, o(F, E)-compact subsets
of F. Let (E,%) is a locally convex space. Then, the topological dual
of E is denoted by E'. The bilinear form (z, f) — f(z) on E x F’
defines a duality (F, E') and the weak topology on E generated by E'
is called the weak topology of F (associated with ¥ if this distinction is
necessary). If E is a Banach space, then the subset {z € E : ||z]| <7}
of E is called the closed ball with center at 0 and radius r, denoted by
B(r). In particular, B(1) is called the closed unit ball in E.
Throughout the paper, let (£, A, ) denote a positive measure space
with o-algebra A and measure u, and let F denote the family of mea-
surable subsets of Q with finite measure. Then, F is ordered by set
inclusion in the sense that E is less than F, or E < F if and only
if E C F(E,F € F), so that each finite subset of F has the least
upper bound. Let E € A. If Ag denotes the o-algebra of all inter-
sections of members of A with E and pg denotes the restriction of u
to Ag, then the triple (E, Ag, pg) is a positive measure space. For
1 < p < o0, let LP(E) be the vector space of measurable functions f

defined on E for which ||fllgp = ([ |fIP dp)? < oo and let L2(E)
be the vector space of measurable functions f defined on E for which
| fllEco = infysup,emn |f(w)] < oo, where N ranges over the null
subsets of E. If Nz denotes the set of null functions defined on E and
[f] denotes the equivalence class of an f € LP(E) mod Ng (1 < p < 00),
then [f] — ||fllep is a norm on the quotient space LP(E)/Ng, which
thus becomes a Banach space, denoted by LP(E). In particular, if u
is the counting measure on N, then we write I* in place of L'(N). For
each f € LP(Q), (|fllap is called the LP-norm of f, simply denoted
by ||f|l,- A measurable function f defined on 2 is called essentially-
bounded if ||f|lcoc < 0o0. Every element of LP(E) is considered as a
measurable function f defined on E with || f||gp < 00, if no confusion
will occur. For each E € A, the bilinear form (f,h) — [, fhdu on
LY(E) x L®(FE) places L'(E) and L*(E) in duality. For E,F € F
with E < F, let igr denote the mapping of L'(F) onto L'(E) that
assigns to each f € L'(F) the restriction f|g of f to E. Then, the
canonical imbedding of L®(E) into L%°(F) is the adjoint operator of
igr, denoted by jrg.

Let £} () be the vector space of measurable functions f defined
on Q for which ||f||z1 < oo for each E € F and let N, be the vector
subspace of £} () consisting of measurable functions f defined on {2
for which ||f||g1 = 0 for each E € F. If [f] denotes the equivalence
class of an f € L£h,() mod Niee, then [f] = [g] (£,9 € Lh(9))
means that for each E € F, f(z) = g(z) almost everywhere on E. In
particular, if u is o-finite, then MV, equals the set Ny of null functions
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defined on Q2 and hence for f,g € L} .(Q), [f] = [g] if and only if
f(z) = g(z) almost everywhere on (). For each E € F, [f] = [|flle.
is a semi-norm on the quotient space L} (£2)/Nye, which becomes a
locally convex space, denoted by L} (£2), under the separated locally
convex topology 7 generated by the semi-norms [f] — ||f|lg1 (E €
F). Every element of Lj,.(Q) is considered as a measurable function f
defined on (2 for which |[f|[g1 < oo for each F € F, if no confusion
will occur. If u is finite, then L () equals L'(f2) and hence 7 is just
the topology on L'({) generated by the metric (f,g) — ||f — gl..

In the sequel, we shall assume that the measure space (Q, A, ) is o-
finate. The product space L is the Cartesian product L = [[p.» L' (E)
of the family {(L'(E),|| - ||g1) : E € F} with its product topology.
Then, L;,.(9) is identified as a closed (and hence complete) subspace
of £ by the isomorphism f +— (f|g)ger of Li,.(Q) into L, where f|g
is the restriction of f to E. Let D = @g_r L™(F) be the direct sum
of the family {L*°(E) : E € F}. The vector spaces L and D are
placed in duality by the bilinear form (f, g) — > o(fe,gr) on L X D,
where f = (fg) € L,g = (gg) € D and the sum is taken over at
most a finite number of non-zero terms of g. Then, the topological
dual of £ is D and the topological dual of Li () is the quotient space
D/(LL.(2))°, which is algebraically isomorphic to the vector subspace
L2.(2) of L*®(2) consisting of measurable, essentially-bounded func-

tions f defined on 2 for which u{w € Q: f(w) # 0} < co.

Proposition 1. L; (Q) is a complete locally convex space. The topo-
logical dual of L, () is algebraically isomorphic to L2 ().

loc loc

We note that Lj,.(Q) is identified as the reduced projective limit
@igprl(F) of the family {(L*(E),|| - |lg1) : E € F} with respect
to the mappings igr (E,F € F and E < F). If D = @z L°(F)
denotes the locally convex direct sum of the family {(L®°(FE), 7(L*°(FE),
L'(E))) : E € F}, then the quotient space D/(L}.(Q))° is the induc-
tive limit lim jrpL*°(E) of the family {(L*(E),7(L*(E),L'(E))) :
E € F} with respect to the mappings jrr (E,F € F and E < F).

A subset A of L} () is said to be locally uniformly integrable if
for each E € F, the set {f|g : f € A} of the restrictions f|g of the
functions f in A to E is uniformly integrable in L'(FE), that is, for
each £ € F and € > 0, there exists a 6 > 0 such that for each F € A
with F' C E and p(F) < 0, supses [p|fldp < e It follows from
the theorem of Tychonoff that if A is a locally uniformly integrable,
bounded subset of Li (£2), then A is relatively weakly compact, since

loc
Lj,.(£2) is a complete subspace of £. The converse holds.

Proposition 2. A subset C of L} () is relatively weakly compact if

loc

and only if C is bounded and locally uniformly integrable.

Remark 1. The arguments discussed so far is applicable for o-compact
topological spaces X. In this case, we choose as A the o-algebra of
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Borel sets of X and as u a Borel measure on X such that u(K) < oo
for each compact subset K of X. For example, let X = R, let u be
Lebesgue measure on R, let X be the family of compact subsets of R
and let L} (R) be the space of Borel measurable functions f defined
on R for which || fllx1 = [ |f] dp < 0o (K € K), endowed with
the separated locally convex topology generated by the semi-norms
f = fllk: (K € K). Then, L},.(R) contains the space C(R) of con-
tinuous (not necessarily bounded) functions defined on R. If a subset
C of C(R) is uniformly bounded on the compact subsets of R, that
is, SUpsecSUPLex |f(z)| < 0o (K € K), then C is relatively weakly

compact in L} .(R).

We recall that whenever E is a metrizable locally convex space, then
a subset C of E is weakly compact if and only if C is sequentially
weakly compact.

Proposition 3. A subset C of L},.(Q) is weakly compact if and only
if C is sequentially weakly compact.

3. ON WEAK COMPACTNESS IN A SEPARATED LOCALLY CONVEX
TOPOLOGY ON L!

In this section, L'(f2) shall be considered as a locally convex space
under the separated locally convex topology 7 generated by the semi-
norms f = ||f|lg1 (E € F), if L'(£2) is not specified explicitly as a
Banach space with the norm f — || f||1, and we show a necessary and
sufficient condition for a subset of L}(€) to be relatively weakly com-
pact. It is clear that 7 is the relative topology of T on L} (Q) to L*(?),
since L'(f) is a subspace of L} (). The topological dual of L'(2) is
algebraically isomorphic to L§2.(€2). The result concerning complete-
ness of L'(§2) follows immediately from the separation theorem.

Proposition 4. The completion of (L*(Q),7) is Li,.().

loc

We showed a sufficient condition for a subset of L'(Q2) to be rela-
tively weakly compact to obtain the existence of the mean values for
commutative semigroups of Dunford-Schwartz operators on L'; see [6].

Proposition 5. Let C be a bounded subset of L'(Q) relative to L!-
norm, that is, supscc || f|ly < 0o. Then, C' is relatively weakly compact
in (LY(Q),7) if and only if C is locally uniformly integrable.

Ezample 1. Let Q = R, let A be the o-algebra of Lebesgue measurable
subsets of R, let u be Lebesgue measure on R, let F be the family
of Lebesgue measurable subsets of R with finite measure. Let L'(R)
be endowed with the separated locally convex topology 7 generated by
the semi-norms f — ||fllg1 (E € F) and let f € L'(R). For each
y € R, f, is the translate of f, that is, fy(z) = f(z—y) (z € R). Then,
{f, : y € R} is relatively weakly compact in (L'(R),7). For example,
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for f(z) = e (z € R), {f, : v € R} is not relatively weakly compact
in (L*(R), || - |l1), but relatively weak compact in (L*(R),7); see also
Remark 3. |

Ezample 2. The closed unit ball in {! is weakly compact in the topology
of pointwise convergence, due to Fatou’s lemma.

Ezxample 3. Let Q, A, u, F and 7 be as in Example 1. Let f, (n € N)
be a characteristic function on [n,2n). Then, {f,} is not bounded
relative to L'-norm, but it converges to a null function in the topology
7 on L'(R). Thus, it is relatively compact and hence relatively weakly
compact in (L'(R), 7).

A subset C of L'(Q) is said to be locally bounded if C is a bounded
subset of L'(§2), that is, for each E € F, supjcc || f]lg,1 < 0.

We show a necessary and sufficient condition for a subset of L*(£2)
to be relatively weakly compact in (L*(Q), 7).

Theorem 1. A subset C of L'(Q) is relatively weakly compact in
(LY(2),7) if and only if C is locally uniformly integrable, locally bounded
and for each sequence {f,} in C,

sup lim inf
EeF N

Lfndu' < 00.

4. ON WEAK COMPACTNESS IN L!

In the sequel, L*(Q) shall be considered as a Banach space under
the norm f — ||f]l;. From Theorem 1, it is natural to ask a question
of under which conditions every locally uniformly integrable, locally
bounded subset of L'((2) is relatively weakly compact in (L*(), || (l1).

The following theorem is due to Grothendieck.

Theorem 2. A subset C of a Banach space E is relatively weakly
compact if and only if for each € > 0, there erists a weakly compact
subset D of E such that C C D + B(e).

Motivated by his result, we introduce a notion of the type of uniform
integrability to obtain a necessary and sufficient condition for a subset
of L'(£2) to be relatively weakly compact. We call a subset C of L*(2)
uniformly integrable at infinity if for each € > 0, there exists an F € F
such that

sup/ |fldu < € (or limsup/ |f[d,u=0).
fec Jo\E EeF rec Ja\E

Theorem 3. Let C be a subset of L'(Q). Then, the following are
equivalent:

(1) C is relatively weakly compact;
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(2) for each € > 0, there ezists an E € F such that Cg = {f|E :
f € C} is uniformly integrable, bounded in L'(E) and C' C
Cg+ B (6) 5

(3) C is locally bounded, locally uniformly integrable and uniformly
integrable at infinity;

(4) C is bounded, uniformly integrable and uniformly integrable at
nfinity;

(5) |C| = {If] : f € C} is relatively weakly compact, where |f|(z) =
|f (z)| (z € Q);

(6) C is bounded and for each decreasing sequence {E,} in A with
empty intersection, f E, f du converges to 0 uniformly in f € C;

(7) C is bounded and there exists an f € L'(Q) such that for each
€ > 0, there exists a & > 0 such that for each E € A with

fE!fl du < 0, Sngeclegd,ul < €.

Remark 2. The equivalence (1) < (6) is due to Dunford and Pettis,
according to [3] and (1) < (7) is obtained as in Bartle, Dunford and
Schwartz [1]. The latter implies that Theorem 3, Theorem 4 and Corol-
lary 1 hold without the assumption that u is o-finite, since every func-
tion in a weakly compact subset of L'(§2) vanishes on the complement
of a o-finite set.

Remark 3. Let 9, A and u be as in Example 1. Then, the subset
of L'(R) consisting of the translates of f(z) = e7®l (z € R) is not

uniformly integrable at infinity and hence is not weakly compact in
LY(R).

Corollary 1. Every order interval in L*(Q) is weakly compact, where
an order interval is a subset of the form {h € LY(Q) : f(z) < h(x) <
g(x) almost everywhere on U} (f,g € L*(Q)).

The following theorem is due to Theorem 3 and the convergence
theorem of Vitali.

Theorem 4. Let C be a weakly compact subset of L*(Q), let {fn} be
a sequence in C and let f € C. If fo(z) converges to f(z) almost
everywhere on Q, then ||fn — flli = 0 as n — oo.

Corollary 2. Every weakly convergent sequence in [ is strongly con-
vergent.

5. ON STRONG COMPACTNESS IN L!

Note that in the sequel, L*(£2) shall be considered as a Banach space
under the norm f — ||f|l;. As in the arguments in the previous sec-
tions, L°(Q) is considered as a locally convex space under the separated
locally convex topology 7 generated by the semi-norms f +— ||f||Ee:
(E € F). It is clear that 7 is the relative topology of 7 on Lj,,(f)

loc

to L*®(Q), since L®(f) is a subspace of L (©2). The topological dual

loc
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of (L*(92),7) is algebraically isomorphic to L$ (). The result con-
cerning completeness of (L°(2),7) also follows immediately from the

separation theorem.
Proposition 6. The completion of (L*°(2),7) is L}, ().

The weak topology o(L®(Q), L*(9)), simply denoted by o(L*, L),
is finer than the weak topology of L*°(Q2) associated with 7, from which
we directly deduce the following result concerning sequential compact-
ness in o(L®, L') on L®(Q).

Proposition 7. The closed unit ball in L*®(Q) is sequentially compact
relative to the weak topology o (L™, L').

Remark 4. If E is a reflexive or smooth Banach space, then every closed
unit ball in E’ is sequentially compact relative to the weak topology
o(E', E); see [2] for more details.

A subset C of a Banach space F is said to be limited if for each
sequence {z,} in E’ converging to 0 in the weak topology o(E', E),
limy,,o0 |{x, Z,,)| converges to 0 uniformly in z € C.

Using similar arguments to [9], we obtain a characterization of strong
compactness in Banach spaces E for which the closed unit ball in E’ is
sequentially compact relative to the weak topology o(E', E).

Proposition 8. Let E be a Banach space. Whenever the closed unit
ball in E' is sequentially compact relative to the weak topology o(E', E),
a subset C' of E is relatively compact if and only if C is bounded and
limated.

Remark 5. According to [2], Proposition 8 is due to Gelfand.

Corollary 3. Whenever E is a reflexive or smooth Banach space, a
subset C' of E 1is relatively compact if and only if C is bounded and
limited.

The following theorem is due to Proposition 7 and Proposition 8.

Theorem 5. A subset C.of L*(Q) s relatively compact if and only if
C is bounded and limited.

Remark 6. It is clear that Theorem 5 holds without the assumption
that u is o-finite.

6. MISCELLANEOUS APPLICATIONS

In this section, we apply the results about weak and strong com-
pactness in L'()) to obtain some characterizations of (weak) almost
periodicity for linear and non-linear operators in L(2).

Let T be a linear contraction on L!(Q), that is, T is a linear op-
erator on L'(Q) such that || Tf|. < ||flls (f € L*(Q)). In addition,
if |ITflle < Ifllo (f € LX) N L*®(Q)), then T is said to be a
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Dunford-Schwartz operator on L*(f). If for each f € L'(f), the orbit
{T"f :n=0,1,2,---} of f under T is relatively (weakly) compact,
then T is said to be (weakly) almost periodic.

Proposition 9. Let T be a Dunford-Schwartz operator on L*(2). Then,
T is weakly almost periodic if and only if for each f € L*(), the orbit
of f under T is uniformly integrable at infinity.

Proposition 10. Let T be a linear contraction on L'(Q). Then, T is
almost periodic if and only if for each f € L*(Q), the orbit of f under
T is limited.

Let C be a closed convex subset of L!'(£2) and let T be a nonexpansive
operator on C, that is, T is a mapping of C into itself such that ||Tf —
Tall: < If —glli (f,g € C). Then, T is said to be almost periodic
if for each f € C, the orbit {T"f : n = 0,1,2,---} of f under T is
relatively compact. It is known that if a nonexpansive operator T' on
C is almost periodic, then T has the mean values on C; see also [4] for
more details.

Proposition 11. Let C be a closed conver subset of L*(Q2) and let T
be a nonezpansive operator on C. Whenever T has a fized point in C,
T is almost periodic if and only if for each f € C, the orbit of f under
T s limited.

REFERENCES

(1] R. G. Bartle, N. Dunford and J. T. Schwartz, Weak compactness and vector
measures, Canad. J. Math., 7 (1955), 289-305.

[2] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York,
1984.

[3] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New
York, 1958.

[4] H. Miyake and W. Takahashi, Vector-valued weakly almost periodic functions
and mean ergodic theorems in Banach spaces, J. Nonlinear Convex Anal., 9
(2008), 255-272.

[5] H. Miyake, On the ezistence of the mean values for commutative semigroups
of Dunford-Schwartz operators on L', Annual Meeting of the Mathematical
Society of Japan, Kyoto, Japan, Mar. 20-23, 2013.

[6] H. Miyake, On the ezistence of the mean values for certain order-preserving
operators in L', in Nonlinear Analysis and Convex Analysis (T. Tanaka ed.),
RIMS Kékytiroku 1923, 2014, pp. 90-98.

[7] H. Miyake, On compactness in L! and its application, RIMS Workshop: Non-
linear Analysis and Convex Analysis, Kyoto, Japan, Aug. 19-21, 2014.

[8] H. Miyake, On compactness in L', Annual Meeting of the Mathematical Soci-
ety of Japan, Hiroshima, Japan, Sep. 25-28, 2014.

[9] R.S. Phillips, On linear transformations, Trans. Amer. Math. Soc., 48 (1940),
516-541.

[10] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.
[11] H. H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, 1971.

230



